Paper ID : S0012



## EXTRACTION OF RESPIRATION FROM PPG SIGNALS USING HILBERT VIBRATION DECOMPOSITION

#### Hemant Sharma, Ph.D.

Department of Electronics & Communication Engineering National Institute of Technology Rourkela, India

9<sup>th</sup> International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB), January 7-9, 2019, Singapore

#### OUTLINE

- Background
- Need for PPG-derived respiration
- > Hilbert vibration decomposition (HVD)
- > HVD based PPG-derived respiration
- Experiment and results
- Discussion

#### BACKGROUND





#### Photoplethysmography (PPG)

- Acquired using pulse oximeter that measures changes in light absorption in tissues
- Primarily used for non-invasive monitoring of blood oxygen saturation
- > But it can also be used to monitor other vital signs.
- Simple, feasible, cost-effective process
- Thus, PPG is preferred physiological signal for home-based routine health supervision

#### **NEED FOR PPG-DERIVED RESPIRATION**

- Respiration is essential to monitor patient deterioration.
- Diagnosis of several health problems including stress, apnea, acute respiratory dysfunction etc.
- Limitations of conventional equipment for respiration measurement
- Feasible for home-based monitoring

## HILBERT VIBRATION DECOMPOSITION (HVD)

- It decomposes non-stationary signals into a sum of components with slowly varying amplitudes and frequencies
- Each iteration of HVD includes-
  - Estimation of instantaneous frequency of the largest component
  - Extraction of envelope of largest component (Synchronous detection or Signal mixing)
  - Subtraction of largest component from the composite signal

> From HVD applied to the input x(t)

$$x(t) = \sum_{k} a_{k}(t) \cos\left(\int \omega_{k}(t) dt\right),$$

#### where,

 $a_k(t)$  - envelope of  $k^{th}$  component  $\omega_k(t)$  - Instantaneous frequency of  $k^{th}$  component

- > Energy of  $x_k(t)$  > Energy of  $x_l(t)$ , for l > k
- > First component of HVD  $\rightarrow$  largest energy component

#### HVD BASED PPG-DERIVED RESPIRATION

- Assumption Respiratory component in PPG has significant fraction of the total energy of the PPG
- Using HVD, the largest component of PPG corresponds to the respiratory-related variations
- > The largest component  $x_1(t)$  of PPG x(t)

$$x_1(t) = a_1(t) \cos\left(\int \omega_1(t) dt\right)$$

The signal  $x_1(t)$  when plotted shows cyclic variations closely resembling the respiration



Figure: (a) PPG; (b) Reference respiration; (c) Largest component of PPG  $X_1(t)$ 

The signal  $x_1(t)$  is filtered using a band-pass (0.08 – 0.8 Hz) filter and the output is referred to as the derived respiration

#### EXPERIMENT AND RESULTS

- Databases: Capnobase and MIMIC (available at Physionet.org)
- PPG recordings are segmented into equal length epochs of duration 30 seconds each
- A total of 2905 epochs (605 epochs from Capnobase and 2300 epochs from MIMIC) are selected (which are visually uncorrupted)
- Respiratory rate is calculated using fast Fourier transform
- Performance measures
  - Pearson's correlation coefficient
  - Mean absolute error (MAE)
  - Average percentage (relative) error (PE)
  - Root mean square error (RMSE)

#### Pearson's correlation coefficient



## **RIFV:** Respiratory-induced frequency variation; **RIAV:** Respiratory-induced amplitude variation (Karlen *et al.* 2013)

Karlen et al. 2013. Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans. Biomed. Eng. 60, 1946-1953.

| Techniques | MAE (bpm*)  | PE (%)      | RMSE (bpm) |
|------------|-------------|-------------|------------|
| RIFV       | 2.5         | 23.3        | 4.8        |
|            | (0.4, 4.5)  | (2.7, 38.3) | (1.1, 7.5) |
| RIAV       | 1.9         | 14.6        | 3.3        |
|            | (0.3, 3.9)  | (2.6, 30.8) | (0.9, 6.3) |
| HVD        | <b>0.97</b> | <b>8.8</b>  | <b>1.4</b> |
|            | (0.2, 3.3)  | (0.4, 26.5) | (0.3, 5.5) |

Capnobase dataset (parameters are shown as median (1<sup>st</sup> quartile, 3<sup>rd</sup> quartile)

\*bpm = breaths per minute

MIMIC dataset (parameters are shown as median (1<sup>st</sup> quartile, 3<sup>rd</sup> quartile)

| Techniques | MAE (bpm)             | PE (%)                     | RMSE (bpm)               |
|------------|-----------------------|----------------------------|--------------------------|
| RIFV       | 6.5                   | 39.6                       | 8.1                      |
|            | (3.8, 8.9)            | (28.1, 65.8)               | (6.1, 10)                |
| RIAV       | 2.2                   | 15.1                       | 3.6                      |
|            | (1.1, 4.4)            | (6.3, 32)                  | (2.2, 6.3)               |
| HVD        | <b>1.8</b> (0.9, 3.4) | <b>12.8</b><br>(7.1, 20.4) | <b>3.1</b><br>(1.4, 5.9) |

11

#### Comparisons with other existing methods (Capnobase data)

| Methods                                                    | RMSE (bpm)        | Epoch Length<br>(sec) |
|------------------------------------------------------------|-------------------|-----------------------|
| Proposed work                                              | 1.4 (0.3, 5.5)    | 30                    |
| EEMD-PCA (Motin <i>et al</i> . 2017)                       | 2.77 (0.50, 5.9)  | 30                    |
| Smart fusion (Karlen et al. 2013)                          | 1.56 (0.60, 3.15) | 32                    |
| Correntropy spectral density<br>(Garde <i>et al.</i> 2014) | 0.95 (0.27, 6.20) | 120                   |
| EMD (Garde <i>et al.</i> 2013)                             | 3.5 (1.1, 11)     | 60                    |

Motin *et al.* 2017. Ensemble empirical mode decomposition with principal component analysis: a novel approach for extracting respiratory rate and heart rate from photoplethysmographic signal. IEEE J. Biomed. Health Inform. 99, 766-774.

Karlen et al. 2013. Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans. Biomed. Eng. 60, 1946-1953.

Garde *et al.* 2014. Estimating Respiratory and Heart Rates from the Correntropy Spectral Density of the Photoplethysmogram. PLoS ONE. 9, 1-11.

Garde *et al.* 2013. Empirical mode decomposition for respiratory and heart rate estimation from the photoplethysmogram. In *Computing in Cardiology Conference* (2013). 799-802.

#### DISCUSSION

- A simple but effective approach to estimate the respiration from PPG.
- Computationally efficient
- Reduces the need for detection of fiducial points
- Satisfactory performance over a large number of epochs acquired from two different datasets
- Better resemblance between derived and recorded respiratory signals

- What if the respiratory component in PPG doesn't appear to be the largest energy component?
  - >Add to the initial signal a constant value larger than the peak value.
  - ➤ Limitation: If the muscles noise or artifacts lie in the respiratory band and are of significant magnitude in the PPG signal → erroneous results



# THANK YOU FOR YOUR ATTENTION

**16**