Structure, Morphology and Luminescent Properties of

YVO₄: Dy³⁺, Bi³⁺ Phosphors

Priyanka Nayak, Sushri Sangita Nanda and S. Dash^a Dept. of Physics and Astronomy, NIT Rourkela, Rourkela, Odisha-769008, India

^{a)}Corresponding author: dsuryanarayan@gmail.com

ABSTRACT

Dy³⁺- Bi³⁺ co-doped YVO₄ (YVO₄: 3at%Dy³⁺, xBi³⁺) phosphors have been synthesized and subsequently characterized by XRD, SEM, photoluminescence and Raman spectroscopy to study the simultaneous effect of the activator and sensitizer on the luminescent properties of said phosphor.

The observations in this case were subsequently explained on the basis of change in the local symmetry of the dopant ion, due to change in the host morphology.

INTRODUCTION

History of Light

Oil lamp Incandescent bulb Fluorescent bulb

LEDs

- Luminescence is a cold light.
- Materials exhibiting this phenomenon are called Phosphors.
- The research on rare earth (RE) doped luminescence materials is always the most active field owing to the large need in the field of illuminations.

Solar Cells

Plasma Displays

> Figure representative XRD patterns of the YVO₄: Dy^{3+} , Bi^{3+} phosphors annealed at 1100°C.

ntensity(a.u)

> The exact structure of the samples, Rietveld analysis of the XRD data of the parent samples is carried out by using Fullprof program.

- Samples exhibited single phase tetragonal structures in space group *I141/amd* which is also consistent with the JCPDS Card No. 72-0274 of pure crystalline tetragonal YVO₄.
- \succ With increase in the Bi³⁺ concentration in YVO₄ samples, the (200) diffraction peak shifts to lower angle side, might be due to the reason that the ionic radius of Bi³⁺ ion is slightly higher than that of Y³⁺ ion.
- > The crystal structure shown here is obtained from the data obtained from the refinement of XRD data, where the subsequent samples are co-doped with Dy and Bi.

RAMAN SPECTROSCOPY

Figure shows the Raman – YVO₄:3%Dy³⁺,5% Bi³⁺ spectra for Bi³⁺ (0, 3, 5, 7 at%) YVO₄:3%Dy³⁺,3% Bi³⁺ co-doped YVO₄ under 532 nm laser excitation.

Strong Raman peaks imply stronger interaction between the atoms, mainly arising from stretching and bending of the shorter metal-oxygen bond within anionic groups.

CONCLUSION

One significant outcome of the photoluminescence study involved a drastic variation of relative intensity due to 7at% of Bi³⁺ and the variation in the relative intensity of the ${}^{4}F_{9/2} - {}^{6}H_{13/2}$ transition with respect to the ${}^{4}F_{9/2} - {}^{6}H_{15/2}$ transition of Dy³⁺ in YVO₄: Dy³⁺.

LEDs, CRTs, fluorescent lamps, etc.

- 4 YVO₄ is a promising host material for various optical applications, especially doped with trivalent rare earth cations.
- ✤ Dy doped YVO₄ is considered as potential phosphors due to its high absorption and luminescence efficiencies in UV region.

EXPERIMENTAL

YVO₄:Dy³⁺,xBi³⁺ powder samples were prepared by solid state route.

> XRD: Rigaku, Japan (with *Cu-Kα*) SEM: JEOL, USA **RAMAN:** Witech Micro **Raman Spectrometer**

PL: Perkin Elmer LS55

- > SEM investigations were carried out to understand surface morphological features and the particle size of the phosphor.
- > The SEM micrograph clearly exhibits homogeneous and smooth surfaced grains having almost hexagonal structure.
- > The average particle size after heat treatment is found to be ~ 1 μ m and this microcrystalline form of crystalline phosphors may result in high luminescent intensities.

ACKNOWLEDGEMENT

We would like to acknowledge DST SERB Govt. of India grant #EMR/2016/007048 for providing PL facility and financial support for this work.

REFERENCES

- 1. B. C. Chakoumakos, M. M. Abrah and L. A.Boatner, J. Solid state Chem, **109**, 197 (1994).
- 2. X L Meng, L Zhu, H J Zhang J., Cryst. Growth, **200**, 199 (1999).
- 3. J B Gruber, B H Zandi, U V Valiev J. Appl. Phys. 94, 1030 (2003).
- 4. H. Xu, C. Wu, H. Li, J. Chu, G. Sun, Y. Xu, and Y. Yan, Appl. Surf. Sci. **256**, 597 (2009).
- 5. D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, L. Zeng, and Y. Wang, Phys. Chem. Chem. Phys., **12**, 7775(2010).
- 6. Z. P. Ci, Y. H. Wang, and J. C. Zhang, Chin. Phys. B **19**, 057803 (2010).