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Abstract— Software measurement is yet in an infant stage. 

There is hardly any efficient quantitative method to represent 

software reliability. The existing methods are not generic and 

have many limitations. Various techniques could be used to 

enhance software reliability. However, one has to not only 

balance time but also cater to budget constraints. 

Computational Intelligence (CI) techniques that have been 

explored for software reliability prediction have shown 

remarkable results. In this paper, the applications of CI 

techniques for software reliability prediction are surveyed and 

an evaluation based on some selected performance criteria is 

presented. 

Keywords-Software reliability; Assessment; fault prediction; 

Computational intelligence techniques.  

I.  INTRODUCTION  

A. Software Reliability 

Software reliability is often defined as the probability of 
achieving a software operation that is failure free in a 
specific environment over a specified duration of time. 
Software reliability indeed is an important factor to be 
considered when designing a system and predicting its 
reliability. It is unlike hardware reliability that reflects 
manufacturing perfection, software reliability on the other 
hand manifests design perfection. The factor that affects 
software reliability problems profoundly is rather the high 
complex nature of software itself.  

A few researchers have come up with models that 
consider software reliability as a function of time. CI based 
modeling of software reliability is being widely explored 
now. However, care has to be taken when selecting an 
appropriate model for ensuring it best suits for a given case. 

B. Software Failure Mechanisms 

     This section lists some of the reasons that lead to software 

failures. Failures often occur due to ambiguities, oversights 

and human errors. Misinterpretations of specifications also 

lead to unachievable expectations.  Sloppiness and 

incompetence in writing of code, insufficient testing and 

unforeseen usage of given software, also lead to unexpected 

complications. Techniques employed for enhancing 

hardware reliability cannot be used for enhancing software 

reliability. The inherent difference in the nature of these 

entities leads to failures that are different, because of the 

failure mechanisms itself. Hardware faults are typically 

physical faults. On the other hand, software faults are 

actually design faults. Design faults are difficult to visualize 

and classify. Hence, detecting and correcting software faults 

are often not easy tasks. These design faults are associated 

with fuzzy human factors and with the design process as 

well. Often, a clear understanding of these attributes is not 

perceivable. Design faults in hardware are also like to exist, 

but these are physical faults that are comparatively easily 

detectable. Finding software faults when designing software, 

is not easily perceivable, unlike in hardware manufacturing. 

Here, how software modules are uploaded affects the whole 

process. Quality of software cannot be enhanced or reduced 

once the software is uploaded and is in running state. 

Therefore, we cannot achieve higher reliability by 

duplicating the same software module.  

      The remaining part of the paper is organized as follows: 

Section 2 presents motivation and objectives. Section 3 

describes various computational intelligence techniques. 

Section 4 presents literature survey. Section 5 discusses the 

evaluation criteria and Section 6 concludes the paper. 

II. MOTIVATION AND OBJECTIVE 

A. Motivation 
 
When developing software for critical applications, it is 

utmost necessary to achieve higher degree of reliability. 
Today, this is a very challenging task for the software 
Industry. Today’s software is expected to be self-adaptable 
and therefore often is more complex. Achieving reliability 
for a complex system, calls for optimizing a multi-objective 
problem in many domains. Over the past four decades, 
numerous Software Reliability Growth Models (SRGM) for 
better reliability prediction, have been proposed. Though, 
now there are a range of available reliability models, but 
none of the models work optimally across various projects. 

B. Objective  

      Computational Intelligence techniques yield better results 

in predicting than statistical methods and therefore, can be 

employed for predicting software failures more accurately 

[1]. In this paper, we essentially attempt to survey and assess 



the use of Computational Intelligence techniques in software 

reliability prediction.  

III. COMPUTATIONAL INTELLIGENCE 

Computational Intelligence is a term used to refer the 
ability of a computing device to learn specified tasks from 
data or by observing experimental outcomes. In some cases, 
it employs a combination of techniques such as Artificial 
Neural Networks (ANN), Evolutionary Computing, Learning 
Theory, and Fuzzy Logic. It may also use probabilistic 
methods that help in dealing with uncertainty and 
imprecision. Fuzzy logic empowers computers to understand 
natural language while, Artificial Neural Networks enables 
systems to learn experimental data by operating like a biotic 
neuron. Evolutionary computing techniques are inspired by 
biological processes that are based on natural selection.  

IV. LITERATURE SURVEY 

 In this section, we discuss the available work on 
software reliability prediction. 

Wang et al. [2] have explored Non-Homogeneous 

Poisson process (NHPP) to optimize and enhance the 

effectiveness of the software reliability model. Their 

approach is based on a function that fits the logarithmic 

difference between the observed and estimated values using 

exponential distribution. They repeatedly apply this function 

on an available historical faulty software data set. Their 

results show that the logarithmic difference gradually tends 

to zero, as the number of fittings is increased. The trend, they 

observed that the logarithmic difference approaches to a 

stable value over a period of time, helps in building a 

prediction model that can predict the number of remaining 

faults in the software testing process. Their solution is far 

more optimized and is indeed achieved in an optimized 

manner. Their prediction model fits the historical faulty data 

set more accurately. It predicts the remaining amount of 

faults more successfully than other customary NHPP 

methods that have been used in software testing so far. 
Owhadi-Kareshk et al. [3] have proposed a shallow 

Artificial Neural Network (ANN) that employs a pre-training 
technique. Their results suggest that though a shallow ANN 
has few hidden layers, it prevents over-fitting as in deep 
ANNs. But at the same time, shallow ANN enhances the 
accuracy as it helps in escaping from local minima. They test 
their proposed approach with almost seven different datasets 
taken from NASA codes. These data sets are available in the 
PROMISE repository. To evaluate their approach, they 
further compare with four SVM-based classifiers and also 
with a regular ANN that is not pre-trained. Their results 
show that pre-training helps in improving accuracy as it 
achieves the best overall ranking of 1.43 among seven 
datasets considered for testing. Their proposed approach 
achieved higher accuracy in at least four of them. ANN and 
SVM based approaches were found to be best only for two 
and one datasets, respectively.  

Yohannese et al. [4] have explored and examined 
Ensemble Learning Algorithm (ELA) to enhance the 

prediction possibilities of fault proneness in software 
modules. They proposed an ELA based on Feature Selection 
(FS) and Data Balancing (DB). Their proposed framework 
with FS and DB combined techniques proved to be more 
robust and yielded higher performance. Figure 1 [4] depicts 
the Ensemble based learning framework as proposed in [4].  

Li and Pham [5] have proposed a NHPP that also 
considers imperfect debugging (ID) along with operating 
environment uncertainty. Software is often tested in a given 
controlled environment. When used to other different 
operating environment by different user, it is likely to give 
different outputs than as expected.  Developers may not be 
aware of such outcomes. Many SRGM models have been 
developed that are based on NHPP. But, the assumption of 
all these kind of models is that, both the operating 
environment and developing environment are similar. The 
unpredictability of the uncertainty of the operating 
environments, in which the software will run, influences the 
performance and affects the reliability in an unpredictable 
way. They have proposed a novel method for detecting 
software faults, based on testing coverage. They essentially 
consider the effect uncertainty of operating environments. 
They compared the performance of their proposed approach 
with several other NHPP based SRGMs and implemented it 
on three sets of real software failure data. They considered 
seven criteria. One of the criteria they considered was 
Improved Normalized Criteria Distance (NCD). This 
method was used to rank and select the best model with a 
goodness-of-fit criterion taken as a major perspective. 

Zhu et al. [6] have considered software fault dependence 
and imperfect fault removal in their proposed reliability 
model. Their model is basically a Non-Homogeneous 
Poisson Process (NHPP). There are two types of faults – 
Type I fault which is an independent fault and type II fault 
which is dependent. They proposed a two-phase debugging 
process comprising of Phase I and Phase II. A small section 
of software faults that is usually unavoidable by software 
testers is considered in these two phases of the proposed 
model. They proved the effectiveness of their proposed 
model by testing with three datasets collected from various 
industries. 

Kaur and Kaur [7] have developed a method to detect 
faults by taking object-oriented metrics. They also consider 
code smells as the predictors. They probed the impact on 
fault detection by not sampling, and further by using 
sampling methods. They tested their model with Apache POI 
3.0 and Apache ANT 1.5 applications. They have considered 
various metrics and code smells as predictors and incidence 
of bug as response variable while applying various machine 
learning algorithms. Their observations are as follows. 1)  By 
not considering any sampling method, the combination of 
software metrics and software code smells, performed better 
than only object-oriented software metrics for predicting 
occurrence of bugs in a class. 2) Resampling technique with 
metrics as predictors yielded better results than when no 
sampling was done with metrics as predictors. 3) K-star was 
found to have better performance than other machine 
learning algorithms when RESAMPLE technique was 
applied with metrics taken as predictors. 



 

 
 

Figure 1. Ensemble based combined learning [4]
 
Tian and Noore [8] have attempted to predict software 

cumulative failure time. They have proposed a model based 
on evolutionary neural networks. They achieved better 
performance than existing neural network models. They have 
shown the impact of the neural network architecture as a 
deciding factor while measuring the performance of the 
network. Figure 2 [8] depicts the Evolutionary Neural 
Network Framework model that is employed for software 
reliability prediction as proposed in [8].  

  Kamei et al. [9] presented a performance analysis of 
various CI techniques when used in software fault prediction. 
They compare the prediction performance of an SVM based 
prediction method with other conventional methods such as 
logistic regression, linear discriminant analysis, neural 
network and classification trees. Their results show that 
SVM based software fault prediction model is far better than 
other conventional models. 

   Bhuyan et al. [14] explored machine learning 
techniques for software reliability prediction. They applied 
enhanced version of fuzzy min-max algorithm combined 
with recurrent neural network (FMMRNN). They applied 
their developed model on some of the software systems data 
sets. These data sets are collected when the system was in 
system testing phase combined with fault elimination. They 
tested the performance of their developed model by applying 
to a failure dataset collected from distributed system 
application. The main advantage of their FMMRNN is, the 
models complexity is automatically adjusted to the 
complexity of the failure history. When applied to different 

software systems, their model is robust and shown better 
performance according to next-step-predictability. So their 
model is a generic model.  Figure 3 [14], depicts the 
architecture of FMMRNN model as proposed in [14].  

Bhuyan et al. [15] explored prediction of software 
reliability by applying machine learning technique. They 
developed a software reliability prediction model using 
Recurrent Neural Network model combined with Back-
propagation Through Time (RNNBPTT). They applied their 
developed model on software systems data sets.  These data 
sets are collected when the software system was in system 
testing phase. Their procedure is little bit complicated, but 
the results of their work showed that Recurrent Neural 
Network produces better and stable performance in 
prediction of software reliability. 
    Bhuyan et al. [16] applied non-parametric neural network 

for predicting software reliability. The failure history 
datasets considered by them have parameters called failure 
time interval, number of failures etc. They also applied the 
feed-forward neural network with back-propagation for 
predicting the reliability of software systems. They compared 
their results with traditional parametric software reliability 
growth models. Their model produces better and consistent 
behavior in prediction of software reliability with respect to 
accuracy. 
     Ray and Mohapatra [17] proposed a technique based on 

hoe individual classes are contributing to the overall 
reliability of the system. According to their approach, they 
prioritized the classes at design phase. They calculated the 



priority of a class using operational profile, use case diagram 
and sequence diagrams. 
    

 
 

Figure 2. Evolutionary neural network framework for software 

reliability prediction [8] 

 
The class will be tested according to its priority value. They 

developed an algorithm for event prioritization which takes 
sequence diagram of each use case and probability of each 
scenario of the use case and produces the output as the 
probability of each event activated in the use case.  Then 
they generated an optimal test suite using a genetic 
algorithm-based technique. This technique selects test cases 
for a test suite out of a large pool of test cases. 
   Ray et al. [18] Small bugs always remain even after 

thorough testing of a program. Bugs and errors can be seen 
randomly scattered in the code. Not every bug in the code 
gives equally severe failure; different bugs in different parts 
of the program may cause failures with different frequency 
and severity than the rest part of the codes. Therefore, the 
ones giving frequent and higher severity failures can be 
prioritized. A metric is proposed to calculate the influence of 
a particular object in an object oriented program. The kind of 
effect a element causes shows the potential of that element to 
cause failures. The influence value determines the intensity 
with which each element is tested. Higher the influence 
value, higher is the intensity with which each element is 
tested. Comparison of the given scheme with other related 
schemes was done experimentally. Their approach is useful 
in applications of coding, debugging, test case design and 
maintenance, as well. The failure rate is reduced by their 
approach when the software is executed for some duration 
just after the testing phase is completed.  
    Kumar et al. [11] proposed a fault prediction model 

based on Least Square Support Vector Machine (LSSVM) 

with Linear, Polynomial and Radial Basis Function Kernels 

assisted with feature selection method. They essentially 

identified and investigated the predictive power of metrics 

used in fault prediction. Their experiments were conducted 

on 30 Open Source Java projects. Their results successfully 

revealed the faulty classes with a median fault identification 

efficiency of 46.206 percent. It was established that by 

eliminating almost 70 percent of available source code 

metrics after identifying a small subset of metrics, did not 

adversely affect the prediction accuracy. Metrics such as 

Measure of aggregation (MOA), Cohesion among methods 

of class (CAM), Average method complexity (AMC), 

Coupling between methods (CBM), Lines of code (LOC), 

Number of children (NOC) were found to have a significant 

impact. However, at the moment their prediction model can 

only identify a faulty class. Identifying a possible number of 

bugs in a class could be explored with the help of enhanced 

soft computing methods. Also, their model is only tested 

with Object Oriented Software. The model needs to be 

verified with software paradigms in order to generalize. 

 

A   Summary of Literature Survey 
    Park and Baik [10] described a dynamic technique which 

selects and combines multiple software reliability models 

based on the decision trees learning of multi-criteria. [11-

13] have explored various variants of Support Vector 

Machines (SVM) as well. A number of modelling 

techniques used to predict software reliability were surveyed 

by us. Table 1, presents a summary of the various 

computational intelligence techniques that have been 

explored for software reliability prediction  

V. EVALUATION CRITERIA 

Precision, Recall and F1-measure are the most commonly 
used criteria while evaluating the performance of various 
software reliability prediction models. 

Precision denotes the ratio of actual fault prone modules 
to the modules predicted as fault prone. Precision helps in 
knowing what proportion of positive identifications was 
actually correct. It is defined as: 

 
Precision = TP / (TP+FP)                               (1) 
 
Where TP means True Positive and FP means False 

Positive. Recall is the ratio that suggests the number of 
correctly predicted fault-prone modules to the actual number 
of existing fault prone models. Recall attempts in knowing 
what proportion of actual positives were identified correctly. 
It is mathematically defined as follows: 

 
Recall = TP / (TP+FN)                                              (2) 
 
Where TP means True Positive, FP means False 

Negative. F1-measure is a term that signifies a combined 
value of recall and precision, and it is defined as shown in 
equation (3).  

     
F1= (2*Recall*Precision)/(Recall+Precision)              (3) 
 
Accuracy is another important metric for measuring the 

success of fault prediction. It is the ratio of the number of 
correctly predicted samples in the test set to the total number 
of samples actually taken in the test set. It is mathematically 
expressed as follows: 



Where TP means True Positive, FN means False Negative, TN means True Negative, and FP is False Positive.
Accuracy = (TP+TN) / (TP+FN+TN+FP)                 (4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Architecture of FMMRNN model for software reliability prediction [14] 

TABLE I.  SUMMARY OF DIFFERENT COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR SOFTWARE RELIABILITY PREDICTION 

Author Datasets used Algorithm 
Evaluation 
Measure 

Q. Li and H. Pham [5] 
DS1:38 faults identified in 14 weeks, DS2:144 faults 

identified in 
17 weeks, DS3: 146 faults identified in 60 months 

NHPP 

MSE, correlation 
index  of regression 

curve, Predictive ratio 
risk, Predictive power 

Owhadi-Kareshk et al. [3] Seven datasets from PROMISE repository, NASA. 

Pre training technique 
for shallow ANNs (ANNs 
with less number of hidden 

layers) 

Accuracy  

Yohannese et al. [4] 
Eight datasets from PROMISE repository 

NASA 

Ensemble Learning 
Algorithms 

(ELA) 

AUC 
and Accuracy 

Zhu and Pham [6] 
DS1(failure data from real-time control system), DS2(failure 

data from wireless network switching center)and DS3(failure data 
from online bug tracking system) 

NHPP 
MSE 

and predictive-ratio 
risk (PRR) 

Tian  and  Noore   [8] 

DATA-2: application having of 21,700 assembly instructions 
and 136 failures, DATA-11: flight application having of 10,000 
LOC and 118 failures, DATA-12: flight application having of 

22,500 LOC and 180 failures, DATA-13: flight application having 
of 38,500 LOC and 213 failures. 

Genetic algorithm 
optimization 

and reconfiguration 
with Neural 

Network Architecture 

Relative Error(RE),  
Average Relative 

Error (ARE) 
 

Wang et al. [2] 
DS1 was composed of data from 1500 telephone subscribers, 

DS2 was from a wireless network product, 
.DS3 was taken from a bug tracking system 

NHPP 
 

MSE 

Kamei et al. [9] 

The target software size is  300,000 lines of code (SLOC) and 
it has 514 modules, 277 modules are not-fault-prone and 237 

modules are fault-prone 
 

SVM with various 
kernels 

F1 score 

Bhuyan et al. [14] 
Data set DBS-1 with 136 failures 
Dataset DBS-2 with 191 failures 
Dataset DBS-3 with 397 failures 

Fuzzy min-max 
algorithm and Neural 

networks 

AE, RMSE, NRMSE, 
MAE. 

Ray and Mohapatra [17] Sequence diagram Genetic algorithm No. of test cases 

Kumar et al. [11] 30 Open Source Java projects 

LSSVM with Linear, 
Polynomial, RBF Kernels 

assisted with feature 
selection method 

Accuracy, F-measure 

Failure dataset 

Apply fuzzy 

min-max 

algorithm for 

Optimization 

Number of 

hidden neurons 

Initialize the K-means algorithm 

Find numbers of the k-center 

K-means 

algorithm 

Recurrent neural network  

Training 
Deviation of error between 

predicted and actual output 

Compute the various 

measures (AE, RMSE, 

NRMSE, MAE) 



VI. CONCLUSION 

Software reliability is a very important aspect of software 
quality. Ensuring that the occurrences of software 
faults/failures is eliminated or by far minimized can only 
make the software reliable. Software reliability is not only 
dynamic but also stochastic in nature. It may be accounted as 
a probabilistic measure that considers the occurrences of 
failures of software as a random phenomenon. Many 
researchers are working on finding an optimal SRGM model 
for employing in their specific case of study. This is an open 
problem and needs more avenues to be explored. Existing 
software reliability prediction tools and techniques are 
inadequate and cannot be applied confidently.  Existing 
approaches consider only a limited number of criteria when 
designing reliability prediction models. In this paper, various  
computational intelligence techniques such as SVM, MLP, 
Bagging, FFBPNN, CFBPNN, Regression, Neural Network 
ensembles, Radial-Bias Neural Networks, GRNN, ANFIS, 
NHPP, M5P, Instance based learning etc. that have been 
applied in software reliability prediction are surveyed and 
evaluated based on some selected criteria . 
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