
Predicting Software Reliability using Computational Intelligence Techniques: A

Review

Kulamala Vinod Kumar, A. Sarath Chandra Teja, Abha Maru, Yogesh Singla, Durga Prasad Mohapatra
Dept. of Computer Science and Engineering

National Institute of Technology, Rourkela, India

email: 517cs1007@nitrkl.ac.in, email: 714cs1044@nitrkl.ac.in, email: 217cs3313@nitrkl.ac.in,

email: 115cs0243@nitrkl.ac.in, email: durga@nitrkl.ac.in.

Abstract— Software measurement is yet in an infant stage.

There is hardly any efficient quantitative method to represent

software reliability. The existing methods are not generic and

have many limitations. Various techniques could be used to

enhance software reliability. However, one has to not only

balance time but also cater to budget constraints.

Computational Intelligence (CI) techniques that have been

explored for software reliability prediction have shown

remarkable results. In this paper, the applications of CI

techniques for software reliability prediction are surveyed and

an evaluation based on some selected performance criteria is

presented.

Keywords-Software reliability; Assessment; fault prediction;

Computational intelligence techniques.

I. INTRODUCTION

A. Software Reliability

Software reliability is often defined as the probability of
achieving a software operation that is failure free in a
specific environment over a specified duration of time.
Software reliability indeed is an important factor to be
considered when designing a system and predicting its
reliability. It is unlike hardware reliability that reflects
manufacturing perfection, software reliability on the other
hand manifests design perfection. The factor that affects
software reliability problems profoundly is rather the high
complex nature of software itself.

A few researchers have come up with models that
consider software reliability as a function of time. CI based
modeling of software reliability is being widely explored
now. However, care has to be taken when selecting an
appropriate model for ensuring it best suits for a given case.

B. Software Failure Mechanisms

 This section lists some of the reasons that lead to software

failures. Failures often occur due to ambiguities, oversights

and human errors. Misinterpretations of specifications also

lead to unachievable expectations. Sloppiness and

incompetence in writing of code, insufficient testing and

unforeseen usage of given software, also lead to unexpected

complications. Techniques employed for enhancing

hardware reliability cannot be used for enhancing software

reliability. The inherent difference in the nature of these

entities leads to failures that are different, because of the

failure mechanisms itself. Hardware faults are typically

physical faults. On the other hand, software faults are

actually design faults. Design faults are difficult to visualize

and classify. Hence, detecting and correcting software faults

are often not easy tasks. These design faults are associated

with fuzzy human factors and with the design process as

well. Often, a clear understanding of these attributes is not

perceivable. Design faults in hardware are also like to exist,

but these are physical faults that are comparatively easily

detectable. Finding software faults when designing software,

is not easily perceivable, unlike in hardware manufacturing.

Here, how software modules are uploaded affects the whole

process. Quality of software cannot be enhanced or reduced

once the software is uploaded and is in running state.

Therefore, we cannot achieve higher reliability by

duplicating the same software module.

 The remaining part of the paper is organized as follows:

Section 2 presents motivation and objectives. Section 3

describes various computational intelligence techniques.

Section 4 presents literature survey. Section 5 discusses the

evaluation criteria and Section 6 concludes the paper.

II. MOTIVATION AND OBJECTIVE

A. Motivation

When developing software for critical applications, it is

utmost necessary to achieve higher degree of reliability.
Today, this is a very challenging task for the software
Industry. Today’s software is expected to be self-adaptable
and therefore often is more complex. Achieving reliability
for a complex system, calls for optimizing a multi-objective
problem in many domains. Over the past four decades,
numerous Software Reliability Growth Models (SRGM) for
better reliability prediction, have been proposed. Though,
now there are a range of available reliability models, but
none of the models work optimally across various projects.

B. Objective

 Computational Intelligence techniques yield better results

in predicting than statistical methods and therefore, can be

employed for predicting software failures more accurately

[1]. In this paper, we essentially attempt to survey and assess

the use of Computational Intelligence techniques in software

reliability prediction.

III. COMPUTATIONAL INTELLIGENCE

Computational Intelligence is a term used to refer the
ability of a computing device to learn specified tasks from
data or by observing experimental outcomes. In some cases,
it employs a combination of techniques such as Artificial
Neural Networks (ANN), Evolutionary Computing, Learning
Theory, and Fuzzy Logic. It may also use probabilistic
methods that help in dealing with uncertainty and
imprecision. Fuzzy logic empowers computers to understand
natural language while, Artificial Neural Networks enables
systems to learn experimental data by operating like a biotic
neuron. Evolutionary computing techniques are inspired by
biological processes that are based on natural selection.

IV. LITERATURE SURVEY

 In this section, we discuss the available work on
software reliability prediction.

Wang et al. [2] have explored Non-Homogeneous

Poisson process (NHPP) to optimize and enhance the

effectiveness of the software reliability model. Their

approach is based on a function that fits the logarithmic

difference between the observed and estimated values using

exponential distribution. They repeatedly apply this function

on an available historical faulty software data set. Their

results show that the logarithmic difference gradually tends

to zero, as the number of fittings is increased. The trend, they

observed that the logarithmic difference approaches to a

stable value over a period of time, helps in building a

prediction model that can predict the number of remaining

faults in the software testing process. Their solution is far

more optimized and is indeed achieved in an optimized

manner. Their prediction model fits the historical faulty data

set more accurately. It predicts the remaining amount of

faults more successfully than other customary NHPP

methods that have been used in software testing so far.
Owhadi-Kareshk et al. [3] have proposed a shallow

Artificial Neural Network (ANN) that employs a pre-training
technique. Their results suggest that though a shallow ANN
has few hidden layers, it prevents over-fitting as in deep
ANNs. But at the same time, shallow ANN enhances the
accuracy as it helps in escaping from local minima. They test
their proposed approach with almost seven different datasets
taken from NASA codes. These data sets are available in the
PROMISE repository. To evaluate their approach, they
further compare with four SVM-based classifiers and also
with a regular ANN that is not pre-trained. Their results
show that pre-training helps in improving accuracy as it
achieves the best overall ranking of 1.43 among seven
datasets considered for testing. Their proposed approach
achieved higher accuracy in at least four of them. ANN and
SVM based approaches were found to be best only for two
and one datasets, respectively.

Yohannese et al. [4] have explored and examined
Ensemble Learning Algorithm (ELA) to enhance the

prediction possibilities of fault proneness in software
modules. They proposed an ELA based on Feature Selection
(FS) and Data Balancing (DB). Their proposed framework
with FS and DB combined techniques proved to be more
robust and yielded higher performance. Figure 1 [4] depicts
the Ensemble based learning framework as proposed in [4].

Li and Pham [5] have proposed a NHPP that also
considers imperfect debugging (ID) along with operating
environment uncertainty. Software is often tested in a given
controlled environment. When used to other different
operating environment by different user, it is likely to give
different outputs than as expected. Developers may not be
aware of such outcomes. Many SRGM models have been
developed that are based on NHPP. But, the assumption of
all these kind of models is that, both the operating
environment and developing environment are similar. The
unpredictability of the uncertainty of the operating
environments, in which the software will run, influences the
performance and affects the reliability in an unpredictable
way. They have proposed a novel method for detecting
software faults, based on testing coverage. They essentially
consider the effect uncertainty of operating environments.
They compared the performance of their proposed approach
with several other NHPP based SRGMs and implemented it
on three sets of real software failure data. They considered
seven criteria. One of the criteria they considered was
Improved Normalized Criteria Distance (NCD). This
method was used to rank and select the best model with a
goodness-of-fit criterion taken as a major perspective.

Zhu et al. [6] have considered software fault dependence
and imperfect fault removal in their proposed reliability
model. Their model is basically a Non-Homogeneous
Poisson Process (NHPP). There are two types of faults –
Type I fault which is an independent fault and type II fault
which is dependent. They proposed a two-phase debugging
process comprising of Phase I and Phase II. A small section
of software faults that is usually unavoidable by software
testers is considered in these two phases of the proposed
model. They proved the effectiveness of their proposed
model by testing with three datasets collected from various
industries.

Kaur and Kaur [7] have developed a method to detect
faults by taking object-oriented metrics. They also consider
code smells as the predictors. They probed the impact on
fault detection by not sampling, and further by using
sampling methods. They tested their model with Apache POI
3.0 and Apache ANT 1.5 applications. They have considered
various metrics and code smells as predictors and incidence
of bug as response variable while applying various machine
learning algorithms. Their observations are as follows. 1) By
not considering any sampling method, the combination of
software metrics and software code smells, performed better
than only object-oriented software metrics for predicting
occurrence of bugs in a class. 2) Resampling technique with
metrics as predictors yielded better results than when no
sampling was done with metrics as predictors. 3) K-star was
found to have better performance than other machine
learning algorithms when RESAMPLE technique was
applied with metrics taken as predictors.

Figure 1. Ensemble based combined learning [4]

Tian and Noore [8] have attempted to predict software

cumulative failure time. They have proposed a model based
on evolutionary neural networks. They achieved better
performance than existing neural network models. They have
shown the impact of the neural network architecture as a
deciding factor while measuring the performance of the
network. Figure 2 [8] depicts the Evolutionary Neural
Network Framework model that is employed for software
reliability prediction as proposed in [8].

 Kamei et al. [9] presented a performance analysis of
various CI techniques when used in software fault prediction.
They compare the prediction performance of an SVM based
prediction method with other conventional methods such as
logistic regression, linear discriminant analysis, neural
network and classification trees. Their results show that
SVM based software fault prediction model is far better than
other conventional models.

 Bhuyan et al. [14] explored machine learning
techniques for software reliability prediction. They applied
enhanced version of fuzzy min-max algorithm combined
with recurrent neural network (FMMRNN). They applied
their developed model on some of the software systems data
sets. These data sets are collected when the system was in
system testing phase combined with fault elimination. They
tested the performance of their developed model by applying
to a failure dataset collected from distributed system
application. The main advantage of their FMMRNN is, the
models complexity is automatically adjusted to the
complexity of the failure history. When applied to different

software systems, their model is robust and shown better
performance according to next-step-predictability. So their
model is a generic model. Figure 3 [14], depicts the
architecture of FMMRNN model as proposed in [14].

Bhuyan et al. [15] explored prediction of software
reliability by applying machine learning technique. They
developed a software reliability prediction model using
Recurrent Neural Network model combined with Back-
propagation Through Time (RNNBPTT). They applied their
developed model on software systems data sets. These data
sets are collected when the software system was in system
testing phase. Their procedure is little bit complicated, but
the results of their work showed that Recurrent Neural
Network produces better and stable performance in
prediction of software reliability.
 Bhuyan et al. [16] applied non-parametric neural network

for predicting software reliability. The failure history
datasets considered by them have parameters called failure
time interval, number of failures etc. They also applied the
feed-forward neural network with back-propagation for
predicting the reliability of software systems. They compared
their results with traditional parametric software reliability
growth models. Their model produces better and consistent
behavior in prediction of software reliability with respect to
accuracy.
 Ray and Mohapatra [17] proposed a technique based on

hoe individual classes are contributing to the overall
reliability of the system. According to their approach, they
prioritized the classes at design phase. They calculated the

priority of a class using operational profile, use case diagram
and sequence diagrams.

Figure 2. Evolutionary neural network framework for software

reliability prediction [8]

The class will be tested according to its priority value. They

developed an algorithm for event prioritization which takes
sequence diagram of each use case and probability of each
scenario of the use case and produces the output as the
probability of each event activated in the use case. Then
they generated an optimal test suite using a genetic
algorithm-based technique. This technique selects test cases
for a test suite out of a large pool of test cases.
 Ray et al. [18] Small bugs always remain even after

thorough testing of a program. Bugs and errors can be seen
randomly scattered in the code. Not every bug in the code
gives equally severe failure; different bugs in different parts
of the program may cause failures with different frequency
and severity than the rest part of the codes. Therefore, the
ones giving frequent and higher severity failures can be
prioritized. A metric is proposed to calculate the influence of
a particular object in an object oriented program. The kind of
effect a element causes shows the potential of that element to
cause failures. The influence value determines the intensity
with which each element is tested. Higher the influence
value, higher is the intensity with which each element is
tested. Comparison of the given scheme with other related
schemes was done experimentally. Their approach is useful
in applications of coding, debugging, test case design and
maintenance, as well. The failure rate is reduced by their
approach when the software is executed for some duration
just after the testing phase is completed.
 Kumar et al. [11] proposed a fault prediction model

based on Least Square Support Vector Machine (LSSVM)

with Linear, Polynomial and Radial Basis Function Kernels

assisted with feature selection method. They essentially

identified and investigated the predictive power of metrics

used in fault prediction. Their experiments were conducted

on 30 Open Source Java projects. Their results successfully

revealed the faulty classes with a median fault identification

efficiency of 46.206 percent. It was established that by

eliminating almost 70 percent of available source code

metrics after identifying a small subset of metrics, did not

adversely affect the prediction accuracy. Metrics such as

Measure of aggregation (MOA), Cohesion among methods

of class (CAM), Average method complexity (AMC),

Coupling between methods (CBM), Lines of code (LOC),

Number of children (NOC) were found to have a significant

impact. However, at the moment their prediction model can

only identify a faulty class. Identifying a possible number of

bugs in a class could be explored with the help of enhanced

soft computing methods. Also, their model is only tested

with Object Oriented Software. The model needs to be

verified with software paradigms in order to generalize.

A Summary of Literature Survey
 Park and Baik [10] described a dynamic technique which

selects and combines multiple software reliability models

based on the decision trees learning of multi-criteria. [11-

13] have explored various variants of Support Vector

Machines (SVM) as well. A number of modelling

techniques used to predict software reliability were surveyed

by us. Table 1, presents a summary of the various

computational intelligence techniques that have been

explored for software reliability prediction

V. EVALUATION CRITERIA

Precision, Recall and F1-measure are the most commonly
used criteria while evaluating the performance of various
software reliability prediction models.

Precision denotes the ratio of actual fault prone modules
to the modules predicted as fault prone. Precision helps in
knowing what proportion of positive identifications was
actually correct. It is defined as:

Precision = TP / (TP+FP) (1)

Where TP means True Positive and FP means False

Positive. Recall is the ratio that suggests the number of
correctly predicted fault-prone modules to the actual number
of existing fault prone models. Recall attempts in knowing
what proportion of actual positives were identified correctly.
It is mathematically defined as follows:

Recall = TP / (TP+FN) (2)

Where TP means True Positive, FP means False

Negative. F1-measure is a term that signifies a combined
value of recall and precision, and it is defined as shown in
equation (3).

F1= (2*Recall*Precision)/(Recall+Precision) (3)

Accuracy is another important metric for measuring the

success of fault prediction. It is the ratio of the number of
correctly predicted samples in the test set to the total number
of samples actually taken in the test set. It is mathematically
expressed as follows:

Where TP means True Positive, FN means False Negative, TN means True Negative, and FP is False Positive.
Accuracy = (TP+TN) / (TP+FN+TN+FP) (4)

Figure 3 Architecture of FMMRNN model for software reliability prediction [14]

TABLE I. SUMMARY OF DIFFERENT COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR SOFTWARE RELIABILITY PREDICTION

Author Datasets used Algorithm
Evaluation
Measure

Q. Li and H. Pham [5]
DS1:38 faults identified in 14 weeks, DS2:144 faults

identified in
17 weeks, DS3: 146 faults identified in 60 months

NHPP

MSE, correlation
index of regression

curve, Predictive ratio
risk, Predictive power

Owhadi-Kareshk et al. [3] Seven datasets from PROMISE repository, NASA.

Pre training technique
for shallow ANNs (ANNs
with less number of hidden

layers)

Accuracy

Yohannese et al. [4]
Eight datasets from PROMISE repository

NASA

Ensemble Learning
Algorithms

(ELA)

AUC
and Accuracy

Zhu and Pham [6]
DS1(failure data from real-time control system), DS2(failure

data from wireless network switching center)and DS3(failure data
from online bug tracking system)

NHPP
MSE

and predictive-ratio
risk (PRR)

Tian and Noore [8]

DATA-2: application having of 21,700 assembly instructions
and 136 failures, DATA-11: flight application having of 10,000
LOC and 118 failures, DATA-12: flight application having of

22,500 LOC and 180 failures, DATA-13: flight application having
of 38,500 LOC and 213 failures.

Genetic algorithm
optimization

and reconfiguration
with Neural

Network Architecture

Relative Error(RE),
Average Relative

Error (ARE)

Wang et al. [2]
DS1 was composed of data from 1500 telephone subscribers,

DS2 was from a wireless network product,
.DS3 was taken from a bug tracking system

NHPP

MSE

Kamei et al. [9]

The target software size is 300,000 lines of code (SLOC) and
it has 514 modules, 277 modules are not-fault-prone and 237

modules are fault-prone

SVM with various
kernels

F1 score

Bhuyan et al. [14]
Data set DBS-1 with 136 failures
Dataset DBS-2 with 191 failures
Dataset DBS-3 with 397 failures

Fuzzy min-max
algorithm and Neural

networks

AE, RMSE, NRMSE,
MAE.

Ray and Mohapatra [17] Sequence diagram Genetic algorithm No. of test cases

Kumar et al. [11] 30 Open Source Java projects

LSSVM with Linear,
Polynomial, RBF Kernels

assisted with feature
selection method

Accuracy, F-measure

Failure dataset

Apply fuzzy

min-max

algorithm for

Optimization

Number of

hidden neurons

Initialize the K-means algorithm

Find numbers of the k-center

K-means

algorithm

Recurrent neural network

Training
Deviation of error between

predicted and actual output

Compute the various

measures (AE, RMSE,

NRMSE, MAE)

VI. CONCLUSION

Software reliability is a very important aspect of software
quality. Ensuring that the occurrences of software
faults/failures is eliminated or by far minimized can only
make the software reliable. Software reliability is not only
dynamic but also stochastic in nature. It may be accounted as
a probabilistic measure that considers the occurrences of
failures of software as a random phenomenon. Many
researchers are working on finding an optimal SRGM model
for employing in their specific case of study. This is an open
problem and needs more avenues to be explored. Existing
software reliability prediction tools and techniques are
inadequate and cannot be applied confidently. Existing
approaches consider only a limited number of criteria when
designing reliability prediction models. In this paper, various
computational intelligence techniques such as SVM, MLP,
Bagging, FFBPNN, CFBPNN, Regression, Neural Network
ensembles, Radial-Bias Neural Networks, GRNN, ANFIS,
NHPP, M5P, Instance based learning etc. that have been
applied in software reliability prediction are surveyed and
evaluated based on some selected criteria .

REFERENCES

[1] R. Malhotra, A. Negi (2013) “Reliability modeling using particle
swarm optimization,” The society for reliability engineering, quality
and operations management (SREQOM), India and The Division of
Operation and Maintenance, Lulea University of Technology,
Sweden, Int J Syst Assur Eng Manag, , Vol. 4, Issue 3, September
2013, pp. 275–283, doi: 10.1007/s13198-012-0139-0.

[2] J. Wang, Z. Wu, Y. Shu, Z. Zhang, "An optimized method for
software reliability model based on nonhomogeneous Poisson
process," Applied Mathematical Mlling, Vol. 40, Issues 13–14, 2016,
pp. 6324-6339, doi:10.1016/j.apm.2016.01.016.

[3] M. Owhadi-Kareshk, Y. Sedaghat and M. Akbarzadeh-T., "Pre-
training of an artificial neural network for software fault prediction,"
2017 7th International Conference on Computer and Knowledge
Engineering (ICCKE), Mashhad, 2017, pp. 223-228,
doi:10.1109/ICCKE.2017.8167880.

[4] C. W. Yohannese, T. Li, M. Simfukwe and F. Khurshid, "Ensembles
based combined learning for improved software fault prediction: A
comparative study," 2017 12th International Conference on Intelligent
Systems and Knowledge Engineering (ISKE), Nanjing, 2017, pp. 1-6,
doi:10.1109/ISKE.2017.8258836.

[5] Q. Li and H. Pham, "NHPP software reliability model considering the
uncertainty of operating environments with imperfect debugging and
testing coverage," Applied Mathematical Modelling, Vol. 51, 2017,
pp. 68-85, doi:10.1016/j.apm.2017.06.034.

[6] M. Zhu and H. Pham, "A two-phase software reliability modeling
involving with software fault dependency and imperfect fault

removal," Computer Languages, Systems & Structures, Vol. 53,
2018, pp. 27-42, doi:10.1016/j.cl.2017.12.002.

[7] K. Kaur and P. Kaur, "Evaluation of sampling techniques in software
fault prediction using metrics and code smells," 2017 International
Conference on Advances in Computing, Communications and
Informatics (ICACCI), Udupi, 2017, pp. 1377-1387,
doi:10.1109/ICACCI.2017.8126033.

[8] L. Tian and A. Noore, "On-line prediction of software reliability
using an evolutionary connectionist model," Journal of Systems and
Software, Vol. 77, Issue 2, 2005, pp. 173-180,
doi:10.1016/j.jss.2004.08.023.

[9] Y. Kamei, A. Monden, and K. Matsumoto "Empirical Evaluation of
SVM-Based Software Reliability Model," Proc. Fifth ACM/IEEE Int'l
Symp. Empirical Software Eng. vol. 2 pp. 39-41 2006.

[10] J. Park and J. Baik, "Improving software reliability prediction through
multi-criteria based dynamic model selection and combination,"
Journal of Systems and Software, Vol. 101, 2015, pp. 236-244,
doi:10.1016/j.jss.2014.12.029.

[11] L. Kumar, S. K. Sripada, A. Sureka, S. K. Rath, "Effective fault
prediction model developed using Least Square Support Vector
Machine (LSSVM)," Journal of Systems and Software, Vol. 137,
2018, pp. 686-712, doi:10.1016/j.jss.2017.04.016.

[12] F. Xing, P. Guo and M. R. Lyu, "A novel method for early software
quality prediction based on support vector machine," 16th IEEE
International Symposium on Software Reliability Engineering
(ISSRE'05), Chicago, IL, 2005, pp. 213-222, doi:
10.1109/ISSRE.2005.6.

[13] J. Cai and Y. Li, "Classification of Nuclear Receptor Subfamilies
with RBF Kernel in Support Vector Machine," Proc. Advances in
Neural Networks, Springer Berlin Heidelberg, 2005, pp. 680-685,
doi:10.1007/11427469_108.

[14] M. K. Bhuyan, D. P. Mohapatra, and S. Sethi, “Software Reliability
Prediction using Fuzzy Min-Max Algorithm and Recurrent Neural
Network Approach,” International Journal of Electrical and Computer
Engineering (IJECE), Vol. 6, 2016, pp. 1929-1938,
doi:10.11591/ijece.v6i4.9991.

[15] M. K. Bhuyan, D. P. Mohapatra, and S. Sethi, “Prediction Strategy
for Software Reliability Based on Recurrent Neural Network,” Proc.
Computational Intelligence in Data Mining – volume 2, Springer
India, 2016, pp. 295-303, doi:10.1007/978-81-322-2731-1_27.

[16] M. K. Bhuyan, D. P. Mohapatra, S. Sethi, and S. Kar, "An Empirical
Analysis of Software Reliability Prediction Through Reliability
Growth Model Using Computational Intelligence," Proc.
Computational Intelligence in Data Mining - Volume 2, Springer
India, 2015, pp. 513-524, doi: 10.1007/978-81-322-2208-8_47.

[17] M. Ray and D. P. Mohapatra, “A Scheme to Prioritize Classes at the
Early Stage for Improving Observable Reliability,” Proc: 3rd India
Software Engineering Conference (ISEC 10), ACM, 2010, pp. 69-72,
doi: 10.1145/1730874.1730889.

[18] M. Ray, D.P. Mohapatra “Reliability Improvement Based on
Prioritization of Source Code,” in Distributed Computing and Internet
Technology (ICDCIT 2010), Lecture Notes in Computer Science, vol
5966, T. Janowski, H. Mohanty, Eds. Springer, Berlin, Heidelberg,
2010, pp. 212-223.

