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Abstract Effective fault localization is an essential requirement of software development process. Back-
propagation neural network can be used for localizing the faults effectively and efficiently. Existing NN based
fault localization techniques take statement invocation information in binary terms to train the network. In this
paper, we have proposed an efficient approach for fault localization using back propagation neural network and
we have used the actual number of times the statement is executed to train the network. We have investigated
our approach on Siemens suite. Results show that on an average there is 35% increase in the effectiveness over
existing BPNN.
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1 Introduction

Software has become a key part of our society. Various softwares are being developed every year and requires
huge amount of efforts. This effort lies not only in development but majorly in testing. Debugging process
becomes more complex when scale and complexity of software increases. The stage in which bugs are identified
is known as fault localization. To make the software fault free we must first need to locate the bug. This process
can be done in two stages. In first stage, identifying the code which might contain the bug, called as suspicious
code. In second stage, the programmer reviews the selected code and tries to identify the bug [30].

Currently, many research work has been done in the field of fault localization such as, Baah et al. [28]
[8] [24]proposed probabilistic program dependence graph (PPDG), Slice-based techniques such as static slicing,
dynamic slicing and execution slicing [3–6,10–13,16,18,19], spectrun based techniques [14] such as Tarantula [17],
Ochiai [22], Visualization [15], SOBER [27], Crosstab (CBT) [29] etc. DStar(D*), proposed by Wong et al. [26],
is currently the state of the art for fault localization. Its effectiveness was evaluated using 24 different programs
and it performs better that other 38 techniques for fault localization.

Nowadays, machine learning techniques such as artificial neural networks [21], deep neural networks [25]
are widely used to get a robust model for fault localization. Advantages of neural networks over other models
have enticed many researchers. Fault tolerant characteristic of neural network makes it adaptive to the working
environment and minor faults have very little impact on the model. This has made it applicable to many software
engineering areas like reliability estimation, risk analysis, cost estimation and reusability characterization etc.

Back propagation neural network (BPNN) model for fault location, proposed by Wong et al in [20]. is one of
the most popular model in today’s scenario. Local minima was the disadvantage of the BP neural network. Thus,
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another method for fault localization was proposed by Wong et al. in [23], using radial basis function (RBF)
network. RBF and other spectrum based techniques are handicapped with the problem of statements having
same suspiciousness, whereas, BPNN model assigns unique suspiciousness score to each executable statement.

In the existing back propagation neural network (BPNN) model, execution of statement is recorded in binary
terms. This over looked those statements which are executed more than once which mislead the results as there
is a probability that the statement which is executed more than once is more critical than the statement which
is executed only once. This motivated us to work upon the existing BP neural network model to improvise
the results. Thus, to improve the feature vector for training the network, the proposed method uses the actual
number of times the statement is executed for the given test case. We have experimented with five different
programs of Siemens suite to analyze the effectiveness of the proposed approach.

The remainder of the paper is organized as follows. Section 2 explains the basic concepts of the artificial neural
network and back propagation neural network. Section 3 explains the proposed approach of fault location using
BP neural network along with example. Section 4 explains the experimental setup, data set used, results and
average results. Section 5 shows the comparison with related work. Section 6 explains the threats to validity of
our approach. Section 7 gives the conclusion and tells the future work which can be done.

2 Basic Concepts

In this section we explain the basics of artificial neural network, their advantages over other conventional
methods and brief overview of back propagation neural network.

2.1 Artificial Neural Network

Artificial neural network (ANN) is viewed as a mathematical model inspired by the functional aspects of
biological nervous system. The network consists of the simple elements called as neurons and their working
is similar to that of biological neurons. Each neuron consist of certain function called as activation function
which converts the input to the desired output form. Network consists of multiple layers and each layer contains
multiple neurons which work in parallel to generate the output. Its learning capability can approximate any
non-linear continuous functions based on the given data. Neurons are connected with each other with certain
weights upon the connections, so that they can process the information collectively and store it on these weights.
These networks are very useful as they can learn from past experience and using this knowledge can solve new
related problems.

2.2 Back Propagation Neural Network

A back propagation neural network is a kind of feed forward neural network in which the neurons are divided
into layers. Neurons of one layer can be only connected to the neurons of the next layer. Layers between the
input and output layer are called as hidden layers. Back propagation algorithm is an iterative process used
to adjust the errors while training the network.The three layered structure of BP neural network is shown in
Figure 1.

3 Proposed Approach

In this section, we discuss our proposed approach for fault localization using back propagation neural network.

3.1 Fault Localization using BP neural network

Initially, a program P is taken as an base input which has m number of executable statements along with
one faulty statement. Suppose P is executed on n test cases, out of which k test cases are passed and n-k are
failed. Figure 2 shows the sample coverage matrix in which number of rows is equal to the number of test cases
and number of columns is equal to the number of statements covered by the test cases. Value of each row is
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Fig. 1 Structure of a three layered BP Neural Network.

the statement coverage of a particular statement corresponding to the particular test case. Any real number
greater than zero indicates the number of times the statement is executed for that particular test case and zero
indicates that the statement was not executed by that corresponding test case. For example, s4 is covered by the
successful test case t1 and s2 is not covered by the failed test case t6. Complete row can be called as a coverage
vector (cti) which depicts the coverage information for test case ti. For example, ct1 = (0,0,2,9,1,43,0,2) is the
first row of the matrix in the Figure 2 shows the statement coverage of the program for test case t1.
Now, assuming a set of virtual test cases v1, v2, v3,...,vm. Depicted in a form of matrix called as virtual matrix

Fig. 2 Sample coverage matrix.

as shown in the Equation 1, whose each row is the virtual coverage vector cv1 ,...,cvm . Specialty of the virtual test
case is that, it executes only one statement, which is not possible in reality, hence they are called as virtual test
cases. Each row of this matrix is given as an input to the proposed BP neural network and output generated is
the suspiciousness of corresponding statement.
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cv1
cv2
cv3
...

cvm

 =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
... . . . ...

0 0 0 · · · 1

 (1)

3.2 Explanation with Example

Let us now take an example to make our proposed model more clear. Suppose we have a program with 20
statements having 8 executable statements (m=8) with one fault at line no 7. We took a test suit of 7 test cases,
out of which three test cases failed. Statement coverage and result of execution is shown in Figure 2. After this
following steps are performed.

• Firstly, a BP neural network is created having 8 input neurons, one output neuron, and three hidden layers
of neurons. We considered sigmoid function as non-linear transfer function.

• Then, network is trained with the coverage data collected. First input in our example would be vector
(0,0,2,9,1,43,0,2) with zero as the expected output. If the actual output of the network does not match with
the expected output, then the weight of the network is updated. Then, this updated weight is used for next
input to train the network. This whole process is repeated several times till the error of the network becomes
minimal(in our case approx 0.001).

• After the training is done, BP neural network is fed with the test data. In our case, coverage vector of the
virtual test cases is the test input data. Suspiciousness is the likelihood of the statement containing the fault.
Output generated gives the suspiciousness of each statement, as shown in the Table 1.

• Arranging the suspiciousness values in decreasing order, we found the following order s5, s2, s1, s7, s6, s8,
s4, s3. When we examined each statement one by one, s7 which is the actual faulty statement, is evaluated
after examining 3 non faulty statements. Here, in our example, rank of s7 is 4.

Table 1 Actual output(suspiciousness)generated by BPNN for each statement.
Statement Output Statement Output

s1 0.65311 s5 0.81204
s2 0.75211 s6 0.60274
s3 0.65311 s7 0.62310
s4 0.29561 s8 0.46922

4 Experiments

In this section, we present the experimental setup and results of our experiments.

4.1 Experimental setup

We have implemented our approach, in Python-3, on Ubuntu 16.04 operating system, with i5 64bit processor
having 4GB RAM. For experiment, values of learning rate is taken in the range of 0.0001 to 1 and number of
hidden layers is calculated heuristically using Equation 2.

num = round(n/30) ∗ 0.5 (2)

Here, n represents the number of executable statements in the program. We have used, Sigmoid function as the
activation function (transition function )of the BP neural network.
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4.2 Data set used

For experimental use five C programs and their corresponding faulty versions of Siemens suit were used, namely
Print_tokens, Print_tokens2, Schedule, Schedule2, Tot_info. Each faulty version contains only one fault. Table
2 introduces the 5 C programs with their names, number of faulty versions, lines of code, number of executable
statements and number of test cases. Siemens suit contains in total 7 programs out of which we have selected

Table 2 Details of Siemens suit’s programs.
Name of Number of faulty Lines of Codes Number of executable number of test cases
program versions statements

Print_tokens 7 565 172 4130
Print_tokens2 10 510 146 4115

Schedule 9 412 140 2650
Schedule2 10 307 115 2710
Tot_info 23 406 100 1052

only 46 faulty versions of 5 C programs. Following versions were omitted: version 4 and 6 of Print_tokens,
version 10 of Print_tokens2, version 6, 10 and 21 of Tot_info, version 1, 5, 6, 8 and 9 of Schedule and version
8 and 9 of Schedule2. Reasons of omission were:

• Syntactic difference was not found between the correct version and faulty versions (e.g., included header files
were different).

• None of the test cases failed for the faulty versions.
• Segmentation faults were observed while executing the test cases on the above omitted faulty versions.
• Difference between the actual program and faulty versions was not included in the executable statements.

Additionally, certain statements were absent in the faulty versions which cannot be located directly.

4.3 Results

In this section we present our experimental results using different graphs. Figure 3, shows the effectiveness of
proposed approach for Print_tokens, such that 72% of the program needs to be evaluated for locating the fault
as compared to existing BPNN model [20] in which 85% of the program is evaluated. Figure 4, shows that for
Print_tokens2, on an average 18% of the program needs to be evaluated for locating the fault as compared to
existing BPNN model in which 36% of the program is evaluated, although in the graph we can see that near
10% to 16% our approach does not show good results but on an average result is good. Figure 5, shows that
for Schedule, 20% of the program needs to be evaluated for locating the fault as compared to existing BPNN
model in which 50% of the program is evaluated. Figure 6, shows that for Schedule2, 38% of the program needs
to be evaluated for locating the fault as compared to existing BPNN model in which 84% program is evaluated.
Figure 7, shows that for Tot_info, 52% of the program needs to be evaluated for locating the fault as compared
to existing BPNN model in which 80% of the program is evaluated.

We have also used EXAM score metric to measure the effectiveness of various techniques. EXAM score is
calculated using Equation 3.

EXAM Score =
|Vexamined| ∗ 100%

|V |
(3)

Where,

• |V| measures the size of executable codes in the program.
• |Vexamined| measures the number of statements that has to be inspected so as to find the fault.

Figure 8, shows the comparison of average EXAM score of the existing BPNN model [20] and the proposed
BPNN model. Table 3, shows the average percentage of increase in the effectiveness of proposed BPNN model
for fault localization as compared to the existing BPNN model. Overall, we can say that our model has improved
35% of the effectiveness on an average.
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Fig. 3 Improvement in effectiveness for Print_tokens. Fig. 4 Improvement in effectiveness for Print_tokens2.

Fig. 5 Improvement in effectiveness for Schedule. Fig. 6 Improvement in effectiveness for Schedule2.

Fig. 7 Improvement in effectiveness for Tot_info.

Table 3 Average percentage of effectiveness for each program.
Program Avg EXAM score Avg EXAM score Percentage of increase

(Existing) (Proposed) in effectiveness (%)
Print_tokens 30.05 24.41 18.77
Print_tokens2 11.5 10.38 9.66

Schedule 15.78 9.10 42.36
Schedule2 47.75 11.32 76.27
Tot_info 29.81 21.48 27.93

5 Comparision with related work

Many work have been done previously in the field of fault localization.
Baah et al. [28] proposed probabilistic program dependence graph(PPDG), which provides the conditional
probability of each node in the graph to identify the bug [8,24]. But this becomes a lengthy process as complete
program is considered for debugging. Slice-based techniques [3–6, 10–13, 16, 18, 19] were also adopted, which



Effective Software Fault Localization using an Back Propagation Neural Network 7

Fig. 8 Comparison of average EXAM score of existing BPNN and proposed BPNN model.

narrows down the search to various slices of the program. Slice is basically a set of statements in a program
which leads to the faulty statement or the set of statements which can be impacted by the faulty statement [1] [2].

Disadvantage of earlier slice based techniques is that, they only inspect the slice, leaving the remaining part
of the code. Moreover, sometimes the slices include all the statements of the program, which again leads to the
initial problem state. In our approach, we rank all the statements and based upon the unique ranking of the
statements, they are evaluated.

Collofello suggested spectrum based techniques which are based on mathematical formulas. Jones et al. [17]
proposed a popular (ESHS)-based technique, called Tarantula. It utilized the pass/fail information about each
test case. The main idea behind it was, the entities which are executed by the failed test cases have more
probability of having fault than those which are executed by the passed test cases. Jones et al. [15]extended
Tarantula by representing degree of suspiciousness by using different colors . Liu et al. [27] proposed a method
called SOBER, which ranked suspicious predicates by calculating the difference between the truth value of
predicates for successful and failed execution. Wong et al. [29] proposed an analysis based technique called
Crosstab(CBT) which provides the rank to the suspicious elements of the program.

Spectrum based fault localization techniques failed when there were statements having same degree of suspi-
ciousness. Another weakness that they only examined the suspicious statements. However, there is a possibility
of bug containment in the statements covered by the successful test cases. Whereas, in our approach all the
statements are given ranks based upon their unique suspiciousness, so there is no conflict.

A Back propagation neural network (BPNN) model for fault location, was proposed by Wong et al. [20]. In
this model, for each test case, statement coverage along with the result obtained after execution were collected.
This collected data was used as input to train the network. This provides the network, the ability to relate both
the entities. The output generated by the network is the suspiciousness of each statement for being faulty. Since,
local minima was the disadvantage of BP neural network, another method for fault localization was proposed by
Wong et al. [23], using radial basis function (RBF) network, which is less sensitive to those problems. RBF and
other spectrum based techniques are handicapped with the problem of statements having same suspiciousness,
whereas, BPNN model assigns unique suspiciousness score to each executable statement.

In the existing back propagation neural network (BPNN) model, execution of statement is recorded in binary
terms. This over looks those statements which are executed more than once. In our technique, we used the
number of times the statement is executed as an input to the BP neural network, which helped in getting the
exact value of the suspiciousness for each statement.

6 Threats to validity

Though our proposed method is performing better than the existing BPNN model but it has certain constraints.

• Our model has been tested for procedural C program, so object oriented aspects have not been tested till
yet.

• Programs used in our approach had only single faults. Thus, effectiveness our our model over programs having
multiple faults have not been tested.
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• Since we are considering actual number of statement invocation in the coverage matrix, we require those code
which has loops, recursive calls, function calls etc. Then only statement will be executed more than once.
Programs which do not have these features cannot be used for checking the effectiveness of our approach.

• We have used standard sample programs for our experiments whose length is less than thousand lines of
code. We cannot assure the effectiveness of our approach over very large sized programs, as we have not
experimented on them.

7 Conclusion and Future Work

We have extended the existing BP neural network model for fault localization by using the actual number
of times statement execution in the coverage matrix. For Print_token 18.77% increase , Print_token2 9.66%
increase, for Schedule 42.36% increase, Schedule2 76.27% increase and for tot_info 27.93% increase in the
effectiveness has been seen. Though for Print_token and Print_token2 improvement in the effectiveness is not
much, but on an average we are able to improve the effectiveness by 35% using our proposed approach for fault
localization using BP neural network as compared to the existing BP neural network model.

In future we can extend this work by changing various activation function and can check for the increase of
effectiveness. Programs having multiple faults can be tested. Programs having object oriented features can be
taken. Programs used in industries which are of very large size and highly complex in nature can also be used
to test the effectiveness of our approach. Since we tested on C programs, other languages such as Java, Python,
C#, Perl, etc can be used. This approach of using actual number of statement execution can also be applied on
other machine learning models like RBF, SVM etc and comparison can be done.
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