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Abstract—Adaptive system identification is an active area of
research in the field of signal processing due to the fact that
it updates the unknown parameter of the filter using a suitable
adaptive algorithm. Due to great advancements in digital signal
processors in terms of high speed and low power consumption,
adaptive algorithms are able to calculate the parameters of
interest very fast with reduced complexity. Taking one of the
practical aspect of adaptive algorithm such as convergence speed,
many algorithms have been found in the literature that quickly
converge to some steady state value. But presence of outliers
in the data limit the performance of these algorithms. Though
minimum Wilcoxon norm [1] has been proposed to overcome
the effect of outliers, yet the speed of convergence can still be
improved. A convex combination of two adaptive filters have been
taken into account to tackle the above limitation. Results show
that convex combination of filters work very efficiently against
conventional adaptive algorithms, giving faster convergence. But
in the presence of outliers its effectiveness is not up to the
mark. A normalized median based approach is proposed, which
is applied along with the convex combination in order to improve
the performance. Simulation results defend the above statement
and verify the authenticity of the research.

Index Terms—LMS, Wilcoxon norm, block LMS, convex com-
bination, convergence.

I. INTRODUCTION

Wide use of least mean square (LMS) algorithm and its vari-
ants are basically due to its low complexity and convergence in
stationary environment [2]. The conventional LMS algorithm
is based on minimizing the quadratic norm of error. But when
outliers come into picture, its robustness gets affected. In
practical applications the data are not in an uniform range.
It is highly possible that there are some observations which
lies at an abnormal range present in the data. These values
must be handled carefully otherwise they affect the overall
system in terms of convergence. Majhi et al. [1] stated an
algorithm based on minimum Wilcoxon norm giving robust
and improved performance against such outliers. The merit of
their work is that it can handle upto 40% outliers. But the
limitation of the stated problem is the speed of convergence.
Ban et al. [3] proposed normalized minimum Wilcoxon norm
and affine projection algorithm (APA) Wilcoxon norm, which
is an extension of the minimum Wilcoxon norm. Sahoo et
al. [4] proposed two new schemes sign-regressor and sign-
sign Wilcoxon and showed that both gives better results
compared to conventional Wilcoxon algorithm in terms of

speed of convergence. Dash et al. [5] carried out the analysis
of outliers for system identification and showed that minimum
Wilcoxon norm has better robustness against the outliers.
Sananda et al. [6] proposed Wilcoxon norm for distributed
adaptive networks. They carried out the steady state analysis
using asymptotic linearity rank test for diffusion based dis-
tributed systems. Though Wilcoxon based adaptive algorithms
give better performance against outliers, but its convergence
speed can still be improved. Gracia et al. [7] proposed the
performance analysis of convex combination of two adaptive
filters and showed that the steady state performance is much
better than the conventional approach. Hence, in this work
we have employed a convex combination of two adaptive
filters in order to enhance the convergence rate. We have taken
two possible scenarios, i.e. system without outliers and with
outliers. In the absence of outliers we have employed convex
combination in LMS and its variants to verify that the speed of
convergence is much faster than the conventional algorithms
with single filter. For presence of outliers in the system we
have taken minimum Wilcoxon norm and compared the result
with its convex combination. Results show that in presence
of outliers the convergence speed of minimum Wilcoxon
norm and its convex combination are almost same. Hence,
a normalized median based approach is proposed which is
incorporated along with the convex combination resulting in
very fast convergence in presence of 10 to 40 % outliers.

The orientation of this article is as follows. Section II gives
a brief introduction of LMS algorithms and its variants. The
concept of convex combination of adaptive filters & a short
description of the minimum Wilcoxon norm also have been
discussed in this section. The proposed technique combining
the convex combination along with the normalized median
approach has been given in section III. In section IV, an
exhaustive comparison analysis of proposed technique and the
conventional techniques have been given in the presence and
absence of outliers and its MATLAB simulation results have
been discussed. The concluding remarks of the proposed work
is given in section V.

The notations used in this article are as follows: bold letters
are used to specify the column vectors, bold italic symbols
denote the matrix quantity and < has been used for the set of
real numbers. Here, W and X are the weight and input vectors,
µ is the step size, d is the desired signal, y is the response
of the system and e is the error. It is important to note that
the input X is column vector in the absence of outliers, but978-1-5386-9279-0/19/$31.00 c©2019 IEEE



in presence of outliers as it operates in a block, hence X is a
matrix.

II. SYSTEM IDENTIFICATION AND CONVEX COMBINATION
SCHEME

To identify an unknown system from input output signal is
known as system identification. Both the unknown system and
adaptive filter are driven by the same input. Adaptive filter
adjusts its weights so that it can match the weights of the
unknown plant. Upon convergence, if the relationship of input
and output for both the system and the adaptive model are
same (i.e. the error is minimal), then it can be said that the
adaptive system is a model of the unknown system.

A. Adaptive Algorithms

Different algorithms which are used to verify the authentic-
ity of the result, and are briefly over-viewed in this subsection.
We have mainly focused on the stochastic gradient approach,
i.e. LMS algorithm and its different variants. The different
adaptive algorithms are

1) LMS Algorithm : LMS algorithm [8] is widely used be-
cause of its low computational complexity and it doesn’t
need the statistical information such as Rxx and Rxy to
update the weights. It is given by

W(n) = W(n− 1) + µX(n)e(n). (1)

2) NLMS Algorithm : The limitation of the LMS algorithm
is that if the inputs are scaled, then its performance
decreases [9]. Hence NLMS [8] is given by

W(n) = W(n− 1) + µ[
X(n)(e(n))

ε+ ‖X(n)‖22
]. (2)

3) Sign-error LMS Algorithm : The sign-error LMS [4] is
given by

W(n) = W(n− 1) + µX(n)sgn[e(n)]. (3)

4) Leaky LMS Algorithm : Gupta et al. and Modalavalasa
et al. [10], [11] stated the leaky LMS algorithm which is
given by

W(n) = (1− γµ)W(n− 1) + 2µe(n)X(n). (4)

B. Convex Combination of Two Adaptive Filters

The adaptive convex combination scheme has been shown
in Fig. 1, from which the overall output of the filter [7] can
be given as

Fig. 1: System identification using adaptive convex combina-
tion of two transversal filters

y(n) = β(n)y1(n) + [1− β(n)]y2(n), (5)

where yi(n); ∀i = 1, 2 are the outputs of the two transversal
filters at instant n, i.e. yi(n) = wT

i (n)x(n),∀i = 1, 2. wT
i (n)

are the weights of individual filters and x(n) is the input
vector. β(n) is a scalar parameter such that 0 ≤ β ≤ 1.
wi(n),∀i = 1, 2 will give best results if β(n) is tuned properly
in each iteration.

The individual filter weights are updated independently with
the help of general transversal scheme as follows

Wi(n+ 1) = fi(Wi(n), d(n),X(n), e(n)), (6)

where the desired signal is given by d(n), and fi(.) is any
suitable adaptive algorithm. The overall weights get updated
using the following equation

W(n) = β(n)W1(n) + [1− β(n)]W2(n). (7)

The parameter β(n) is given by the following sigmoid function

β(n) = sigm[c(n)] =
1

1 + e−c(n)
, (8)

which is used to combine both the outputs and c(n) is a
variable. However β(n) gets modified indirectly by adapting
c(n) using a gradient-descent method to minimize the overall
error [12]

c(n+ 1) =c(n)− µ

2

∂e2(n)

∂c(n)

=c(n)− µ

2

∂e2(n)

∂e(n)

∂e(n)

∂y(n)

∂y(n)

∂β(n)

∂β(n)

∂c(n)

=c(n) + µe(n)[y1(n)− y2(n)]β(n)[1− β(n)].

(9)

The adaptation in (5) will stop when β(n) value is either 0
or 1. To overcome this problem the value of c(n) restricted in
the range [−c+, c+], which in turn limits the range of β(n) in
the range [1− β+, β+].

Depending on the value of β(n), the response of the filter
will vary. Hence the modified response of the filter can be
given by

yu(n) = βu(n)y1(n) + [1− βu(n)]y2(n), (10)



where

βu(n) =


1; c(n) ≥ c+ − ε
β(n); −c+ + ε < c(n) < c+ − ε
0; c(n) ≤ −c+ + ε

, (11)

with ε being a small positive quantity.

C. Minimum Wilcoxon Norm

Unlike conventional algorithms, minimum Wilcoxon norm
operates in block. Hence the desired signal and error signal
in this case are column vectors. Let the output of the adaptive
filter at pth input and qth experiment is given by

y(p, q) = W(q)T Xp. (12)

The error is given by

e(p, q) = d(p, q)− y(p, q). (13)

Minimum Wilcoxon norm of error is given by

ψ(q) =

K∑
p=1

s(p, q)ep(q), (14)

where s(p, q) is the score function such that φ(k) : [0, 1]→ R,
satisfying ∫ 1

0

φ2(k)dk <∞, (15)

where
φ(k) =

√
12(k − 0.5). (16)

Taking k = R{e(p,q)}
K+1 , the score φ(k) is given by

s(p, q) =
√

12(
R{e(p, q)}
K + 1

− 0.5); 1 ≤ p ≤ K, (17)

where R{e(p, q)} indicates the rank of error such that

ep(q) ≤ ep(q + 1); 1 ≤ k ≤ K. (18)

Finally the weight update equation is given by

W(q + 1) =W(q)− µ∂ψ(q)

∂W

=W(q)− µ ∂ψ(q)

∂ep(q)

∂ep(q)

∂y(p, q)

∂y(p, q)

∂W

=W(q)− µ
K∑

p=1

X(p)s(p, q).

(19)

III. PROPOSED METHOD

Ban et al. [3] proposed Normalized Wilcoxon given by

Wi = Wi−1 + µXi(XiX
′
i)

−1si. (20)

From (14), (16) and (17) the minimum Wilcoxon norm can
be expressed by the following form [4]

|ψ| =
K∑
i=1

φ(ei)ei. (21)

From (21) replace ei by (ei −med(ei)), then it will become

|ψ| =
K∑
i=1

φ(ei)(ei −med(ei))

=

K∑
i=1

[
φ(ei)

(ei −med(ei))
](ei −med(ei))

2

=

K∑
i=1

(ωi)(ei −med(ei))
2

=

K∑
i=1

(ωi)((di − XT
i W)−med(ei))

2

=

K∑
i=1

(ωi)((di −med(ei))− XT
i W)2

=

K∑
i=1

(ωi)(d̄i − XT
i W)2

=

K∑
i=1

(
√
ωid̄i −

√
ωiXT

i W)2

=

K∑
i=1

(d̄i
w − (Xw

i )T W)2

, (22)

where Xw
i =
√
ωiXi and d̄i

w
=
√
ωid̄i. Eq. (22) indicates the

new formulation of minimum Wilcoxon norm. Incorporating
the changes, X in (20) we will get the final update equation
which is given by

Wi = Wi−1 + µXw
i (Xw

i Xw′
i ))−1sconv. (23)

It would be interesting to see the effect of convex combination
of two filters with minimum Wilcoxon norm in the presence
of outliers in the data. The above method is employed along
with convex combination scheme in order to increase the
speed of convergence. Eq. (23) represents the weight update
equation of the proposed method. In Eq. (23) sconv indicates
the score value of the convex combination and is calculated
using individual si, i.e.

sconv = β(n)s1 + [1− β(n)]s2, (24)

where s1 and s2 are the individual scores of the adaptive filters.
The system is modeled as

d(n) = WT (n)X(n) + η(n) + o(n);n = 1, 2, ..., N. (25)

Wε<L, Xε<L are the weight and input column vectors respec-
tively. The order of the system is given by L. η indicates the
additive white Gaussian noise (AWGN) while o represents the
outliers present in the desired data. d is the desired response
of the unknown system.

The output of individual transversal filters are given by

yi(n) = WT
i (n)X(n); i = 1, 2. (26)

The respective errors are given by

ei(n) = d(n)− yi(n); i = 1, 2. (27)

and the corresponding score value si(n) is calculated using
(17). The Wilcoxon norm ψi(n) for the two score values
are calculated using (14). The individual weights of the two
adaptive filters are updated using (19). From (11) the value of
βu(n) is calculated with respect to c(n). The overall output



of the filter y(n) is calculated using (5). The final error is
calculated as

e(n) = d(n)− y(n); i = 1, 2. (28)

The overall weight W is updated using (7). For the proposed
method, the updated weight is modified using normalized
median approach given in (22) and hence the new weight
update equation is given by Eq. (23). Weight update using
proposed method is helpful for getting faster convergence.
Now c(n) is updated using (9) and the value of β(n) is updated
using (8).

IV. RESULTS AND ANALYSIS

This section contains the results and analysis of the pro-
posed method and the discussions made above. The simula-
tions are carried out using MATLAB software. Results shown
in this section depicts two possible scenarios. First, in the
absence of outliers the LMS algorithm and its variants are
employed with convex combination. Second, in the presence
of up to 40 % outliers, convex combination is applied to
minimum Wilcoxon norm. The weight of the unknown system
is taken as

W0 = [0.26 0.93 0.26]T (29)

A. Absence of outliers

In the absence of outliers 20000 number of input data is
generated within the range of random value (−0.5, 0.5). The
response of the unknown system is calculated using the tapped
delay structure as given in (25). The AWGN noise is given by
η. The output have been obtained by conducting the average of
total 100 number of Monte Carlo runs. Fig. 2 (a) represents
the MSE plot of the linear system given in Eq. (25) using
the adaptive algorithms given in Eq. (1), (2), (3) and (4)
respectively. We can clearly see that NLMS is converging
faster compared to LMS and leaky LMS. The converging
speed of sign error LMS is fastest among all the four.

In Fig. 2 (b) the MSE of respective convex combinations
of the above algorithms have been plotted. The same pattern
as we got in Fig. 2 (a) can be observed in Fig. 2 (b), but
with fast convergence. Convex sign error LMS is fastest, while
convex LMS is the slowest. Convex NLMS is faster compared
to convex LMS and convex leaky LMS.

The MSE plot of convex combination scheme of LMS and
NLMS have been compared with their conventional algorithms
have been plotted in Fig. 2 (c). The convex scheme is faster in
achieving the steady-state compared to the existing methods,
so is the case with sign-error and leaky LMS.

B. Presence of outliers

The outliers o is present along with the AWGN η, which
makes it difficult for the system to converge. Hence the data is
processed in block. The value of outliers is random value fixed
between (−V, V ) where V is an observation lying far away
from the existing values present in the data. Percentage of
outliers is decided by calculating Number of outlier instances

Block size × 100.
Simulations have been carried out by taking the values of
outliers in the range 10 ≤ |o| ≤ 20 , which is far away

from the values present in the data lying in the range (-
0.5, 0.5). In simulations normalized mean square deviations
(NMSD) in dB is plotted with respect to number of iterations.
The NMSD is calculate using 10log10

‖W0−W‖22
‖W0‖22

. Fig. 3 (a),
(b) and (c) shows the simulations for three algorithms, i.e.
minimum Wilcoxon norm, convex minimum Wilcoxon norm
and the proposed convex normalized median Wilcoxon norm
for 20%, 30% and 40% outliers respectively. It reflects that
the effect of convex combination in presence of outliers is
same as the conventional minimum Wilcoxon norm. But after
incorporating the proposed changes as given in (22) and (23),
the convergence speed is increased drastically, increasing the
accuracy of the result. Though convergence speed is getting
improved by the proposed method, the quality of the aforemen-
tioned method can be proved by calculating the % deviation
and by comparing our result with rest of the algorithms, in
presence of outliers. Table I shows the value of estimated
weights for the initial weight given in (29) using block LMS,
Wilcoxon norm, convex Wilcoxon norm and the proposed
convex normalized median Wilcoxon norm. It clearly depicts
that in presence of outliers the block LMS never converges.
The estimated values are far away from the original value and
the % deviation is very high. Wilcoxon norm gives standard
results and work fine against outliers. The convex combination
of minimum Wilcoxon norm is also not improving the results
up to standard. But when the convex combination is employed
in normalized minimum Wilcoxon norm, it gives efficient
results. The estimated values are very close to the original
value and the % deviation is also very less.

V. CONCLUSION

This research has been focused to study the effect of convex
combination on adaptive algorithms both in presence and
absence of outliers. In the absence of outliers it increases the
speed of convergence of existing algorithms. In the presence
of outliers it doesn’t improve the converging speed up to the
mark. By incorporating the changes and using normalized me-
dian method along with convex combination, the convergence
speed of the system increases significantly, nullifying the effect
of outliers. Another interesting result is when the amount of
outliers increase, the deviation still remains less. Stability and
steady state analysis of the proposed method can be considered
as the future work of this research.
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