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Objective

•To identify nonlinear systems using Wiener and
Volterra-Laguerre models in a distributed recur-
sive manner.

Introduction

•Generally, all the real-time systems have nonlinear
nature hence nonlinear modeling is preferred .
•Data-based system modeling is a key issue for
a many engineering applications such as pH-
neutralization, two tank system control.
•Higher order Volterra kernels can represent these
systems but with high parameter complexity.
•So block-structured models are employed but they
can model some specific nonlinearities.
•Expanding the nonlinear Volterra kernels with or-
thogonal Laguerre functions can relegate the above
limitations [1].
•A distributed alternating direction method of mul-
tipliers (ADMM) based recursive algorithm for the
identification of above-mentioned nonlinear models
is designed.

Traditional Wiener Model

G (q) =
nα∑
i=1

αigi (q), (1)

where αi are the parameters to be estimated and
gi(q) (i = 1, ..., nα) are the known basis functions,
can take any of the generalized basis functions.

d(t) = G (q) a(t) + v(t) =
nα∑
i=1

αigi (q)a(t) + v (t) . (2)

Assuming nonlinearity is invertible,

d(t) = F−1 (γ(t)) =
nβ∑
j=1

βjfj (γ(t)), (3)

where βj ∈ R (j = 1, ...nβ) are the unknown pa-
rameters associated to the nonlinear basis functions
fj(·) : R→ R (j = 1, ...nβ),

γ(t) = s̄T ζ̄ (t) + v (t) , (4)
where s̄ =

[
α1, ...αnα, β2, ...βnβ

]T
, ζ̄ (t) =

[(g1 (q) a(t))T , ..., (gnα (q) a(t))T ,−fT2 (γ(t)) , ...,−fTnβ (γ(t))]T .

Figure: Wiener nonlinear system

Traditional Volterra-Laguerre
(V-L) Model

Consider a fading memory causal nonlinear system
γ (t) = Fd {a (τ )} + v (t) , (5)

The finite order R, discrete-time Volterra model
with fading memory M can be given as [2]

γ (t) =
R∑
n=1

M−1∑
τ1=0
· · ·

M−1∑
τn=0

hn (τ1, . . . , τn)
n∏
i=1
a (t− τi) + v (t) ,

(6)
The nth-order Volterra kernel hn can be approxi-
mated using r-dimensional Laguerre function as

hn (·) =
r∑

k1=1
· · ·

r∑
kn=1

L
(n)
k1...kn

n∏
i=1
φki (τi), (7)

γ (t) = S̄T Φ̄ (t) + v (t) ,

where S̄ =
[
S̄(1), ..., S̄(R)

]T
∈ R(r+...+rR)×1, (8)

Φ̄ (t) =
[
Φ̄(1) (t) , ..., Φ̄(R) (t)

]T
∈ R(r+...+rR), (9)

with
S̄(n) =

[
L

(n)
1...1 · · ·L(n)

r...r

]
∈ R1×rn, l

(n)
k1...kn

(t) =
n∏
i=1
lki (t)

Φ̄(n) (t) =
[
l
(n)
1...1 (t) · · · l(n)

r...r (t)
]
∈ R1×rn

.

The objective is to estimate the parameter vector s̄
and S̄ in a distributed manner.

Distributed V-L Modeling and
Distributed Wiener modeling

•Consider an ad-hoc WSN with P number of spa-
tially dispersed sensors.
•At any time, node j measures the output γj(t)
corresponding to input {aj (τ )| τ = (t−M + 1) , .., t}.
•The scalar measurements of all the nodes
are stacked into a global vector Γ̄ (t) =
[γ1 (t) , ..., γP (t)]T ∈ RP×1 with their correspond-
ing regressors stacked in global matrix U (t) =[
Φ̄1 (t) , ..., Φ̄P (t)

]
∈ R(r+...+rR)×P .

•Then estimate the vector S̄ by minimization of
ˆ̄S = arg min

S̄

E
∥∥∥Γ̄ (t)−UT (t) S̄

∥∥∥2
, (10)

•To facilitate the distributed estimation of S̄, aux-
iliary variables

{
S̄j
}P
j=1 are introduced to represent

the local estimates at each nodes.
•The optimization problem in (10) can be re-
expressed as{

ˆ̄Sj (t)
}P
j=1

= arg min
{S̄j}Pj=1

t∑
m=0

P∑
j=1

λt−m
[
γj(m)− Φ̄T

j (m)S̄j
]2

+ P−1λt
P∑
j=1

S̄Tj Ψ0S̄j,

s.t. S̄j = S̄j′ , j ∈ [1, .., P ], j′ ∈ Nj ,

(11)
where λ is the forgetting factor and Ψ0 is the posi-
tive definite matrix used for regularization.
•ADMM is employed to optimize (11) in a distributed
fashion [3].
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(a) Sixteen node ad-hoc WSN
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(b) Noise-variance at nodes

Conclusion

A distributed identification of Volterra-Laguerre
model and Wiener model is designed.
•More responsive and robust performance.
•Simulations are plotted under noisy environ-
ment.
•Results are compared with the non-cooperative
estimation.
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Simulation Results

•Consider an infinite-order, finite length (M = 5)
Wiener type nonlinear dynamical system

d (t) = 2.5a (t) + 2a (t− 1) + 0.5a (t− 2)
+ 0.1a (t− 3) + 0.05a (t− 4)

γ (t) = 1
1 + e−d(t).

(12)
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Figure: Network performance of the proposed distributed
Volterra-Laguerre model for the nonlinear system (12).
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Figure: Network performance of the proposed distributed
Wiener model for the nonlinear system (12).

•Next, let us consider a 2nd-order nonlinear system
for which Wiener model does not exists,

d (t) = 2.5a (t) + 2a (t− 1) 0.5a (t− 2) +
+ 0.1a (t− 3) + 0.05a (t− 4)

γ (t) = 10d (t)− 2(d (t))2.

(13)
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Figure: Network performance of the 2nd-order distributed
Volterra-Laguerre model for the nonlinear system (13).

•Steady-state values of the performance curves are
significantly less hence the proposed modeling can
be effectively use to model the nonlinear systems.


