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ABSTRACT

A Pressure-velocity solution for natural convection for fluid saturated heat generating
porous medium in a square enclosure is analysed by finite element method. The numerical
solutions obtained for wide range of fluid Rayleigh number, Ra;, Darcy number, Da, and
heat generating number, Qu. The justification for taking these non-dimensional parameters
independently is to establish the effect of individual parameters on flow patterns. It has been
observed that peak temperature occurs at the top central part and weaker velocity prevails
near the vertical walls of the enclosure due to the heat generation parameter alone. On
comparison, the modified Rayleigh number used by the earlier investigators[4,6], can not
explain explicitly the effect of heat generation parameter on natural convection within an
enclosure having differentially heated vertical walls. At higher Darcy number, the peak
temperature and peak velocity are comparatively more, resulting in better enhancement of

heat transfer rate.
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Introduction

Analysis of flow and convective heat transfer in volumetrically heated porous layer has become a
separate topic for research in the last twenty five years in view of its importance in various engineering
applications, such as heat removal from nuclear fuel debris, heat transfer associated with storage of
nuclear waste, exothermic reaction in packed-bed reactors, heat recovery from geothermal systems and

particularly in the field of large storage systems of agricultural products.

Several studies on convective heat transfer in heat-generating porous media have been reported
for different physical formulation and geometric models with various boundary conditions. Gasser et al.
[1] studied the onset of convection in a horizontal porous layer, both stabilising and destabilising
temperature gradients. Somerton et al. [2] obtained the solution for the case of volumetrically heated
porous layer with an adiabatic lower surface and a zero applied temperature gradient. Haajizadeh et al.[3)
has presented a Darcy solution for natural convection in a porous enclosure with vertical side wall
cooling. Prasad[4] has reported the study of Darcian effect in rectangular cavity with vertical walls
which are isothermally cooled. All these investigators have considered a single wall temperature of the
enclosure. Later, Prasad et al.[5] have presented solution for natural convection within rectangular
enclosure for differentially heated vertical wall temperature with no heat generation. Several studies have
also shown the effect of Brinkman extension and Forchheimer formulation of Darcy’s equation for flow
in porous media. Stewart et al [6] have employed the modified Darcy’s equation using Forchheimer
formulation to study the non-Darcian effect for enclosures having single boundary wall temperature. One
of the objective of the present problem is to investigate the convective flow using Brinkman-extended
Darcy’s law for wide range of flow parameters. Brinkman-extended Darcy law is chosen to justify the
no-slip condition over the solid wall boundaries and also the viscous term in its Navier-Stokes equation.
Although Chan et al.[7] inferred that inclusion of viscous term and consequent satisfaction of the no-slip
condition, give virtually the same result as a pure Darcy law analysis for lower range of modified
Rayleigh number. Furthermore, a very little work has been reported on natural convection within
rectangular enclosure filled with heat generating porous media bounded by two vertical isothermal walls
at two different temperatures. It has been established that the flow patterns and isotherms exhibit
distinctly different behavior in differentially heated vertical cavity than that of single wall temperature.
The second objective of the paper is to include the effect of differentially heated vertical isothermal walls

which has more practical relevance than that of a single wall temperature.

Physical Model

The physical system under consideration is a square enclosure. The vertical walls of the
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enclosure have been considered to be heated isothermally at two different temperatures, while the
horizontal walls are perfectly insulated. No-slip condition is chosen throughout the boundary. It is
assumed that the porous medium is isotropic, homogeneous and saturated with an incompressible fluid.
The thermophysical properties of the fluid and solid matrix are constant except for fluid density variation
in the body force term. The viscous dissipation is negligible. Furthermore, the solid particle and fluid are
assumed to be in local thermodynamic equilibrium. These assumptions are general and the purpose of the
analysis is to provide a basic understanding of flow phenomenon for heat generating, differentially

heated porous enclosure.

Thus the governing equations of conservation of mass, momentum and energy for steady flow

through the porous medium are given as follows:
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In the above equations the variables are reduced to dimensionless form by introduction of the following
scales

xy ="y VL: wv = (u"v)L/e; p=(pLY(pe);
T=(T" - TH(Ty - To); (5)
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The astrics denote dimensional variables. The variables u and v are the velocity components in x and y

directions, p is the pressure and T is the temperature. The dimensionless numbers are defined as,

T _T L3re
Rayleigh Number, Ra; = 8P (T, ~ T )L

Villg
Vi
Prandtl Number, Pr=—
oy
Darcy Number, Da=—5 and
L ref

Lrerq”

— (6)
af(Th - Tc)Pprf

Non-dimensional heat generation number, Q, =
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The governing equations are scaled on the basis of fluid Rayleigh number as in the case of
viscous fluid(independent of permeability) instead of modified Rayleigh number. The scaling has been

intended to observe the effect of individual matrix and fluid parameters explicitly.

Finite element method is chosen to predict the various parameters. A suitable grid generation
scheme with isoparametric, quadrilateral elements is adopted for stability of numerical results. All the
elements are containing eight nodes, one at each corner and one at midpoint of each side. All eight nodes
are associated with velocities as well as temperature; where the corner nodes are associated with
pressure. This is an accepted practice given by Taylor et al. [8] for depicting the variation in pressure by

shape function M|, of one order less than those shape function N; defined for velocities and temperature.
8
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By employing the Galerkin weighted residual approach and substituting the spatial variation of u,p,v and

T given by eq. (7) in egs. (1)-(4) following set of algebraic equations are obtained.
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The indices i, j, k=1....8; and 1=1....4;
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The above egs. (8)-(11) are discretised form of governing equations in primitive variable
formulation in u,p,v and T. As the coefficient matrix of these set of equations is sparse in nature with
very high order, a suitable technique is necessary in order to reduce the computation time and memory. In
the present text frontal technique[9] is used which requires a suitable element numbering scheme in order
to reduce the front width. An iterative scheme is adopted with initial guess values of u and v till the

desired convergence in the tolerance of 10 is obtained.

Results and Discussion

The numerical results are obtained for an enclosure filled with heat generating saturated porous
medium. The enclosure is having differentially heated two vertical isothermal walls and two horizontal
adiabatic walls. For the sake of analysis, aspect ratio of the enclosure is taken to be unity and Prandtl
number, Pr = 1. The range of other parameters considered here are Darcy number(10® <Da <102, fluid
Rayleigh number (10° <Ra; <107) and heat generation number Qg (1< Q4 < 10°). The porosity, € of the
medium is taken to be 0.4 and 0.2 for the sake of comparison. The justification of present dimensionless
analysis is to study the effect of porous matrix scaling parameters Da, €, and Q, and fluid scaling

parameter Rag on heat transfer and fluid flow characteristics.

At very low Darcy number and low rate of heat generation, (Da = 10°, Qs=1), pure heat
conduction dominates even at Rayleigh number of the order 10’. In such condition, flow remains always
unicellular and the isothermal lines at central region remain more horizontal. As Rayleigh number
increases lateral conduction predominates only in the thin boundary layer of the wall. This conclusion is
satisfactorily explained in the case of enclosure without porous medium. However it is obvious that pure
heat conduction will prevail at some higher range of Rayleigh number due to the presence of porous

medium.

The isothermal lines and streamlines patterns are plotted for Da at 10™ and 107, At each of these
Da, Qq is taken to be 10 and 10” and Ray is taken to be 10° and 10°. These results are plotted at porosity

0.4 and 0.2 as shown in fig. 1.

Without heat generation, the maximum temperature occurs at the hot wall. This temperature
increases and drifts towards the center of top wall with the increasing Q4 as shown in fig.1. This is due to
the fact that the hot fluid reaching the top left corner of the enclosure is unable to reject energy since the
velocities are small. The u-velocity along the mid vertical height shows clearly the fall of velocity at the
top region as compared to that of bottom as shown in Fig. 2. Increasing Ras alone at moderate range (Ras

< 10%) does not effect the peak temperature appreciably. The earlier work[4], where modified Rayleigh
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number is used alone, may not be able to explain the flow pattern without these individual parameters

(Rag, Da and Q) used here.
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FIG. 1
Flow patterns for different range of parameters (a) Isotherms; (b) streamlines;
with porosity, € = 0.4(continuous ine) and € = 0.2 (dashed line)

Another important result is to be noted that fluid having higher heat generation rate will induce a
weaker vorticity even at a very low Rar and thus it gives rise to a bicellular structure as shown in fig.
i1(b). But the symmetricity of this bicellular structure does not exist due to eftect of differentially heated
vertical walls which is in contrast to those work with single boundary wall temperature. The v-velocity
along the mid horizontal axis is plotted to confirm the coexistence of bicellular structure as shown in fig.
2(b). This unsymmetric bicellular flow is also apparent from the streamline plots. However, at very high
heat generation rate, the core flow is distorted to an extent to produce multicellular structures within the

domain. In Brinkman’s model the velocity is zero at the wall, increasing to a peak value, and then
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dropping to zero in the core region. As the value of Da increases, the position of the peak velocity shift

away from wall as shown in fig. 2. For a given model the flow intensity and thermal activity increases
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FIG.2
Velocity plot (a) u-velocity at mid vertical height; (b) v-velocity at mid horizonatal height;
with porosity, €=0.4(continuous line) and £=0.2(dashed line).
with the increasing Darcy number since the permeability of the system has increased, thereby reducing

the resistance to flow.

Figure 3 shows the contour plots of dimensionless u and v velocities with increase in Darcy and
Rayleigh numbers. Although the u and v at the mid axes is given in fig. 2, it is more interesting to see the
general nature of u and v variation inside the domain as shown in fig. 3 for certain flow parameters. This
figure clearly indicates change of flow pattern from unicellular to bicellular where the symmetric

structure of the core is never sustained.

The above problem is also extended to study the effect of change of porosity on convective flow
patterns. It has been observed that increase in porosity of the medium is found to have significant effect
on peak temperature as well as peak velocities. Because there is an overall reduction in damping
resistance offered by porous matrix which leads to higher velocity and this in turn results steeper

temperature gradient and large Nusselt number at higher porosity.
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Fig. 3
Velocity contour plot, u-velocity(continuous
line); v-velocity(dashed line); with porosity
e=0.4
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Nomenclature

A° Area of an element,

C Specific heat of fluid,

Pt

Da Darcy number,
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g Gravitational constant, (m/s”)
Lyer Characteristic length; (m)

M,N Shape function;

Qq Heat generation number;( L’rer -q /OLf(Th -T, )prpf )

q Uniform heat generation rate per unit volume,
n® Number of elements,

p Dimensionless fluid pressure,

Pr Prandt] number; vyo

Ray Rayleigh number; gB1(T, — T, )L et / veoty
T Non-dimensional temperature, (T-T)}/(Ty-T.)
T..T.  Temperature of hot wall,

u.v Dimensionless velocities,

XY Dimensionless co-ordinates,

Greek  Symbols

o Fluid thermal diffusivity,

Br Coefficient of thermal expansion,
r Length of boundary,

K Permeability ratio,

A Conductivity ratio,

£ Porosity,

Pr Fluid density,

Ve Fluid kinematics viscosity,
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