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Abstract—In this paper we propose a non-uniform quanti-
zation technique for reporting the test statistics computed by
local cognitive radio (CR) sensors to the fusion center. Local
CR sensors are assumed to compute the test statistics based on
conventional energy detection technique and fusion center on
accumulating the respective test statistics makes final decision
about presence or absence of primary user (PU). In order to
communicate the test statistics to the fusion center over a band
limited channel, the locally computed test statistics are quantized
using d bit non-uniform quantizer. The number of bits can
be selected on the basis of system specification or amount of
backhaul communication that can be supported by the system.
The proposed non-uniform quantization is performed on the basis
of likelihood function, which is defined as the probability of
null and alternate hypothesis when test statistic is known. Next
at fusion center the reported local quantized test statistics are
combined using optimal weights to get global test statistic. Finally
the global test statistic is compared with a threshold to decide
for presence or absence of PU. Our simulation results illustrate
that the performance of proposed non-uniform quantization is
better than conventional uniform quantization.

I. INTRODUCTION

Radio frequency spectrum is identified as one of the most

valuable resource for current generation wireless technologies.

The rapid advancement of these technologies has led to an

exponential growth in bandwidth hungry applications resulting

in need for efficient utilization of the spectrum resource. The

existing spectrum assignment policy aims in improving relia-

bility in communication; however, the allocation policy leaves

a great portion of spectrum severely under-utilized. Thus, there

is an urge for a more intelligent and flexible communication

technology that can exploit the spectrum resource in a more

efficient way. One solution that has gained considerable at-

tention among researchers to address the above challenge is

cognitive radio (CR) technology [1], [2]. By definition, a CR

is an intelligent device which according to the surrounding

radio environment and other user requirements, adapts its

transmission power, frequency, modulation technique etc.

The CR technology enables the unlicensed secondary user

(SU) to coexist with the licensed primary user (PU) without

causing significant interference or very little interference. The

secondary user uses a portion of the spectrum, which is unused

by the primary user, called spectrum hole, at a particular

duration of time. Spectrum hole detection is performed by

secondary user and is termed as spectrum sensing, [8]. Based

on the signal processing approach spectrum sensing can be

broadly classified into three major categories: energy detec-

tion, matched filter detection and feature detection[4]. Since

energy detection approach doesn’t require the knowledge of

the type of signal from the PU, it is the simplest form of

spectrum sensing technique [4], [3]. The CR sensor in case of

energy detection based spectrum sensing collects samples from

the radio environment, computes the energy and compares it

with a threshold to decide for the presence or absence of the

PU signal. To further improve the performance of spectrum

sensing, cooperative spectrum sensing technique have been

studied in [14], [16]. Here a number of CR sensors with

different spatial locations are used which individually sense the

spectrum and report the decision to the fusion center. Fusion

center combines the decision using Soft Combination or Hard

Combination technique [5]. In soft combination technique the

quantized value of the calculated energy, i.e., the test statistic

is sent to the fusion center, where as in hard combination

technique the local decisions of the CR sensors are sent. In this

work soft combining technique is used as it is more efficient

and reliable [5].

Due to limited bandwidth of the reporting channel the exact

value of the sensed energy cannot be sent to the fusion center.

So, the quantized value of the locally detected energy is

reported to the fusion center which is then combined using

appropriate combining weights. Based on the system specifi-

cation or the amount of backhaul communication supported

by the system the number of bits for quantization of the test

statistic can selected. In [9] a uniform quantization technique

for the local test statistic is discussed using Lloyd-Max quan-

tization criterion. [10] proposes a non-uniform quantization

technique based on the cumulative distribution function of

the presence of PU. It is also shown in [11] that the sensing

performance can be increased by increasing the number of bits

for quantization. Similarly, in [12] a performance improvement

has been observed by reducing the quantization error in the

region of uncertainty (the region where no reliable decision can

be made) without changing the number of bits. [13] describes

a sensing technique where a combination of hard and soft

decision is performed. The quantized values of the locally

sensed energy is sent to the fusion center when the energy lies

in between the two thresholds, otherwise the local decisions

are sent. Further in [6], [7] double threshold technique is

studied where the sensed energies are ignored when it lies

between the two thresholds. All these research work indicate



that while reporting the sensed energies from the local CRs,

the error should be less in the region of uncertainty. In addition

there is an urge to communicate the test statistic in best

possible way to the fusion center.

In this paper, we first defined likelihood of hypothesis as the

amount of confidence with which a hypothesis can be stated

as correct given computed sensed energy. This likelihood

function essentially depends on the quality of environment

(i.e., fading and noise variance) from which signal samples

are sensed. Based on this likelihood function a non-uniform

quantization technique for the test statistic is proposed. The

combining weights for the local test statistics is then found

out by minimizing a cost function, which turns out to be a

simpler method than the conventional technique [14], [15].

Simulation results reveal that performance of proposed non-

uniform quantization is better than that of the conventional

uniform quantization.

II. SYSTEM MODEL

Consider a cooperative cognitive radio (CR) sensing sce-

nario in which N CR sensors sense a given narrow band

spectrum, as shown in Figure 1. The local CR sensors are

similar detectors and are arbitrarily located at different spatial

locations such that they experience approximately uncorrelated

channel from the primary user. For simplicity in analysis, we

assume that all local CR sensors collect L number of samples

in a given sensing time duration. Let xi(n) denote the sample

sensed by the ith CR sensor where i ∈ {1, 2, ..., N} at nth

time index where n ∈ {0, 1, ..., L − 1}. The corresponding

test statistics computed by ith CR sensor for energy detection

based spectrum sensing can be expressed as,

Ti =

L−1∑
n=0

|xi(n)|2

in which sample xi(n) take values under two hypotheses,

H0 : xi(n) = wi(n)

H1 : xi(n) = hi(n) · s(n) + wi(n).

Here H0 and H1 denotes null and alternate hypothesis for

absence and presence of primary user (PU) signal, respectively.

hi(n) denotes Rayleigh distributed flat channel fading coeffi-

cient for ith CR sensor; s(n) denotes the primary user signal;

wi(n) denotes AWGN noise with zero mean and variance

σ2
i . The expected signal to noise ratio (SNR) ηi for ith CR

sensor can be expressed as ηi =
E[|hi(n)|2]Ps

σ2
i

, in which Ps is

the power of the primary user signal and E[·] is expectation

operator.

Next, we assume that the number of samples L is large

enough such that distribution of test statistics Ti, represented

as P (Ti) is Gaussian distributed. Thus, distribution of Ti

under the two respective hypothesis can be expressed as,

Ti
H0∼ N (

μ0,i, σ
2
0,i

)
Ti

H1∼ N (
μ1,i, σ

2
1,i

)
(1)
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Fig. 1. Block diagram of Cooperative Spectrum Sensing

where respective mean and variance are derived as,

μ0,i = Lσ2
i μ1,i = Lσ2

i (ηi + 1)

σ2
0,i = 2Lσ4

i σ2
1,i = 2Lσ4

i (2ηi + 1)

The test statistics computed by the N CR sensors can be

arranged into a vector T :=
[
T1 T2 . . . TN

]T
, where

Ti is distributed as defined in equation (1). Similarly, un-

der the respective hypothesis we also define SNR vector

η :=
[
η1 η2 . . . ηN

]T
and noise covariance matrix

Σ := diag
([

σ2
1 σ2

2 . . . σ2
N

]T)
. It should be noted here

that the additive noise term wi(n) at each local CR sensor is

assumed to be spatially uncorrelated and hence the cross terms

of Σ are zero.

Since individual elements of T are Gaussian distributed,

the vector T can be defined as multivariate Gaussian random

variable, and under respective hypothesis the distribution can

be expressed as,

T
Hj∼ N (μj ,Σj) (2)

where j ∈ {0, 1} and mean vector and covariance matrix

μj =
[
μj,1 μj,2 . . . μj,N

]T
Σj = diag

([
σ2
j,1 σ2

j,2 . . . σ2
j,N

]T)

Substituting the mean and variance of individual test statistic

Ti from equation (1) in above equation, the mean vector and

covariance matrix of T can be expressed as

μ0 = LΣ1 μ1 = LΣ(η + 1)

Σ0 = 2LΣ2 Σ1 = 2LΣ2diag(2η + 1)

in which 1 =
[
1 1 . . . 1

]T
. In next section, we discuss

quantization techniques required for communicating the test

statistics over band limited channels between local CR sensors

and the fusion center.

III. QUANTIZATION OF TEST STATISTIC

Since the communication resource from local CR sensors

to the fusion center is band limited, the local sensors need to

quantize the test statistics before transmission. For simplicity



in analysis, we assume that the reporting channel between

local CR sensors and the fusion center are perfect so as there

are no error in reporting the quantization bits at the fusion

center.

Let us consider quantization for ith sensor. Here we select

range of quantization as (μ0,i − m0,iσ0,i, μ1,i + m1,iσ1,i),
where mj,i, for j ∈ {0, 1}, is obtained by solving the

following inequation,

P (|Ti − μj,i| ≥ mj,iσj,i) ≤ β (3)

The upper limit β is the probability that Ti falls beyond the

range of quantization. Since it has been considered earlier that

the distribution of the test statistic Ti is Gaussian distribution,

so the solution of the above inequality will yield a value

independent of hypothesis and communicating CR sensor, i.e.,

mj,i = m which is dependent only on the value of β. For

example, for a typical value of β = 0.0027, m = 3. Next,

we divide the range of quantization in D = 2d quantization

levels, where d denotes the number of bits required to represent

the quantization level. In the following subsections we first

discuss uniform quantization and then propose non-uniform

quantization.

A. Uniform Quantization

In case of uniform quantization the region of quantization is

divided into D equally spaced intervals to obtain the decision

boundaries as {bk,i}Dk=0

bk,i = μ0,i −mσ0,i + k
(μ1,i +mσ1,i)− (μ0,i −mσ0,i)

D

Figure 2 shows quantization boundaries for uniform quantiza-
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Fig. 2. Quantization boundaries for Uniform Quantization SNR= −10dB

tion with d = 3 and SNR= −10dB. The value of β is selected

as 0.0027 resulting in m = 3. In X axis Ti is normalised using

λi, which is the point of intersection of distribution functions

of Ti for H0 and H1 hypothesis.

The corresponding reconstruction levels {T̂i,q}D−1
q=0 are

given by Lloyd-Max quantization criterion [9] and is expressed

as

T̂i,q =

∫ bq+1

bq
TiP(Ti)∫ bq+1

bq
P(Ti)

(4)

where P(Ti) is distribution of test statistic for ith sensor and

is given by

P(Ti) = P (H0)P(Ti | H0) + P (H1)P(Ti | H1). (5)

Equation (4) can be simplified by assuming that the quantiza-

tion intervals are small, such that distribution function P(Ti)
is uniformly distributed within the respective intervals. The

reconstruction levels for this simplified case can be stated as,

{T̂i,q}D−1
q=0 =

bq + bq+1

2
. (6)

By quantizing the test statistics, we send specific values of

sensed energy to the fusion center. These particular values of

sensed energy associate a confidence with which decision can

be made [12]. It can be observed from figure 2, that when

test statistics Ti takes values around λi, the possibility of PU

being present or absent is almost same. However, as Ti moves

away from λi, the confidence on Ti for making decision about

presence or absence of PU increases. Thus, confidence of a

particular decision is different for different values of Ti. This

motivates the idea for non-uniform quantization.

B. Proposed Non-uniform Quantization

In this subsection we propose a non-uniform quantization

scheme based on the likelihood of hypothesis. We define

likelihood of hypothesis as the probability of null and alternate

hypothesis when the test statistic is known, i.e., P (Hj | Ti),
where j ∈ {0, 1}. Using Bayes’ rule, likelihood of hypothesis

can be mathematically represented as,

P (Hj | Ti) =
P (Hj)P(Ti | Hj)

P(Ti)

where P(Ti) is defined in equation (5).
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Fig. 3. Likelihood of hypothesis for H1 and H0

Figure 3 shows the likelihood of null and alternate hy-

pothesis as a function of Ti for SNR ηi = −12dB. The X

axis Ti is normalised using λi (the point of intersection of

the distribution functions of Ti for the two hypotheses), as

in figure 2. Consider two adjacent values of Ti P1 and P
′
1,

taken from the region where slope of the likelihood function

is very less. Both the values indicate almost same probability

of presence of PU; or in other words difference between the

likelihood for the two points is very small. In contradictory,

if the two adjacent values are taken from the region where



the slope is high (e.g., P2 and P
′
2 in figure 3) the difference

between the likelihood for the two points will be large. A close

observation of the likelihood function reveals that, whenever

it is required to report the value of the test statistic to the

fusion center least error is affordable where the slope of the

likelihood function is high. This is because a small change in

the value of Ti will cause a significant change in the chance

of presence of PU.
Since sum of the likelihood of null and alternate hypotheses

is equal to 1, i.e.,
∑

j∈{0,1} P (Hj | Ti) = 1, knowledge of one

of the likelihood also specifies the value of other likelihood.

Thus, the following discussion concentrates only on likelihood

of alternate hypothesis.
Assuming a priori probability of presence of PU signal as α,

i.e., P (H1) = α the likelihood function L(Ti) := P (H1 | Ti)
can be expressed as

L(Ti) =
P (H1)P(Ti | Hj)

αP(Ti | H1) + (1− α)P(Ti | H0)
(7)

Substituting P(Ti | H1) and P(Ti | H0) from equation (1)

the likelihood can be expressed as L(Ti) = 1/(1+χ), where,

χ =
1− α

α

√
2ηi + 1 exp

(
− ηi

σ2
1,i

(
T 2
i − Tiμ0,i −

ηiμ
2
0,i

2

))
.

The quantization levels for a d bit non-uniform quantizer

can be obtained by first dividing the Y axis, i.e., likelihood

function into D = 2d equal divisions. The corresponding

points are then mapped to the X axis in accordance with like-

lihood of H1 to get the quantization boundaries. In figure 4 we

show quantization boundaries for 3 bit non-uniform quantizer.

As discussed earlier, the range of quantization is given by
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Fig. 4. Quantization boundaries for Non-uniform Quantization

(μ0,i−mσ0,i, μ1,i+mσ1,i). The corresponding region of like-

lihood of H1, i.e., (L(μ0,i −m0,iσ0,i), L(μ1,i +m1,iσ1,i)) is

divided into D equally spaced regions to obtain D+1 number

of values of likelihood of H1 as {δk}Dk=0 = Δ0 + kΔ1−Δ0

D ,

where Δ0 = L(μ0,i−m0,iσ0,i) and Δ1 = L(μ1,i−m1,iσ1,i).
Finally, the non-uniform quantization boundaries are given

by {bk,i}Dk=0 as

bk,i = L−1(δk) =
1

2

(
μ0,i +

√
μ2
0,i + 2ηiμ2

0,i + 4θ(δk)
)

where θ(δk) =
σ2
1,i

ηi
ln
(

δk(1−α)
√
2ηi+1

α(1−δk)

)
.

The reconstruction levels can be obtained either by equation

(4) or (6)

IV. COMBINING WEIGHTS

The received test statistics {Ti}Ni=1 obtained from the lo-

cal CR sensors are combined together at the fusion cen-

ter using appropriate combining weights. Let the combin-

ing weights be expressed in the form of vector as w =[
w1 w2 . . . wN

]T
. The global test statistic z can be

expressed as

z = wTT

Since the linear combination of Gaussian random variables is

also a Gaussian random variable, the global test statistic z is

also a Gaussian random variable with corresponding mean and

variance under respective hypotheses as,

E(z | H0) = wTμ0 E(z | H1) = wTμ1

var(z | H0) = wTΣ0w var(z | H1) = wTΣ1w.

The combining weights should be selected such that it max-

imizes the difference between the means of the distributions

of z for the two hypotheses and minimizes the individual

variances. Thus optimal combining weight w∗ is given by

w∗ = argmin
w

J

J = var(z | H1) + var(z | H0)− (E(z | H1)− E(z | H0))

= wTΣ2
1w +wTΣ0w −wTμ1 +wTμ0. (8)

J in equation (8) is a convex function. So, differentiating

J w.r.t. w and equating to zero, optimal value w∗ can be

obtained as

w∗ =
1

2
(Σ1 +Σ0)

−1 (μ1 − μ0)

=
1

8

[
η1

σ2
1(η1+1)

η2
σ2
2(η2+1)

. . . ηN
σ2
N

(ηN+1)

]T
(9)

Since norm of w∗ has no effect on the detection perfor-

mance, it is a convention to make the weighting vector unit

norm. So, the final normalized combining vector is given by

w∗
norm =

w∗

‖w∗‖
The probability of false alarm and the probability of de-

tection, for threshold λ can be found out by integrating the

distribution function of z as

Pfa = Q

(
λ− E(z | H0)√

var(z | H0)

)
= Q

(
λ−wTμ0√
wTΣ0w

)
(10)

Pd = Q

(
λ− E(z | H1)√

var(z | H1)

)
= Q

(
λ−wTμ1√
wTΣ1w

)
(11)

The value of threshold λ can be computed for a particular

value of false alarm probability Pfa using equation (10) to

get a detection probability Pd as in equation (11) (Neyman

Pearson detection [17]).



V. SIMULATION AND RESULT

In this section we simulate a cooperative cognitive radio

scenario sensing a given narrow band spectrum with N local

CR sensors. The sensing channel, i.e., the channel between

PU and CR sensors is assumed to be Rayleigh distributed

flat fading channel. The PU signal is assumed to be BPSK

modulated data. We use Neyman Pearson detector, where

the primary objective is to satisfy probability of false alarm

and probability of detection. The incorporation of a priori
probability α is meaningful when we deal with minimizing

the average probability of sensing error as in the case of

Bayesian detector[17]. So, due to exclusivity of the individual

distribution functions of Ti for H1 and H0 hypothesis (as

depicted in figure 2) we consider a priori probability of

occupancy of channel, i.e., P (H1) = α = 0.5. The channel

coefficients observed by the CR sensors are assumed to be

uncorrelated. We compare the performance of proposed non-

uniform quantization over uniform quantization by plotting the

probability of detection versus SNR and the ROC curve.

Figure 5 and 6 shows the plot of Pfa versus Pd curve

for cooperative CR environment with N = 6 local CR

sensors, L = 1000 number of sensing samples. The local CRs

report their test statistics Ti by quantizing with d = 2 and

d = 3 bit quantizer respectively through a perfect reporting

channel. The values of SNR at local CRs’ front end is taken

as η =
[−15 −16 −11 −14 −12 −13

]T
dB. This is

in correspondance to different fading environment observed

by spatialy distributed CR sensors. The local test statistics

are combined using combining vector as formulated in (9).

Similarly, figure 7 and 8 shows the plot of SNR versus Pmd

(probability of misdetection) curve for N = 6 local CRs. The

target probability of false alarm Pfa is taken as 0.05. The

reporting is done respectively by d = 2 and d = 3 bit uniform

and non-uniform quantization.
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Fig. 5. Pfa vs. Pd curve for d = 2 bit quantizer

The following inferences can be made from the simulated

plots:

• The performance of proposed non-uniform quantization

based reporting is better than that of conventional uni-

form quantization based reporting. This validates our
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Fig. 6. Pfa vs. Pd curve for d = 3 bit quantizer
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Fig. 7. SNR vs. Pmd curve for d = 2 bit quantizer
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Fig. 8. SNR vs. Pmd curve for d = 3 bit quantizer

exposition of using non-uniform quantization based on

likelihood function.

• As the number of quantization bits are increased the

accuracy in reporting the local test statistic increases or in

other words quantization error decreases. In such situation

performance of both the quantization techniques tend

towards the case when exact value of the sensed energy

is reported to the fusion center without any quantization

error. The lower bound in the values of probability of

misdetection Pmd is shown in figure 7 and 8, in which no



quantization is done so that exact value of sensed energy

is reported to the fusion center.

• Since the values of sensed energy after quantization can

take discrete values the curves shown in figure are not

continuous. In the proposed non-uniform quantization the

quantization levels are coarsely placed in the region of

uncertainty. Since the threshold for energy detection is

generally selected around the region of uncertainty, the

curves are more continuous for non-uniform quantization

than that for the uniform quantization case.

VI. CONCLUSION

In this paper we have proposed a non-uniform quantization

technique for reporting the locally computed test statistics of

spatially distributed CR sensors to the fusion center. The non-

uniform quantization of the test statistic performed on the basis

of likelihood function, which essentially depends on the SNR

and noise variance of the environment. It is shown with the

help of simulation that the non-uniform quantization based

reporting out-performs that of uniform quantization based

reporting. For higher number of reporting bits the performance

of both the techniques are similar and tends towards the lower

bound, i.e., when exact values of the sensed energies are

reported. In addition, an optimization problem is formulated

to compute optimal weights for combining the test statistics

at the fusion center.
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