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INTRODUCTION

The twisted cantilever panels have significant applications in wide chord turbine blades,
compressor blades, fan blades, particularly in gas turbines. This range of practical applications
demands a proper understanding of their vibration, static and dynamic stability characteristics.
Due to its significance, a large number of references deal with the free vibration of twisted
plates. Structural elements subjected to in-plane periodic forces may lead to parametric
resonance, due to certain combinations of the values of load parameters. The instability may
occur below the critical load of the structure under compressive loads over wide ranges of
excitation frequencies. Composite materials are being increasingly used in turbo-machinery
blades because of their specific strength, stiffness and these can be tailored through the variation
of fiber orientation and stacking sequence to obtain an efficient design. Thus the parametric
resonance characteristics of laminated composite twisted cantilever panels are of great
importance for understanding the systems under periodic loads.

An excellent survey of the earlier works in the free vibration of turbo-machinery blades was
carried out by Leissa [1] through 1981. The vast majority of earlier researches treated the blades
as beams i.e. one-dimensional case. Such an idealization is highly inaccurate for the blade with
moderate to low aspect ratio. Leissa, Lee and Wang [2] employed shallow shell theory and Ritz
method to determine the frequencies of turbo-machinery blades with twist for different degrees
of shallowness and thickness. However, there are very few studies on free vibration of
composite pre-twisted plates. Qatu and Leissa [3] investigated the free vibration of laminated
composite twisted cantilever plates using Ritz method. Although extensive free vibration
frequencies and mode shapes are studied, the results were however confined to symmetric
laminates only. He, Lim and Kitipornchai [4] presented the free vibration of symmetric as well
as anti-symmetric laminates explaining the limit of linear twisting curvature. Karmakar and
Sinha [5] analyzed the free vibration of laminated composite pre-twisted cantilever plates using
finite element method. Hu et al.[6] studied the vibration of angle-ply laminated plates with twist
using a Raleigh-Ritz procedure. Kee and Kim [7] analysed the vibration characteristics of
initially twisted rotating shell type composite blades. Lee et al.[8] studied the vibration of
twisted cantilevered conical composite shells, using finite element method based on the
Hellinger-Reissner principle. Hu et al. [9] have also investigated the vibration of twisted
laminated composite conical shells by the energy method. Since Bolotin [10] introduced the
subject of dynamic stability under periodic loads, the topic has attracted much interest. This
monograph explained the general theory of dynamic stability of elastic systems of deriving the
coupled second order differential equation of the Mathiew-Hill type and the determination of the
regions of instability by seeking periodic solution using Fourier series expansion. The
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parametric instability characteristics of laminated composite non-twisted plates were studied by
a number of investigators [11-14]. Ganapathi et al. [15] investigated the dynamic stability of
composite curved panels without twist subjected to uniform in-plane periodic loads. Sahu and
Datta [16] studied the parametric excitation behaviour of doubly curved panels subjected to non-
uniform in-plane harmonic loading using finite element method. A few studies were made to
investigate the dynamic stability of twisted blades. Ray and Kar [17] analyzed the dynamic
stability of pre-twisted sandwich beams. Chen and Peng [18] studied the dynamic stability of
twisted rotating blades, using the Galerkin finite element method. Lin and Chen [19] studied the
stability problems of a pre-twisted blade with a constrained viscoelastic core subjected to a
periodic axial load, using a 2-node element neglecting shear deformation and rotary inertia. The
above studies involved dynamic stability of twisted structures using beam idealization. The
study on stability characteristics of twisted panels is new. Recently, Sahu et al. [20] analyzed the
buckling behaviour of twisted cantilever panels. In the present investigation, the parametric
instability characteristics of laminated composite pre-twisted cantilever flat and curved panels
subjected to in-plane harmonic loads are studied. The effects of angles of pre-twist, aspect ratio,
static load factor, and the lamination parameters of the composite twisted curved panels on the
principal instability regions are studied in this investigation.

MATHEMATICAL FORMULATIONS

The basic configuration of the problem studied here is a cantilever panel of length ‘a’ and ‘b’,
twisted through an angle ¢, as shown in Fig.1 and subjected to in-plane periodic edge loading.

Fig. 1 Geometry and co-ordinate systems of twisted cantilever plates.

Governing Equations: The governing differential equations for vibration of a shear deformable
laminated composite twisted cantilever panel subjected to in-plane loads are [21, 22]:
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Where Ny, Ny and Ny, are the in-plane stress resultants, My, My and M,, are moment resultants
and Q,, Q,= transverse shear stress resultants. Ry, Ry and Ry, identify the radii of curvatures in

the x and y direction and radius of twist.
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Where n= number of layers of laminated composite twisted curved panel, (p)ys=mass density of
ki layer from mid-plane.

Dynamic stability studies: The equation of motion for vibration of a laminated composite
twisted cantilever panel, subjected to in-plane loads can be expressed in the matrix form as:
[MIG} +[[K.]- NO[K,]]{a} =0 A3)

‘q’ 1s the vector of degrees of freedoms (u, v, w, 6, 0y). The in-plane load ‘N(t)’ may be
harmonic and can be expressed in the form:

N(t) = N, + N,Cost 4)
Where N, is the static portion of load N(t), N, the amplitude of the dynamic portion of N(t) and

Q) is the frequency of the excitation. The stress distribution in the panel may be periodic.
Considering the static and dynamic component of load as a function of the critical load,
N,=aN, , N, =N, (5)
Where a and B are the static and dynamic load factors respectively. Using Eq.(5), the equation of
motion for twisted curved panel under periodic loads in matrix form may be obtained as:

[MIG}+[[K ]-aN [K,]- N [K,]CosQt]{q} =0 (6)
The above Eq. (6) represents a system of differential equations with periodic coefficients of the
Mathieu-Hill type. The development of regions of instability arises from Floquet’s theory which
establishes the existence of periodic solutions of periods T and 2T. The boundaries of the
primary instability regions with period 2T, where T=2 n/Q are of practical importance [10] and
the solution can be achieved in the form of the trigonometric series:

q(t) = Z:[{ak 1Sin(kQt /2) + {b, }Cos(kQt /2)] (7)
k=1,3,5,..
Putting this in Eq.(6) and if only first term of the series is considered, equating coefficients of
Sin Qt/2 and Cos Qt/2 , the equation (6) reduces to
1 o’
[[Ke]—aPcr[Kg]iEﬂPcr[Kg]—T[M]]{q}=0 (8)

Eq.(8) represents an eigenvalue problem for known values of a, 3 and P, . The two conditions

under the plus and minus sign correspond to two boundaries of the dynamic instability region.
The eigenvalues are (2, which give the boundary frequencies of the instability regions for given
values of a and B. In this analysis, the computed static buckling load of the panel is considered
as the reference load.

Finite Element Formulation: A Finite element analysis was performed using an eight nodded
curved isoparametric shell element with five degrees of freedom u, v, w, 6, and 6, per node.

The shell element can accommodate laminated materials and twisting of the panel, based on first
order shear deformation theory. u, v and w are the displacement components in the x, y, z
directions and 6, and 6, are the rotations.

Strain Displacement Relations: Green-Lagrange’s strain displacement relations are presented
in general throughout the analysis. The linear part of the strain is used to derive the elastic



stiffness matrix and the non-linear part of the strain is used to derive the geometric

matrix. The total strain is given by

&)= te,j+ & )

The linear shear deformable Sanders’ strain displacement relations are [21]:
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The non-linear strain components are as follows:
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Constitutive Relations: The laminated composite pre-twisted cantilever panel is considered to
be composed of composite material laminae (typically thin layers). The material of each lamina
consists of parallel continuous fibers embedded in a matrix. Each layer is regarded as on a
microscopic scale as being homogenous and orthotropic. The stress resultants are related to the
mid-plane strains and curvatures for the laminated shell element as :
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The extensional, bending-stretching coupling and bending stiffnesses are expressed as
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The transverse shear stiffness is expressed as:

i,j=1,2,6

(14)
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Where « is the transverse shear correction factor.
The off-axis stiffness values are:

Q, =Q,m" +2(Q,, +2Qy)m’n’ +Q,,n*
612 = (Qn +Q22 _4Q66)m2n2 +Q12(m4 + n4)
622 = Q11n4 +2(Q, +2Q66)m2n2 +szm4

= (16)
Q16 = (Qll - le - 2Q66)m3n + (le - sz + 2Q66)n3m

st = (Qu _le - 2Q66)mn3 + (Q12 - sz + 2Q66)m3n

Qe =(Q,, +Q,, —2Q,, - 2Q66)m2n2 + Qse(m4 +n*)

The stiffness corresponding to transverse deformations are:

Q44 :Gl3m2+Gz3n2 (17)

Qs =(G;; —Gy)mn
655 = Gl3n2 + Gzzm2
Where m=cos 0 and n= sin 0; and 6=angle between the arbitrary principal axis with the material
axis in a layer. The on-axis stiffness are:
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Derivation of Element matrices: The element elastic stiffness and consistent mass matrices
are derived using standard procedure as:

11
Elastic stiffness matrix k.1, = j j [B]"[D][B]Jjd&d 7

-1-1

11
Consistent mass matrix [m], = j j [NI"[PIIN]J[déd (19)
-1-1
Where [B], [D], [N] are the strain-displacement matrix, stress-strain matrix and shape function
matrix. and J is the Jacobian determinant. [P] involves mass density parameters. The geometric
stiffness matrix is a function of in-plane stress distribution in the element due to applied edge
loading. Plane stress analysis is carried out using the finite element techniques to determine the
stresses and these stresses are used to formulate the geometric stiffness matrices [21].

11
Geometric stiffness matrix [21] [k, ], = I J‘[G]T [S][G]|J|d§d77 (20)
-1-1
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A computer program is developed to perform all the necessary computations. Reduced
integration technique is adopted to avoid possible shear locking. The overall matrices [Ky], [K,]
and [M] are obtained by assembling the corresponding element matrices, using skyline
technique. Subspace iteration method is adopted throughout to solve eigenvalue problems.

RESULTS AND DISCUSSIONS

Numerical results are presented for anti-symmetric angle-ply laminated pre-twisted cantilever
panels with different combinations of lamination parameters and geometry including angle of
twist, b/h ratio, aspect ratio and curvature. The clamped (C) boundary condition of the angle-ply
panel using the first order shear deformation theory is:

C: u=v=w=0x=0y=0 at any edge.

Convergence study: The convergence studies are made for non-dimensional fundamental
frequencies of vibration of square laminated composite twisted cantilever plates for two
thickness ratios (b/h=100, 20) and three angles of twists (¢= 0°, 15° and 30°) for different mesh
divisions and are shown in Table 1. From the above convergence study, 10 x10 mesh has been
employed to idealise the panel in the subsequent analysis.

Table 1 Convergence of non-dimensional fundamental frequencies of vibration of
composite twisted cantilever plates with [45° /—45°/45°]  lamination.

Non dimensional frequency, @ = wa’,/(p/E,;h*)
a/b=1E, =138GPa,E,, =8.96Gpa,G,, =7.1GPa,v,, =0.3

Mesh Non-dimensional fundamental frequencies of free vibration
for different thickness ratio and angles of twist
b/h=100 b/h=20
$=0" o=15" »=30" | ¢=0° o=15" $=30"
4x4 0.4615 | 0.5300 0.5165 |0.4570 | 0.4744 0.4770
8x8 0.4596 | 0.5261 0.5123 | 0.4546 | 0.4719 0.4745
10x10 0.4592 | 0.5256 0.5118 | 0.4541 0.4714 0.4741

Comparison with previous studies: The accuracy and efficiency of the present finite element
formulation is validated for free vibration analysis of composite twisted plates for different ply
orientations with the results of Qatu & Leissa [3] and He, Lim and Kitipornchai [4] using Ritz
method. The results are presented in Table 2, showing good comparison with the literature. To
validate the formulation further, the principal instability regions of untwisted (¢=0") anti-
symmetric angle-ply flat panel subjected to in-plane periodic loads is plotted with non-
dimensional frequency Q/w (ratio of excitation frequency to the free vibration frequency)
without static component of load and compared with the results of Moorthy et al. [12]. As
observed from Fig 2, the present finite element results show excellent agreement with the
previous instability studies.

Numerical results: After validating the formulation, the parametric instability studies are
carried out for uniaxially loaded laminated composite pre-twisted panels with static component
of load to consider the effect of various parameters. The geometrical and material properties of
the cantilever panel are: a=b=500 mm, h=2 mm (unless otherwise stated).

E,, =141.0Gpa,E,, =9.23Gpa,G,, = G,; =5.95Gpa,G,, = 2.96Gpa,v,, = 0.313

The non-dimensional excitation frequency Q= Qa’\/(p/E,h?) is used throughout the

dynamic instability studies, where Q is the excitation frequency in radian/second.



The variations of instability regions with static load factor (o) for a twisted anti-symmetric
angle-ply panel of square plan-form and twisting angle ¢=15° is shown in Figure 3. As observed

Table 2 Comparison of non-dimensional fundamental frequencies of vibration of
graphite epoxy twisted cantilever plates [6, -0, 8] plates, angle of twist $=15°
a/b=LE, =138GPa,E,, =8.96Gpa,G,, =7.1GPa,v,, =0.3

Non dimensional frequency, @ = wa’,/(p/E,,h?)

Reference | Non-dimensional fundamental frequencies of free vibration
b/h for different ply orientations (0)

0=0° 0=15" 0=30" 0=45° 0=60" 0=75" 0=90"

100 1.0035 ]0.9296 |0.7465 |0.5286 |0.3545 |0.2723 | 0.2555

1.0034 1 0.92938 | 0.74573 | 0.52724 | 0.35344 | 0.27208 | 0.25544

1.00295 ]0.92798 | 0.74381 | 0.52560 | 0.35278 | 0.27200 | 0.25543

1.0031 0.89791 |0.68926 | 0.47810 | 0.33374 | 0.26934 | 0.25540

0.99107 |0.87025 |0.67939 |0.47143 | 0.33074 | 0.26786 | 0.25506

A
B
C
20 A 1.0031 0.8981 0.6899 10.4790 |0.3343 |0.2695 |0.2554
B
C
A

=Qatu & Leissa [3], B=He, Lim and Kitipornchai [4] and C= Present work
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Figure 2 Comparison of instability regions with number of layers of untwisted (¢=0 °),
angle-ply panel (two layer: 45 9-45°, four layer: 45 9-45 945 9-45°), a/b=1, ¢=0.0.
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Figure 3 Variations of instability regions with static load factor of a twisted angle-ply panel
[30 9-30 930 9-30°], a/b=1, ¢=15¢ =0.0, 0.2, 0.4 and =0.6.




in Figure 3, the instability occurs earlier and the width of instability zones expands with increase
in static load factor from 0.0 to 0.6. All further studies are done with static load factor a=0.2.
The variations of instability regions with ply orientation of angle-ply [0/-6/6/-0] cantilevered
pre-twisted (¢=30°) panels for uniform loading with static component is shown in Figure 4. As
observed, the onset of instability occurs earlier for ply orientations of 60°, 75° and 90°. The
instability occurs much later for ply orientation of 0° and 15° . The ply orientation 0° seems to
be the preferential ply orientation for this lamination sequence and twisting angle. Thus the ply
orientations significantly affected the onset of instability region and the width of instability
zones. The variation of instability regions shows asymmetric behaviour unlike the results of
dynamic stability of simply supported, square and untwisted angle-ply plates by Chen and Yang
[11]. This may be due to the un-symmetry in boundary conditions and twisting of the panels.

——6=0°

—8—6=15°
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—%—6=45°
—%—6=60°
——0=75°
—+—6=90°

Dynamic load factor

N T X T @

0 2 4 6 8 10 12
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Figure 4 Variations of instability regions with ply orientation of a twisted angle-ply
panel [#9-0969-69, a/lb=1, ¢=15° o= 0.2, =0° to 90°.
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2 3 4 5 6 7
Non dimensional excitation frequency

Figure 5 Variations of instability regions with angle of twist of the twisted angle-ply flat
panel [30 9-30 930 9-30°], a/b=1, ¢=09, 15 %and 30, o= 0.2.

The dynamic stability regions are plotted for angle-ply [30/-30/30/-30] twisted panel with
different angle of twist i.e. $=0°, ¢$=15°and ¢=30°. As shown in Figure 5, the onset of instability
occurs earlier with introduction of twist ($=15°) in the untwisted panel (¢=0°). With increase of
twist angle from ¢=15° to ¢=30°, the onset of instability occurs earlier with wider instability
regions, for this lamination sequence and ply orientation. The dynamic instability regions have
been plotted for cantilever angle-ply panel of aspect ratios a/b=1, 2 and 4.
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Figure 6 Variations of instability regions with aspect ratio of the twisted angle-ply panel
[30 9- 30 930 9-30%], a/b=1, 2 and 4, ¢=155, o= 0.2.

As shown in Fig.6, the excitation frequency decreases from square (a/b=1) to rectangular panels
(a/b=2 and 4) with increase of aspect ratio. The instability regions is also studied for pre-twisted
2, 4 and 8 layer anti-symmetric angle-ply panels. The onset of instability regions occurs later
with more number of layers due to the bending stretching coupling. The effect of b/h ratio on the
instability regions has been studied for uniform loading with static component. As observed in
Fig.7, the onset of instability occurs with a higher excitation frequency for with increase of
thickness of panels from b/h=300 to b/h=200. The width of instability regions is also wider for
thinner panels than thicker panels. The variation of instability regions is studied for anti-
symmetric angle-ply pre-twisted cylindrical panels (b/Ry=0.25) to study the effect of angle of
twist on the curved panel. As seen from Figure 8, there is significant deviation of the instability
behaviour of twisted cylindrical panels than that of untwisted panels. The onset of instability of
twisted cylindrical panels occurs much earlier than untwisted panels. The widths of instability
regions increase with increase of angle of twist in the panel. Similar behaviour is also observed
for the variation of instability region of twisted spherical and hyperbolic paraboloidal panels.
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Figure 7 Variations of instability regions with b/h ratio of the twisted angle-ply panel
[30 9-30 930 9-30°], a/b=1, b/h=200, 250, 300, ¢=15% o= 0.2.
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Figure 8 Variations of instability regions of the twisted angle-ply cylindrical panel
[30 9-30 930 9-30°] with angle of twist (¢=0°, 15 °and 30°), a/b=1, o= 0.2.
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Figure 9 Variations of instability regions with curvature for different twisted curved panels of
angle-ply [30° /-=30°/30° /-30°] panels, a/b=1, ¢=15¢ o= 0.2, b/R,=0.25.

The studies were then extended to compare the dynamic instability regions of different
composite cantilever curved panels i.e cylindrical (b/Ry=0.25), spherical (b/Rx=0.25, b/Ry=0.25)
and hyperbolic paraboloidal (b/Rx=-0.25, b/Ry=0.25) panels, for a particular twist (¢=15°), to
study the effect of curvature. As observed from Figure 9, the onset of instability regions occurs
later for cylindrical panels than the flat panels due to addition of curvature. The width of
instability regions is smaller for cylindrical panels than flat panels. However, the spherical pre-
twisted panels show small increase of non-dimensional excitation frequency. The onset of
instability of laminated composite pre twisted hyperbolic paraboloidal curved panels occurs
earlier to pre twisted cylindrical panels but after flat panels.



CONCLUSION

The results on the stability studies of the laminated composite pre-twisted cantilever panels can
be summarised as follows:

Due to static component of load, the onset of instability shift to lower frequencies with
wide instability regions of the laminated composite pre-twisted cantilever panels.

The angles of lamination significantly affect the instability behaviour of uniaxially
loaded angle-ply twisted cantilever panels. It shows asymmetrical behaviour due to non-
symmetric boundary condition and twisting of panels.

The onset of instability occurs earlier with introduction of twist (¢=15°) in the otherwise
untwisted flat panel (¢=0°). There is significant variation of dynamic instability regions
if the angle of twist of the panel changes from ¢=15° to a panel with ¢$=30° for this
lamination sequence and ply orientation.

The onset of instability occurs earlier with introduction of twist in the composite panels.
The effect of twist is more pronounced in curved panels than flat panels.

The onset of instability occurs later for pre-twisted square panels than rectangular panels
with increase of aspect ratio. The width of dynamic instability region is smaller for
square panels than rectangular ones.

The laminated composite pre-twisted cantilever panels become more stiff with more
number of layers.

The onset of instability occurs with a smaller non-dimensional frequency for thin
twisted panels than thick panels. The widths of instability regions are much less for thick
panels than corresponding thin panels.

The onset of instability regions occurs later for cylindrical panels than the flat panels due
to addition of curvature. However, the spherical pre-twisted panels show small increase
of non-dimensional excitation frequency. The onset of instability of hyperbolic parabolic
curved panels occurs earlier to pre twisted cylindrical panels but after flat panels.

From the above studies, it may be concluded that the instability behaviour of composite
twisted cantilever panels is greatly influenced by the geometry, material, angle of twist and
lamination parameters. So, this can be used to the advantage of tailoring during design of
composite twisted cantilever panels.
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