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Abstract—Distributed estimation over wireless sensor networks
(WSNs) has been used to obtain the parameters of interest
with reduced resource consumption, hence gained importance in
system modeling and control applications. Unlike least-squares
and fusion-center based approaches, distributed signal processing
is competent in real-time applications. In this article, Volterra-
Laguerre model and Wiener model are identified in a distributed
manner through WSNs for modeling of nonlinear systems. A
block-structured Wiener model has been widely used as it is
characterized by a small number of parameters, but can only
model specific nonlinearities. A generalized Volterra model over
Wiener model can approximate any nonlinear system to a
desired precision but has increased parameter complexity. By
expanding nonlinear Volterra kernels with orthogonal Laguerre
functions, the parameter complexity is reduced significantly. A
distributed recursive algorithm for the identification of above-
mentioned nonlinear models is designed by minimizing the
quadratic prediction error. The algorithm reformulates model
identification framework into multiple constrained separable
subtasks. These subtasks are optimized using a powerful method
called alternating direction method of multipliers. Simulation
results for an infinite-order and a 2nd-order nonlinear systems
are obtained under the influence of process noise and are
compared with the results of non-cooperative estimation showing
the superiority of the proposed algorithm.

Index Terms—Distributed signal processing, Wiener, Volterra,
nonlinear systems, ADMM, fusion-center.

I. INTRODUCTION

Data-based system modeling is a key issue for a wide range
of real-time engineering applications such as pH-neutralization
process, two tank system control and continuous stirred tank
reactor etc. Such an approach first selects the appropriate
model structure and then estimate the parameter of interest
using some identification methodology. Generally, all the real-
time systems have nonlinear nature hence nonlinear modeling
is preferred for model-based control, analysis, and design. The
nonlinear Volterra model is one that can model any fading
memory nonlinear systems with arbitrary accuracy [1]. This
model consists of a series of Volterra kernels that are the
higher order approximation of the system’s impulse response
[2]. It has significant modeling capability and simple nonlinear
structure [3] but may lead to cumbersome modeling because of
its high parameter complexity while modeling highly nonlinear
systems. To overcome the parameter complexity, there are
two main approaches involved. First, the block-structured
models are used for modeling high-order nonlinear systems.
Block-oriented Wiener model got much attention in the field
of system identification, system control, system design and

prediction because of its simple structure and can approximate
a wide range of nonlinear systems [4], [5]. Wiener model is
a cascade connection of a linear time-invariant (LTI) system
followed by a static nonlinear element [5]. The Wiener model
allows to take only specific nonlinearities and also its output
is nonlinear w.r.t. the parameters [6]. The second approach in
reducing the parameter complexity involves the employment
of orthogonal Laguerre basis functions to approximate the
Volterra kernels. The Laguerre functions are very efficient to
approximate the kernels of practical nonlinear systems [7].
The objective of our proposed work is to implement both the
above approaches in a distributed recursive manner through ad-
hoc wireless sensor network (WSN). The online decentralized
estimation using WSN has been proved to retrieve the desired
parameters of interest [8].

A. Previous Works

Many algorithms in the literature employ least-square (LS),
least mean square (LMS) and recursive least square (RLS) to
identify Volterra and Wiener models. Wigren in [9] derived a
prediction error based recursive identification algorithm using
Wiener model. In [10], Hagenblad et al. have identified Wiener
model using maximum likelihood estimation. A renowned
LS-based and gradient-based Wiener model identification al-
gorithms have been designed by D. Wang et al. in [11].
F. Ding et al. in [12] described RLS algorithm to identify
Wiener nonlinear systems where the difficulty of estimating
unmeasured variables and unknown terms in the information
vector have been taken care.

Literatures of Volterra modeling include: T. Koh et al. in
[13] presented a factorization method to iteratively obtain
Volterra kernels. In [14], Volterra filter identification for Gaus-
sian inputs is carried out using LS optimization. J. Li et al. in
[15] presented an LS identification of Volterra predistorter to
compensate nonlinear effects in OFDM transmitters. The arti-
cle [16] presented a fast RLS algorithm for 2nd-order Volterra
filtering. Authors in article [17] presented LMS and RLS based
quadratic-Volterra filters for nonlinear speech coding. Article
[18] studied an application of adaptive Volterra filter for the
identification of parametric loudspeaker system. Z. Sirgit et al.
presented an LMS based Volterra modeling in [19].

B. Motivation and Overview of the Proposed Article

All the articles in the literature survey resort to either LS or
adaptive algorithms for the estimation of Volterra and Wiener



model parameters. The LS based approach is not suitable for
real-time modeling and control applications due to its offline
nature of data processing. Performance improvement and
better resilient towards failure as the benefits of co-operation
[20] are incorporated with the use of WSN-based distributed
nonlinear system modeling. The main contribution of this
research pertains to design and analyze a novel algorithm to
identify the parameters of Wiener and Volterra-Laguerre model
in a distributed recursive way. The Centralized approach that
involves online processing of data through fusion-center (FC)
can also estimate the models parameters but has following
limitations: 1) It requires a large amount of energy due to
multi-hop communication [21], 2) It needs powerful central
processing unit (CPU) with fast computational capability to
process the data in real-time [8], 3) Lacks robustness due
to failure of the whole system if FC gets damaged [22] etc.
Distributed strategies have been introduced with an intention to
overcome the limitations of LS and FC based approaches. As
per our knowledge, there is no state of art algorithm available
in the literature where the block-oriented model and Volterra
model have been identified in a distributed manner.

This article estimates the parameters of the above-mentioned
models in a distributed manner using an ad-hoc WSN. Each
node in the network obtains the local estimate and then
cooperates with its neighboring nodes to reach the global
estimate. The least-squares cost function is decomposed into
constrained minimization subtasks that are solved using simple
yet powerful distributed optimization method called alternating
direction method of multipliers (ADMM) [8], [23]. Simulation
results are drawn in Section V to show the superiority of the
designed algorithm over the non-cooperative method of model
estimation.

C. Notations

The notations used in this article are: any alphanumeric with
bar-head is termed to be a vector quantity, any alphanumeric
with bold-case represents a matrix, and scalar quantity is
represented by a simple alphanumeric term. (·)T denotes the
transpose of any quantity and ∥·∥2 denotes the Frobenius norm.
Other notations are defined wherever they are used.

II. FORMULATION OF WIENER MODEL IDENTIFICATION

Consider a Wiener nonlinear system that has cascaded
blocks of a LTI subsystem with G (q) as the transfer function
followed by a static nonlinear function F (·) : R → R as shown
in Fig. 1. Here a (t) and γ (t) are the input and corresponding

Fig. 1: Wiener nonlinear system [24]

measured output respectively, obtained for a time period of
length L. v(t) denotes the process noise and q represents
the forward shift operator. The transfer function G (q) of the

linear dynamical subsystem can be assumed as the expansion
of orthonormal basis functions as

G (q) =

nα∑
i=1

αigi (q), (1)

where αi ∈ R (i = 1, 2, ..nα) are the parameters to be
estimated and gi(q) (i = 1, ..., nα) are the known basis
functions. These known basis functions can take any of the
generalized basis functions such as finite impulse response,
Laguerre and Kautz functions etc. Referring to Fig. 1 and Eq.
(1), the intermediate variable d (t) can be expressed as

d(t) = G (q) a(t) + v(t) =

nα∑
i=1

αigi (q)a(t) + v (t) . (2)

Assuming nonlinearity is invertible, the inverse of F (·) can be
approximated as the expansion of nonlinear basis functions as

d(t) = F−1 (γ(t)) =

nβ∑
j=1

βjfj (γ(t)), (3)

where βj ∈ R (j = 1, ...nβ) are the unknown parameters
associated to the nonlinear basis functions fj(·) : R → R (j =
1, ...nβ). The nonlinear basis functions can be simple polyno-
mials, radial basis functions, splines basis functions, wavelets,
etc. The polynomial representation is commonly used as its
implementation is simple and can be easily analyzed. The
orders of nα and nβ are assumed to be known beforehand.
We apply the general assumption that β1 = 1, f1(γ(t)) = γ(t)
then equating Eq. (2) and Eq. (3) will lead to

γ(t) =

nα∑
i=1

αigi (q)a(t)−
nβ∑
j=2

βjfj (γ(t)) + v (t) . (4)

The above expression is in the form of linear regression and
further can be rewritten as

γ(t) = s̄T ζ̄ (t) + v (t) , (5)

where
s̄ =

[
α1, ...αnα , β2, ...βnβ

]T
∈ R(nα+nβ−1), (6)

ζ̄ (t) =

[
(g1 (q) a(t))

T , ..., (gnα (q) a(t))T ,

−fT
2 (γ(t)) , ...,−fT

nβ
(γ(t))

]T

∈ Rnα+nβ−1. (7)

The quadratic cost function of prediction error can be given
as

¯̂s = argmin
s̄

{
1

L

L∑
t=1

∥∥∥γ(t)− s̄T ζ̄ (t)
∥∥∥2} . (8)

III. FORMULATION OF VOLTERRA-LAGUERRE MODEL
IDENTIFICATION

Consider a causal nonlinear system with fading memory
characteristics

γ (t) = Fd {a (τ)}+ v (t) , (9)

where Fd is the nonlinear operator with fading memory (say
M ), {a (τ)| τ = (t−M + 1) , .., t} is the input, γ(t) is the
instantaneous output and v(t) is the process noise of the
system. The nonlinear system in (9) can be approximated by
using finite order (say R) discrete-time Volterra model [1] as

γ (t) =

R∑
n=1

M−1∑
τ1=0

· · ·
M−1∑
τn=0

hn (τ1, . . . , τn)

n∏
i=1

a (t− τi) + v (t) , (10)

where hn is the nth-order temporal Volterra kernel.
Traditional Volterra model is not suitable for model-based

control applications as it suffers from ill-conditioned estima-



tion due to high parameter complexity. Hence it is desirable
to reduce the number of parameters to be estimated while
retaining the adequate approximation of Volterra kernels.
Orthogonal Laguerre functions are used to approximate the
nonlinear Volterra kernels to reduce parameter complexity [7].
The nth-order nonlinear Volterra kernel can be approximated
using r-dimensional Laguerre function as

hn (·) =
r∑

k1=1

· · ·
r∑

kn=1

L
(n)
k1...kn

n∏
i=1

ϕki
(τi), (11)

where {ϕki (τi)}ki=1,..,r|i=1,..,n are the set of orthogonal

Laguerre basis functions and L
(n)
k1...kn

are the Laguerre co-
efficients. Now, substitution of Eq. (11) in Eq. (10) will give
the approximated Volterra-Laguerre model as

γ (t) =

R∑
n=1

M−1∑
τ1=0

· · ·
M−1∑
τn=0

r∑
k1=1

· · ·
r∑

kn=1

L
(n)
k1...kn

×
n∏

i=1

ϕki
(τi) a (t− τi) + v (t) .

(12)

By defining the parameter lk (t) =
M−1∑
τ=0

ϕk (τ) a (t− τ), Eq. (12)
can be rewritten as

γ (t) =
R∑

n=1

r∑
k1=1

· · ·
r∑

kn=1

L
(n)
k1...kn

n∏
i=1

lki
(t) + v (t) . (13)

Eq. (13) can be seen to fit in the form of linear regression as

γ (t) = S̄T Φ̄ (t) + v (t) , (14)

where S̄ =
[
S̄(1), ..., S̄(R)

]T
∈ R(r+...+rR)×1, (15)

Φ̄ (t) =
[
Φ̄(1) (t) , ..., Φ̄(R) (t)

]T
∈ R(r+...+rR), (16)

with

S̄(n) =
[
L
(n)
1...1 · · ·L

(n)
r...r

]
∈ R1×rn , l

(n)
k1...kn

(t) =

n∏
i=1

lki
(t)

Φ̄(n) (t) =
[
l
(n)
1...1 (t) · · · l

(n)
r...r (t)

]
∈ R1×rn

.

The objective is to estimate the parameter vector s̄ and S̄ by
minimizing the quadratic cost functions of (5) and (14) in a
distributed manner using an ad-hoc WSN.

IV. DISTRIBUTED VOLTERRA-LAGUERRE MODELING AND
DISTRIBUTED WIENER MODELING

Let us consider an ad-hoc WSN with P number of spa-
tially dispersed sensors where each sensor has the ability to
measure the output for any input. Further, each node j has
the processing capability to estimate the desired parameters
locally and can exchange the estimate with its neighboring
nodes Nj . At any time t, node j measures the scalar output
γj(t) corresponding to input {aj (τ)| τ = (t−M + 1) , .., t}.
The scalar measurements of all the nodes are stacked in
global vector Γ̄ (t) = [γ1 (t) , ..., γP (t)]

T ∈ RP×1 with their
corresponding regressors stacked in global matrix U (t) =[
Φ̄1 (t) , ..., Φ̄P (t)

]
∈ R(r+...+rR)×P and then estimate the(

r + ...+ rR
)
× 1 vector S̄ by minimization of

ˆ̄S = arg min
S̄

E
∥∥∥Γ̄ (t)−UT (t) S̄

∥∥∥2
= arg min

S̄

P∑
j=1

E

[(
γj (t)− Φ̄T

j (t) S̄
)2

]
,

(17)

where E is the expectation operator. Eq. (17) represents the
global cost function. In order to obtain the optimal estimate of
S̄, all the sensor nodes need to send their data to FC for further
processing. This centralized approach requires a powerful CPU
and a large amount of communication resources. To overcome
these limitations, an adaptive distributed algorithm is designed.

To facilitate the distributed estimation of S̄, auxiliary vari-
ables

{
S̄j

}P

j=1
are introduced to represent the local estimates

at each sensor nodes. The convex optimization problem in (17)
can be re-expressed as

{
ˆ̄Sj (t)

}P

j=1
= arg min

{S̄j}P
j=1

t∑
m=0

P∑
j=1

λt−m
[
γj(m)− Φ̄T

j (m)S̄j

]2

+P−1λt
P∑

j=1

S̄T
j Ψ0S̄j ,

s.t. S̄j = S̄j′ , j ∈ [1, .., P ], j′ ∈ Nj ,

(18)

where λ is the forgetting factor and Ψ0 is the positive definite
matrix used for regularization. Since WSN is connected, Eq.
(17) and (18) are equivalent because

{
S̄j = S̄

}P

j=1
.

ADMM is employed to optimize (18) in a distributed
fashion which gives the online recursive estimate of S̄. Further,
this adaptive algorithm can track the time-varying behavior of
the nonlinear systems. To apply ADMM, auxiliary variables{
z̄jj′

}
for j′ ∈ Nj are considered with consensus constraints

that are equivalent to the constraints specified in (18) as

S̄j = z̄j
′

j , S̄j = z̄j
j′ for j ∈ [1, P ], j′ ∈ Nj , j ̸= j′. (19)

Now, a decomposable structure of the quadratically augmented
Lagrangian function is formed with consensus constraints
specified in (19) as) as

La(S̄, z̄, ω̄, µ̄) =

P∑
j=1

t∑
m=0

λt−m[γj(m)− Φ̄T
j (m)S̄j ]

2
+

λt

P

P∑
j=1

S̄T
j Ψ0S̄j

+

P∑
j=1

∑
j′∈Nj

[
(ω̄j′

j )
T
(S̄j − z̄j

′

j ) + (µ̄j′

j )
T
(S̄j − z̄j

j′ )

]

+
c

2

P∑
j=1

∑
j′∈Nj

[∥∥∥S̄j − z̄j
′

j

∥∥∥2 +
∥∥∥S̄j − z̄j

j′

∥∥∥2],
(20)

where c represents positive penalty coefficient, ω̄ and
µ̄ are the Lagrangian multipliers, S̄ =

{
S̄j

}P

j=1
, z̄ ={

z̄j
′

j

}j′∈Nj

j∈[1,..,P ]
and [ω̄, µ̄] =

{
ω̄j′

j , µ̄j′

j

}j′∈Nj

j∈[1,..,P ]
. At time instant

t + 1 and ADMM iteration k, Eq. (20) is minimized to get
the optimum parameters in a distributed recursive fashion. The
first step of ADMM updates the Lagrangian multipliers using
gradient ascent method of optimization as

ω̄j′

j (t+ 1; k) = ω̄j′

j (t+ 1; k − 1) + c
[
S̄j(t+ 1; k)− z̄j

′

j (t+ 1; k)
]
(21)

µ̄j′

j (t+ 1; k) = µ̄j′

j (t+ 1; k − 1) + c
[
S̄j(t+ 1; k)− z̄j

j′ (t+ 1; k)
]
.

(22)
Second step in ADMM minimizes the expression (20) w.r.t. S̄j
with all other variables fixed to their most updated values. The
third step in ADMM involve the minimization of (20) w.r.t. z̄j

′

j
assuming all other variables kept to their warm-start values.
Then the variables S̄j and z̄j

′

j can be respectively updated in
the recursive form as



S̄j(t+ 1; k + 1) =[
2

t+1∑
m=0

(
λt+1−mΦ̄j(m)Φ̄T

j (m) +
λt+1

P
Ψ0

)
+ 2c |Nj | I

]−1

×



2

t+1∑
m=0

(
λt+1−mΦ̄j(m)γj(m)

)
−

∑
j′∈Nj

(
ω̄j′

j (t+ 1, k) + µ̄j′

j (t+ 1, k)
)

+c
∑

j′∈Nj

(
z̄j

′

j (t+ 1; k) + z̄j
j′ (t+ 1; k)

)



(23)

z̄j
′

j (t+ 1; k + 1) = 0.5
[
S̄j (t+ 1; k + 1) + S̄j′ (t+ 1; k + 1)

]
+0.5c−1

[
ω̄j′

j (t+ 1; k) + µ̄j
j′ (t+ 1; k)

]
.

(24)

Using Eq. (24) into (21) and (22), and if Lagrange multipliers
are initialized as ω̄j′

j (t+1; 0) = −µ̄j
j′(t+1; 0), it follows that

ω̄j′

j (t+ 1; k) = −µ̄j
j′(t+ 1; k), ∀ t, k which turns out to be

ω̄j′

j (t+1; k) = ω̄j′

j (t+1; k−1)+
c

2

[
S̄j(t+ 1; k)− S̄j′ (t+ 1; k)

]
. (25)

Now, substituting Eq. (24) into Eq. (23) and following ω̄j′

j (t+

1; k) = −µ̄j
j′(t+ 1; k), ∀ t, k, Eq. (23) can be rewritten as

S̄j(t+ 1; k + 1) =[
2

t+1∑
m=0

(
λt+1−mΦ̄j(m)Φ̄T

j (m) +
λt+1

P
Ψ0

)
+ 2c |Nj | I

]−1

×



2

t+1∑
m=0

(
λt+1−mΦ̄j(m)γj(m)

)
−

∑
j′∈Nj

(
ω̄j′

j (t+ 1, k)− ω̄j
j′ (t+ 1, k)

)
+c

∑
j′∈Nj

([
S̄j(t+ 1; k) + S̄j′ (t+ 1; k)

])


.

(26)

Recursions (25) and (26) are repeated for K number of
ADMM iterations i.e. k = 1, ...,K to enforce the consensus
constraints given in (19).

NOTE 1: The distributed algorithm for the identification
of Wiener model can be obtained in a similar manner by
mimicking the steps from (17) to (26). One can easily find
that the formulation will be similar but the dimension of
the parameter vectors will differ. The update equations for
Lagrangian multiplier and unknown parameter vector can be
given as follows:

l̄j
′

j (t+1; k) = l̄j
′

j (t+1; k− 1)+
c

2

[
s̄j(t+ 1; k)− s̄j′ (t+ 1; k)

]
. (27)

s̄j(t+ 1; k + 1) =[
2

t+1∑
m=0

(
λt+1−mζ̄j(m)ζ̄Tj (m) +

λt+1

P
Ω0

)
+ 2c |Nj | I

]−1

×



2

t+1∑
m=0

(
λt+1−mζ̄j(m)γj(m)

)
−

∑
j′∈Nj

(
l̄j

′

j (t+ 1, k)− l̄j
j′ (t+ 1, k)

)
+c

∑
j′∈Nj

([
s̄j(t+ 1; k) + s̄j′ (t+ 1; k)

])



(28)

where Ω0 is a positive definite matrix used for regularization,

{
l̄j

′

j

}j′∈Nj

j∈[1,..,P ]
are the Lagrange multipliers associated for

distributed Wiener modeling.
NOTE 2: At each time instant, recursions (25), (26), (27)

and (28) are capable to attain their optimal solution as ADMM
iteration increases. A large number of ADMM iterations i.e
k > 1 will not be a problem for time-invariant system. But
when the characteristics of nonlinear dynamical systems are
time-varying then one ADMM iteration per time instant t is
used to track the process i.e (k = t).

A. Communication and Computational Complexity of Dis-
tributed Volterra Modeling

The transmission cost per sensor node at each itera-
tion is

{(
r + ...+ rR

)
(|Nj |+ 1)

}
which corresponds to the

Lagrange multipliers
{
ω̄j′

j

}
j′∈Nj

and local estimate S̄j .

The reception cost per sensor node at each iteration is{
2 |Nj |

(
r + ...+ rR

)}
which corresponds to the Lagrange

multipliers
{
ω̄j
j′

}
j′∈Nj

and local estimates of the neighboring

nodes
{
S̄j′

}
j′∈Nj

.
The computational complexity to update Lagrange multipli-

ers at sensor j through (25) requires O
(
|Nj |

(
r + ...+ rR

))
.

While updating parameter matrix S̄j using (26), the significant
computations arise from the inverting term. The inversion can
be computed using the matrix inversion lemma [25, pg. 571]
hence requires O

((
r + ...+ rR

)2)
computations when λ =

1. For λ < 1, inversion term requires O
((

r + ...+ rR
)3)

computations per iteration.

B. Communication and Computational Complexity of Dis-
tributed Wiener Modeling

The transmission cost per sensor node at each itera-
tion is {(nα + nβ − 1) (|Nj |+ 1)} which corresponds to
the Lagrange multipliers

{
l̄j

′

j

}
j′∈Nj

and local estimate s̄j .

The reception cost per sensor node at each iteration is
{2 |Nj | (nα + nβ − 1)} which corresponds to the Lagrange
multipliers

{
l̄jj′
}
j′∈Nj

and local estimates of the neighboring

nodes {s̄j′}j′∈Nj
.

The computational complexity to update Lagrange multipli-
ers at sensor j through (27) requires O (|Nj | (nα + nβ − 1)).
The inversion term involved while updating of parameter ma-
trix s̄j in (28) can be computed using matrix inversion lemma
hence requires O

(
(nα + nβ − 1)

2
)

computations for λ = 1.

For λ < 1, inversion term requires O
(
(nα + nβ − 1)

3
)

computations per iteration.

C. Convergence Analysis
Proposition 1: At any time instant t, for the arbitrary

initialized values of ω̄j′

j (t; 0) and S̄j(t; 0) in recursions (25)
and (26) respectively with c > 0, the local estimates S̄j(t; k)
at any node j meet the consensus constraints as k → ∞:

lim
k→∞

S̄j (t, k) = lim
k→∞

S̄j′ (t, k) = S̄Copt(t) ∀ j ∈ [1, P ] , (29)



where S̄Copt(t) is the centralized optimal solution when the
observation data from all the sensors at any time instant t are
collected at FC.

Proof: The proof can be easily obtained by mimicking the
steps involved while proving [26, Proposition 4.2, pg. 256].
This involves reformulating (17) to a similar form as [26,
Eq. 4.76]. If we closely look (18), it has the same form of
optimization problem as [26, Eq. 4.76]. It can also be observe
that the constraints in problem (18) follow the [26, Assumption
4.1, pg. 255] hence [26, Proposition 4.2, pg. 256] is applicable
which completes the proof.

Similar Proposition can be used to obtain the convergence
analysis of distributed Wiener modeling.

V. SIMULATION RESULTS

Consider an infinite-order, finite length (M = 5) Wiener
type nonlinear dynamical system as shown in Fig. 1:

d (t) = 2.5a (t) + 2a (t− 1) + 0.5a (t− 2) + 0.1a (t− 3) + 0.05a (t− 4)

γ (t) =
1

1 + e−d(t)
.

(30)
Let us employ the proposed algorithm to obtain the approx-
imate 2nd-order Volterra-Laguerre model and 2nd-order non-
linear polynomial based Wiener model of the above nonlinear
system. The results obtained are compared with the non-
cooperative way of data processing.

A. Simulation Results of Distributed Volterra-Laguerre
Model:

Second order Volterra-Laguerre model with r = 4 is used to
model the above mentioned nonlinear system which requires
20 coefficients to be estimated. Whereas, traditional Volterra
model needs to estimate

(
M +M2

)
i.e. 30 coefficients for

the same. The discrete Laguerre functions [27]

ϕk (t) =
√

1− ρ2ρt(−ρ)k
min(k,t)∑

j=0

Ck
j C

t
j

(
ρ2 − 1

ρ2

)j

,

for k = 1, ..,∞, |ρ| < 1

are used with real valued Laguerre pole ρ = 0.2. In order to
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model the aforementioned nonlinear system in a distributed
fashion, an ad-hoc WSN with sixteen-nodes is considered as
shown in Fig. 2a. Each node in the WSN has the capability
to capture the system dynamics. The system is excited with
persistent random signal sequence a(t) with zero mean and
unit variance. The simulations are carried out by considering

observation noise as zero-mean Gaussian with driving noise
variances at different nodes as shown in Fig. 2b. We apply
the proposed algorithm with λ = 1 and c = 1 to identify the
model parameter matrix S̄.

0 50 100 150 200 250 300 350

ITER 't'

10-1

100

MS
E

K=1 (std D-VL)
No-Cooperation
Centralized
K=5

0 50 100 150 200 250 300 350

ITER 't'

10-1

100

EM
SE

K=1 (std D-VL)
No-Cooperation
Centralized
K=5

Fig. 3: Network performance of the proposed distributed
Volterra-Laguerre model for the nonlinear system (30) with
increasing values of K to reach centralized solution. Compar-
ison with non-cooperative data processing algorithm is shown.

The effective performance of the proposed algorithm is
justified by plotting the mean-square error (MSE) and excess
mean-square error (EMSE) curves. These metrics are defined
at any node j at any time instant t as

MSEj(t) = E
∣∣∣(γj (t) + v (t))− ˆ̄ST

j (t) Φ̄j (t)
∣∣∣2,

EMSEj(t) = E
∣∣∣(γj (t))− ˆ̄ST

j (t) Φ̄j (t)
∣∣∣2.

The overall network performance can be obtained by averaging
the MSE’s and EMSE’s of all the nodes

MSEnetwork , 1

P

P∑
j=1

MSEj , EMSEnetwork , 1

P

P∑
j=1

EMSEj .

The MSE and EMSE curves are plotted against the number
of time iterations as shown in Fig. 3. The simulation results
are obtained by averaging 100 Monte-Carlo runs over 350
time iterations. It can be seen that as the number of ADMM
iterations increases the performance in terms of convergence
improves. The solution approaches centralized solution once
K is increased to a certain value that depends on the topology
of the network and the number of sensor nodes in the network.
The standard distributed Volterra-Laguerre (std D-VL) model
(k = t or K = 1) when compared to no-cooperation strategy
has improved error convergence rate as can be seen from the
performance plots.



B. Simulation Results of Distributed Wiener Model:
The nonlinear system considered in (30) is approximated

using Wiener model with invertible 2nd-order polynomial
nonlinearity hence nβ = 2, nα should be equal to the number
of terms in d (t) i.e. nα = 5. Different type of basis functions

0 50 100 150 200 250 300 350

ITER 't'

10-1

100

M
SE

K=1 (std Wiener)
No-Cooperation
K=5
Centralized

0 50 100 150 200 250 300 350

ITER 't'

10-1

EM
SE

K=1 (std Wiener)
No-Cooperation
K=5
Centralized

Fig. 4: Network performance of the proposed distributed
Wiener model for the nonlinear system (30) with increasing
values of K to reach centralized solution. Comparison with
non-cooperative data processing algorithm is shown as well.

may also be used to approximate the system nonlinearity
that may give different performance. Due to simple and
easy in implementation, polynomial nonlinearity is used here.
Performance plots are obtained with λ = 1 and c = 1 in
a similar way as obtained for distributed Volterra-Laguerre
model i.e. averaging the results of 100 Monte-Carlo runs
over 350 time iterations. For distributed Wiener modeling,
performance metrics at any node j at any time t can be
expressed as

MSEj(t) = E
∣∣∣(γj (t) + v (t))− ˆ̄sTj (t) ζ̄j (t)

∣∣∣2,
EMSEj(t) = E

∣∣∣(γj (t))− ˆ̄sTj (t) ζ̄j (t)
∣∣∣2.

The network performance curves are plotted in Fig. 4.
Steady-state values of the performance curves are significantly
less hence the proposed distributed Wiener modeling can be
used effectively to model the system under consideration. The
standard distributed Wiener (std Wiener) model (k = t or
K = 1) when compared to no-cooperation strategy have
improved error convergence rate that can be seen from the
performance plots. One can easily see that the steady-state
error for Wiener nonlinear model is less than the Volterra-
Laguerre model. One reason could be the assumptions made
for approximating nonlinear Volterra kernels. The penalty

coefficient c used here is chosen using hit and trial manner and
is different for both the models to get the best results. One can
choose the value of c in many another way too. The discussion
of selecting penalty coefficient c is beyond the scope of this
article.
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Fig. 5: Network performance of the 2nd-order distributed
Volterra-Laguerre model for the nonlinear system (31), com-
parison with non-cooperative data processing algorithm.
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Fig. 6: Prediction performance of the 1st and 2nd-order
distributed Volterra-Laguerre model at 16th sensor node for
nonlinear system (31).

Next, let us consider a 2nd-order nonlinear system with
finite fading memory factor (M = 5) as

d (t) = 2.5a (t) + 2a (t− 1) + 0.5a (t− 2) + 0.1a (t− 3) + 0.05a (t− 4)

γ (t) = 10d (t)− 2(d (t))2.
(31)

NOTE 3: The nonlinear function considered above is non-
invertible in the domain of d (t) hence cannot be approximated



using traditional nonlinear Wiener model. But the considered
model can be well approximated using Volterra-Laguerre
model.

Simulation results for the above mentioned 2nd-order non-
linear system are obtained through the same sixteen-node ad-
hoc WSN shown in Fig. 2a. Performance curves in Fig. 5
are obtained in a similar fashion as obtained for the infinite-
order, finite length system in (30). The distributed algorithm
for nonlinear system modeling gives better performance in
terms of error convergence when compared to non-cooperative
data processing.

Since the considered system is of 2nd-order hence the 2nd

or higher order approximation of Volterra model gives the
best result when compared to lower-order model approxi-
mations. The prediction performance for 1st-order and 2nd-
order distributed Volterra-Laguerre model are depicted in Fig.
6, showing the prediction ability of the proposed distributed
modeling algorithm. The predictions are plotted for first 160
observation samples.

VI. CONCLUDING REMARKS

In this work, we have proposed a distributed recursive way
to identify Volterra-Laguerre model and Wiener model using
ad-hoc WSNs. The deduced algorithm can be effectively used
in real-time applications. Localized processing, as well as
information sharing over WSN, is employed to incorporate
the advantages of adaptive as well as distributed techniques
which allows more responsive and robust performance. Both
the standard models i.e. Volterra and Wiener models are
reformulated using simple and powerful distributed convex
optimization scheme called ADMM to facilitate the model
identification in a distributed manner. The simulation results
of modeling the nonlinear systems are plotted under noisy
environment and are compared with the non-cooperative esti-
mation to show the efficacy of the proposed algorithm. The
designed algorithm can be useful in prediction and control
applications for stationary as well as non-stationary dynamical
systems with an arbitrary nonlinearity. In future, the work
will be continued to identify the spatio-temporal model in a
distributed fashion with adaptive penalty coefficient c.
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