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1. Abstract

Splints11 of root systems of simple Lie algebras appear naturally on the studies of embedding
of reductive subalgebras. A splint can be used to construct branching rules, as implementation of
this idea simplifies calculation of branching coefficients. We extend the concept of splints to basic
Lie superalgebras case as these algebras have wide applications in physics. In this context we have
determined the splints of root system of all basic Lie superalgebras and hope to contribute towards
a small step in the direction of representation of these algebras.

2. Introduction

In this section we review some terminology on Lie superalgebra and recall notations used in
the paper. A superaglebra1,2,3 is a Z2-graded algebra A = A0 ⊕ A1 (that is, if a ∈ Aα, b ∈ Aβ,
α, β ∈ Z2, then ab ∈ Aα+β) . A Lie superalgebra is a superalgebra G = G0⊕G1 with the operation
[.,.] satisfying the following axiom:

(1) [a, b] = −(−1)deg(a)deg(b)[b, a] for a ∈ Gα and b ∈ Gβ
(2) [a, [b, c]] = [[a, b], c] + (−1)deg(a)deg(b)[b, [a, c]] for a ∈ Gα and b ∈ Gβ

Where deg(a) is 0 if a ∈ G0 and deg(a) is 1 if a ∈ G1. For a Lie superalgebra G = G0 ⊕ G1,
the even part G0 is a Lie algebra and G1 is a G0-module. Let H be a cartan subalgebra of G0.
The dimension of the cartan subalgebra H is the rank of the Lie superalgebra. Let us Denote
∆0(respectively ∆1) be the set of all even(respectively odd) root of G. If ∆ is the set of all roots
of the Lie superalgebra G, then ∆ = ∆0 ∪∆1. A root α is called degenerate if (α, α) = 0 and an
degenerate root is necessarily an odd root. For each basic Lie superalgebra, there exists a simple
root system for which the number of odd simple roots is smallest one. Such a simple root system
is called the distinguished simple root system. We denote ∆(G) to be the set of all positive roots
of the basic Lie superalgebra G.

Let ∆ and ∆′ be positive root systems of two different basic Lie superalgebras with ∆ = ∆0 +∆1

and ∆′ = ∆′0 + ∆′1, where ∆0 (∆′0)and ∆1 (∆′1) are even and odd roots of ∆ (∆′) respectively. The
map ι : ∆ ↪→ ∆′ is an embedding if

(1) ι is a injective map and ι(γ) = ι(α) + ι(β) for all α, β, γ ∈ ∆ such that γ = α+ β
(2) ι(∆0) ⊆ ∆′0 and ι(∆1) ⊆ ∆′1 .

A root system ∆ splinters as (∆1,∆2) if there are two embedding ι1 : ∆1 ↪→ ∆ and ι2 : ∆2 ↪→ ∆
where, ∆ is the disjoint union of the images of ι1 and ι2 and neither the rank of ∆1 nor the rank
of ∆2 exceeds the rank of ∆.

In this paper we use An, Bn, Cn, Dn etc. for classical Lie algebras in cartan notation, whereas
A(m,n), B(m,n), C(n + 1), D(m,n), F (4), G(3), D(2, 1;α) stand for basic Lie superalgebras
[12, 4].
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For a Lie superalgebra G, we can write ∆(G) = ∆0 + ∆1. If (∆0,∆1) is a splint of ∆(G), then it
is called the trivial splint of ∆(G). Except A(m,n), all the basic Lie superalgebras B(m,n), C(n+
1), D(m,n), F (4), G(3) and D(2, 1;α) always have a trivial splint.

Suppose ι : ∆ ↪→ ∆′ is an embedding and suppose that (, )0 and (, )1 are normalization of ∆ and
∆′ respectively. Then the embedding ι is metric if there is a non-zero integer scalar λ such that
(α, β)0 = λ(ι(α), ι(β))1 for α, β ∈ ∆ and non metric otherwise.
We can observe from the definition of embedding that if we restrict the embedding ι : ∆ ↪→ ∆′

to the even root system ∆0 then we will find an embedding of Lie algebra associated to each Lie
superalgebras, i.e

ι |∆0 : ∆0 ↪→ ∆′0.

In fact if ι is metric then ι |∆0 is also metric. But the converse is not true in general, for example
Cn ↪→ Cn but B(0, n) 9 D(m,n). In this paper we will try to answer partially the converse part.

In this paper we have found all the splints, up to equivalence with Weyl group W (Weyl
reflections are with respect to even roots only). If ∆ is a distinguished simple root system
then the splints (∆1,∆2) and (∆′1,∆

′
2) of ∆ are equivalent, if there exists σ ∈ W such that

σ.(((∆1 ∪ (−∆1))|∆0 , (∆2 ∪ (−∆2))|∆0) = ((∆′1 ∪ (−∆′1))|∆0 , (∆
′
2 ∪ (−∆′2))|∆0) and similar restric-

tions hold good for odd roots of also. Here we like to mention that Lie superalgebras have Weyl
reflections with respect to both degenerate and non-degenerate odd roots. However, in that case
we get non-equivalent classes, as grading is not respected.

3. Main results

3.1. A(m− 1, n− 1) = sl(m|n), m,n ≥ 1.

Lemma 3.1. ∆(F (4)) and ∆(G(3)) are not embedded in ∆(A(m−1, n−1)), ∆(B(m,n)), ∆(C(n+
1)) and ∆(D(m,n)). Also ∆(D(2, 1;α)) is not embedded in ∆(A(m− 1, n− 1)) and ∆(C(n+ 1)).

Proof. Because even roots of A(m−1, n−1), B(m,n), C(n+1) and D(m,n) are linear combination
of distinguished positive simple roots with coefficient one. �

Lemma 3.2. If ∆ is a distinguished positive simple root system of a basic Lie superalgebra and
∆ ↪→ ∆(A(m− 1, n− 1)), then ∆ ∼= ∆(A(r, s)) for some r ≤ m− 1, s ≤ n− 1.

Proof. Because the longest distinguished root of A(m− 1, n− 1) is a linear combination of distin-
guished simple roots, with coefficients is equal to 1 . �

Lemma 3.3. ∆(A(r, 0)), ∆(A(0, s)) and ∆(A(r, s)) are metrically embedded ∆(A(m− 1, n− 1)).

Proof. It is enough to prove for ∆(A(r, 0)) case only. As Ar is metrically embedded in Am, thus
∆(A(r, 0)) is also metrically embedded in ∆(A(m− 1, n− 1)).

�

Lemma 3.4. If ∆(A(r1, s1)) ↪→ ∆(A(m− 1, n− 1)) and ∆(A(r2, s2)) ↪→ ∆(A(m− 1, n− 1)) are
embeddings with disjoint images, then r1 + r2 ≤ m, s1 + s2 ≤ n .

Proof. As Al ↪→ An and Ak ↪→ An are embeddings with disjoint images, then l + k ≤ n. �

Lemma 3.5. Suppose m ≥ 3, n ≥ 3 and either r ≥ 3, s ≥ 2 or r ≥ 2, s ≥ 3, and ∆(A(m−1, n−1))
has a splint where ∆(A(r − 1, s− 1)) is a component, then ∆(A(m− 2, n− 2)) has a splint having
∆(A(r − 2, s− 2)) as a component.

Proof. Suppose (∆1, ∆2) is a splint of ∆(A(m− 1, n− 1)) with ι : ∆(A(r − 1, s− 1)) ↪→ ∆1 as a
component. Without loss of generality, one may assume that the roots in the image of ι have the
form {εi ± εj , δk ± δl, δk ± εi} where 1 6 i 6= j 6 r, 1 6 k 6= l 6 s. If we are restricting the splint to



the embedding ι1 : ∆(A(m−2, n−2)) ↪→ ∆(A(m−1, n−1)) and all the components are embedded
metrically, this yields a splint of ∆(A(m− 2, n− 2)) having ∆(A(r− 2, s− 2)) as a component. �

Proposition 3.6. Assume m,n ≥ 6 and if (∆1, ∆2) is a splint of A(m− 1, n− 1) having A(r, s)
as a component, then r ∈ {0, 1, m− 1, m− 2} and s ∈ {0, 1, n− 1, n− 2}

Proof. We can argue by preceding results and from the table of splints of the root system of
A(m− 1, n− 1). �

If (∆1, ∆2) is a splint of ∆(A(m−1, n−1)) with ∆1∩∆(A(m−1, 0)) 6= φ and ∆2∩∆(A(m−1, 0)) 6=
φ, then we find a splint of ∆(A(m− 1, 0)), if we restrict ∆1 and ∆2 to ∆(A(m− 1, 0)). As A(0, 0)
has only one odd root, so A(0, 0) does not splint. Now all the splints of ∆(A(m,n)) which are given
in the table of ∆(A(m− 1, n− 1)) are explicitly described below.

(1) The splint (∆(A(2, n− 1)) +A2, 2D2 + 2n∆(A(0, 0))) of ∆(A(4, n− 1)) is given by

∆1 = {εi − εj , δk − δl, δk − εj : 1 ≤ i 6= j ≤ 3, 1 ≤ k 6= l ≤ n},
∆2 = {ε1 − εj , ε2 − εj , δk − εj : 4 ≤ j ≤ 5, 1 ≤ k ≤ n}.

(2) For n 6= 0, the splint (∆(A(m− 1, 0)) +An−1, (mn−m)∆(A(0, 0))) of ∆(A(m− 1, n− 1))
is given by

∆1 = {εi − εj , δ1 − εj , δk − δl : 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n},
∆2 = {δk − εl : 2 ≤ k ≤ n, 1 ≤ l ≤ m}.

(3) For m 6= 0, the splint (∆(A(0, n− 1)) +Am−1, (mn− n)∆(A(0, 0))) of ∆(A(m− 1, n− 1)
is given by

∆1 = {δi − δj , δj − ε1, εk − εl : 1 ≤ i 6= j ≤ n, 1 ≤ k 6= l ≤ m},
∆2 = {δk − εl : 1 ≤ k ≤ m, 2 ≤ l ≤ n}.

(4) If m−n = 1 ,then the splint (∆(A(n−1, n−1)) , nA1 +n∆(A(0, 0))) of ∆(A(m−1, n−1))
is given by

∆1 = {εi − εj , δi − δj , δi − εj : 1 ≤ i 6= j ≤ n},
∆2 = {εi − εm, δi − εm : 1 ≤ i ≤ n}.

(5) If m ≥ 2, the splint (∆(A(1, n−1)) +Am−2 , (m−2)A1 +n(m−2)∆(A(0, 0))) of ∆(A(m−
1, n− 1)) is given by

∆1 = {ε1 − ε2, δk − δl, δk − ε1, δk − ε2 : 1 ≤ k 6= l ≤ n} ∪ {εi − εj : 2 ≤ i 6= j ≤ m},
∆2 = {ε1 − εj , δi − εj : 3 ≤ j ≤ m, 1 ≤ i ≤ n}.

(6) If n ≥ 2, the splint (∆(A(m− 1, 1)) +An−2, (n− 2)A1 +m(n− 2)∆(A(0, 0))) of ∆(A(m−
1, n− 1)) is given by

∆1 = {εk − εl, δ1 − δ2, δ1 − εk, δ2 − εk : 1 ≤ k 6= l ≤ m} ∪ {δi − δj : 2 ≤ i 6= j ≤ n},
∆2 = {δ1 − δj , δj − εk : 3 ≤ j ≤ n, 1 ≤ k ≤ m}.

(7) If m,n ≥ 2, the splint (∆(A(m−2, n−2))+A(1, 0), (m+n−3)A1 +(m+n−3)∆(A(0, 0)))
of ∆(A(m− 1, n− 1)) is given by

∆1 = {εi − εj , δk − δl, δk − εi : 2 ≤ i 6= j ≤ m, 2 ≤ k 6= l ≤ n} ∪ {ε1 − ε2, δ1 − ε1, δ1 − ε2},
∆2 = {ε1 − εi, δ1 − δk, δ1 − εi, δk − ε1 : 3 ≤ i 6= m, 2 ≤ k ≤ n}.



(8) If m,n ≥ 2, the splint (∆(A(m−1, n−2)), (n−1)A1 +m∆(A(0, 0))) of ∆(A(m−1, n−1))
is given by

∆1 = {εi − εj , δk − δl, δk − εi : 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n− 1},
∆2 = {δk − δn, δn − εi : 1 ≤ k ≤ n− 1, 1 ≤ i ≤ m}.

(9) If m,n ≥ 2, the splint (∆(A(m−2, n−1)), (m−1)A1 +n∆(A(0, 0))) of ∆(A(m−1, n−1))
is given by

∆1 = {εi − εj , δk − δl, δk − εi : 1 ≤ i 6= j ≤ m− 1, 1 ≤ k 6= l ≤ n},
∆2 = {εj − εm, δi − εm : 1 ≤ j ≤ m− 1, 1 ≤ i ≤ n}.

(10) If m = n, the splint (∆(A(m− 1,m− 2)), (m− 1)A1 +m∆(A(0, 0))) of ∆(A(m− 1, n− 1))
is given by

∆1 = {εi − εj , δk − δl, δk − εi : 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ m− 1},
∆2 = {δi − δm, δm − εj : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m}.

(11) If m = n , the splint (∆(A(m−2,m−1)), (m−1)A1 +m∆(A(0, 0))) of ∆(A(m−1, n−1))
is given by

∆1 = {εi − εj , δk − δl, δk − εi : 1 ≤ i 6= j ≤ m− 1, 1 ≤ k 6= l ≤ m},
∆2 = {εi − εm, δm − εj : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m}.

(12) If m = n, the splint (∆(A(m− 2,m− 2)), 2(m− 1)A1 + (2m− 1)∆(A(0, 0))) of ∆(A(m−
1, n− 1)) is given by

∆1 = {εi − εj , δi − δj , δi − εj : 1 ≤ i 6= j ≤ m− 1},
∆2 = {εi − εm, δi − δm, δi − εm, δm − εj : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m}.

Table 1. ∆(A(m,n))

∆ ∆1 ∆2

A(1, 0) A1 2A(0, 0)
A(1, 1) A(0, 1) A1 + 2A(0, 0)

2A1 4A(0, 0)
A(1, 2) A(0, 2) A1 + 3A(0, 0)

A(1, 1) 2A1 + 2A(0, 0)
A2 + 2A(0, 0) A(1, 0) + 2A(0, 0)
A1 +A2 6A(0, 0)

A(2, 2) A(2, 1) 2A1 + 3A(0, 0)
A(1, 1) +A1 A(1, 0) + 2A1 + 3A(0, 0)
A2 +A2 9A(0, 0)

A(0, 2) A1 +A(0, 1) A1 +A(0, 0)
A2 3A(0, 0)

A(4, 4) A(2, 4) +A2 2D2 + 10A(0, 0)
A(4, n) A(2, n) +A2 2D2 + 2nA(0, 0)
A(m− 1, n− 1) A(m− 1, 0) +An−1 (mn−m)A(0, 0)

A(0, n− 1) +Am−1 (mn− n)A(0, 0)
A(m− 1, n− 1) A(1, n) +Am−2 (m− 2)A1 + n(m− 2)A(0, 0)

A(m, 1) +An−2 (n− 2)A1 +m(n− 2)A(0, 0)



if m − n = 1,
A(m− 1, n− 1) A(n− 1, n− 1) nA1 + nA(0, 0)
A(m− 1,m− 1) A(m− 1,m− 2) (m− 1)A1 +mA(0, 0)

A(m− 2,m− 1) (m− 1)A1 +mA(0, 0)
A(m− 2,m− 2) 2(m− 1)A1 + (2m− 1)A(0, 0)

A(m−1, n−1) for
m,n > 2 A(m− 2, n− 2) +A(1, 0) (m+ n− 3)A1 + (m+ n− 3)A(0, 0)

A(m− 2, n− 1) (m− 1)A1 + nA(0, 0)
A(m− 1, n− 2) (n− 1)A1 +mA(0, 0)

3.2. B(m,n) = osp(2m+ 1|2n) and B(0, n) = osp(1|2n).

Lemma 3.7. ∆(C(n+ 1)) is not embedded in ∆(B(m,n)) for m > 3, n ≥ 2.

Proof. Suppose ∆(C(n+1)) ↪→ ∆(B(m,n)). As the even roots of C3 does not embed in Bm for m ≥
2, hence the image of even part of ∆(C(n+1)) under the map ι is {δk±δl, 2δk} where 1 ≤ k 6= l ≤ n.
Now without loss of generality, the distinguished simple root system of C(n+ 1) under the map ι
is {α1, α2, · · ·αn−1, 2αn + 2αn+1 + · · ·+ 2αn−1} ∪ {β}, where β is an odd root of ∆(B(m,n)) and
α1 = δ1− δ2, α2 = δ2− δ3,· · · , αn−1 = δn−1− δn which belong to distinguished simple roots of even
part of ∆(B(m, n)). ∆(C(n+1)) has an odd root β+α1+α2+· · ·+αn−1+2αn+2αn+1+· · ·+2αn−1

but ∆(B(m,n)) has no such odd root. �

Now we can describe all the splints of ∆(B(m,n)) in the following way,

(1) The splint (∆(B(0, 1)) + ∆(A(0, 1)), A1 + ∆(A(0, 0))) of ∆(B(1, 1)) is given by

∆1 = {δ1 + ε1} ∪ {δ1, 2δ1}
∆2 = {δ1 − ε1, ε1}.

(2) The splint (∆(A(0, 1)) +A1, 2∆(B(0, 1)) +A1 + 2∆(A(0, 0))) of ∆(B(1, 2)) is given by

∆1 = {δ1 − δ2, δ1 − ε1, δ2 − ε1} ∪ {ε1},
∆2 = {δ1 + δ2} ∪ {2δ1, 2δ2, δ1, δ2} ∪ {δ2 + ε1, δ1 + ε1}.

Another splint of ∆(B(1, 2)) is (∆(B(0, 2)), A1 + 4∆(A(0, 0))) which is given by

∆1 = {δ1 ± δ2, 2δ1, 2δ2, δ1, δ2},
∆2 = {ε1, δ1 ± ε1, δ2 ± ε1}.

(3) The splint (∆(A(1, 1)) + 2A1, 2∆(B(0, 1)) + 2A1 + 4∆(A(0, 0))) of ∆(B(2, 2)) is given by

∆1 = {ε1 − ε2, δ1 − δ2, δ1 − ε1, δ1 − ε2, δ2 − ε1, δ2 − ε2} ∪ {ε1 + ε2, δ1 + δ2},
∆2 = {2δ1, 2δ2, δ1, δ2} ∪ {ε1, ε2} ∪ {δ1 + ε1, δ1 + ε2, δ2 + ε1, δ2 + ε2, }.

(4) ∆(B(0, 2)) has two additional splints. The first one (A2,∆(B(0, 1)) + ∆(A(0, 0))) is given
by

∆1 = {δ1 ± δ2, 2δ2},
∆2 = {2δ1, δ1} ∪ {δ2}.

and the second one (2A1 + ∆(A(0, 0)), 2A1 + ∆(A(0, 0))) is given by

∆1 = {δ1 + δ2, 2δ2} ∪ {δ1},
∆2 = {δ1 − δ2, 2δ1} ∪ {δ2}.



(5) The splint (Dn, n∆(B(0, 1))) of ∆(B(0, n)) is given by

∆1 = {δk ± δl : 1 ≤ k 6= l ≤ n},
∆2 = {2δk, δk : 1 ≤ k ≤ n}.

(6) The splint (Cn, n∆(A(0, 0))) of ∆(B(0, n)) is given by

∆1 = {δk ± δl, 2δk : 1 ≤ k 6= l ≤ n},
∆2 = {δk : 1 ≤ k ≤ n}.

(7) The splint (∆(B(0, n)) + Bm, 2mn∆(A(0, 0))) and (Bm + Cn, (2mn + n)∆(A(0, 0))) of
∆(B(m,n)) are equivalent because when we restrict to even roots both the splinter are
same. Hence we consider only one splint (∆(B(0, n)) +Bm, 2mn∆(A(0, 0))) which is given
by

∆1 = {δk ± δl, 2δk, δk} ∪ {εj} ∪ {εi ± εj}, where 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n
∆2 = {δi ± εk : 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n}.

(8) For m > 2, n > 1, the splint (∆(D(m,n)), mA1 + n∆(A(0, 0))) of ∆(B(m,n)) is given by

∆1 = {δk ± δl, 2δk, εi ± εj , δk ± εi : 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n}
∆2 = {δi, εk : 1 ≤ i ≤ m, 1 ≤ k ≤ n}.

(9) For n ≤ m+ 2, the splint (∆(B(m,n− 1)), (n− 1)D2 + (n− 1)∆(A(0, 0))) of ∆(B(m,n))
is given by

∆1 = {εi ± εj , εi, δk ± δl, 2δk, δk ± εi, δk} ∪ {2δn, δn} : 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n− 1}
∆2 = {δk ± δn, δk ± εm : 1 ≤ k ≤ n− 1}.

Table 2. ∆(B(m,n))

∆ ∆1 ∆2

B(0, 1) A1 A(0, 0)
B(1, 1) B(0, 1) +A(0, 1) A1 +A(0, 0)
B(1, 2) B(0, 2) A1 + 4A(0, 0)

A(0, 1) +A1 2B(0, 1) +A1 + 2A(0, 0)
B(2, 1) A(1, 0) +A1 3A1 + 3A(0, 0)
B(2, 2) A(1, 1) + 2A1 2B(0, 1) + 2A1 + 4A(0, 0)
B(0, 2) A2 B(0, 1) +A(0, 0)

2A1 +A(0, 0) 2A1 +A(0, 0)
B(0, n) Dn nB(0, 1)
B(0, n) Cn nA(0, 0)
B(m,n) B(0, n) +Bm 2mnA(0, 0)
B(m,n) for m >
2, n > 1 D(m,n) mA1 + nA(0, 0)
B(m,n) for n ≤
m+ 2 ∆(B(m,n− 1)) (n− 1)D2 + (n− 1)∆(A(0, 0))



3.3. C(n+ 1) = osp(2|2n).

Lemma 3.8. C(n) is not a component of ∆(C(n+ 1)) for n > 3.

Proof. Suppose (∆1,∆2) is a splint of ∆(C(n + 1)) and C(n) ↪→ ∆1. Then the other components
of ∆1 are isomorphic to either A1 or ∆(A(0, 0)) and components of ∆2 are isomorphic to either A1

or D2, which implies rank of ∆2 is greater than n+ 1 . Hence a contradiction. �

Lemma 3.9. ∆(B(m,n)) is not embedded in ∆(C(n+ 1)).

Proof. Consider an even root α and the odd root β in the distinguished simple root system of
∆(B(m,n)). Then α+ 2β is a odd root, but ∆(C(n+ 1)) has no such roots. �

Lemma 3.10. ∆(B(0, n)) is not embedded in ∆(C(n+ 1)).

Proof. ∆(B(0, n)) has an odd root β such that 2β is an even root, but ∆(C(n + 1)) has no such
roots. �

Lemma 3.11. ∆(D(r, s)) is not embedded in ∆(C(n+ 1)) for r, s ≤ n

Proof. We can observe from the properties of ∆(D(r, s)) that there are even roots which are linear
combination of even as well as odd roots. But ∆(C(n + 1)) does not have such type of even
roots. �

We can describe all the splints of ∆(C(n+ 1)) in the following way,

(1) For n ≥ 1, ∆(C(n+ 1)) has a splint (Cn, 2n∆(A(0, 0))) which is given by

∆1 = {δk ± δl, 2δk : 1 ≤ k 6= l ≤ n},
∆2 = {ε± δk : 1 ≤ k 6= l ≤ n}.

(2) ∆(C(3)) has two additional splints (A2,∆(C(2)) + 2∆(A(0, 0))) which are given by

∆1 = {δ1 ± δ2, 2δ1},
∆2 = {2δ2ε± δ2} ∪ {ε± δ1}

and (∆(C(2)) +A1,∆(C(2)) +A1) given by

∆1 = {2δ1, ε± δ1, } ∪ {δ1 − δ2},
∆2 = {2δ2, ε± δ2, } ∪ {δ1 + δ2}.

(3) ∆(C(4)) has two additonal splints which are (A1 +B2 +2∆(A(0, 0)), A1 +A2 +4∆(A(0, 0)))
given by

∆1 = {δ2 − δ3} ∪ {2δ1, 2δ2, δ1 ± δ2} ∪ {ε± δ3},
∆2 = {δ2 + δ3} ∪ {2δ3, δ1 ± δ3} ∪ {ε± δ1, ε± δ2}

and (∆(C(3)) +A1, 2D2 + 2∆(A(0, 0))) given by

∆1 = {δ1 ± δ2, 2δ1, 2δ2, ε± δ1, ε± δ2} ∪ {2δ3},
∆2 = {δ1 ± δ3} ∪ {δ2 ± δ3} ∪ {ε± δ3}.



Table 3. ∆(C(n+ 1))

∆ ∆1 ∆2

C(2) A(1) 2A(0, 0)
C(3) A2 C(2) + 2A(0, 0)

C(2) +A1 C(2) +A1

C(4) A1 +B2 + 2A(0, 0) A1 +A2 + 4A(0, 0)
C(3) +A1 2D2 + 2A(0, 0)

C(n) Cn 2nA(0, 0)
C(n) Cn 2nA(0, 0)

3.4. D(m,n) = osp(2m|2n).

Lemma 3.12. Suppose m > 2, n > 3 and r > 2. If ∆(D(m,n)) has a splint where ∆(D(m, r)) is
a component, then ∆(D(m,n− 1)) has a splint having ∆(D(m, r − 1)) as a component.

Proof. Suppose (∆1,∆2) is a splint of ∆(D(m,n)) having ι : ∆(D(m, r)) ↪→ ∆1 as a component.
Without loss of generality, one can assume that the roots in the image of ι have the form {εi±εj , δk±
δl, 2δk, δk ± εi} with 1 6 i 6= j 6 m, t + 1 6 k 6= l 6 n ,when r = n − t for some t ∈ Z. Consider
restricting the splint to the embedding ι1 : ∆(D(m,n− 1)) ↪→ ∆(D(m,n)), where the image of ι1
consists of roots of the form {εi ± εj , δk ± δl, 2δk, δk ± εi} with 1 6 i 6= j 6 m, 2 6 k 6= l 6 n.
Since ι1 is metric and all components of ∆1 and ∆2 are embedded metrically, this yields a splint
of ∆(D(m,n− 1)) having ∆(D(m, r − 1)) as a component. �

Lemma 3.13. For m > 4, n > 1 or m > 2, n > 3 and either n − 2 6 m, m > n or m −
2 6 n, n > m. If (∆1,∆2) is a splinter of ∆(D(m,n)) having ∆(D(r, s)) as a component, then
r, s ∈ {1, n− 1,m− 1}.

Proof. One may argue by contradiction using previous lemma and table of ∆(D(m,n)). �

Lemma 3.14. ∆(A(m− 1, n− 1)) is not a component of ∆(D(m,n)) for either m > 4, n > 1 or
m > 2, n > 3 and not a component of ∆(C(n+ 1)) for n ≥ 4.

Proof. Suppose (∆1,∆2) is a splint of ∆(D(m,n)) and ∆(A(m − 1, n − 1)) ↪→ ∆1. Then other
components of ∆1 are isomorphic to A1 or ∆(A(0, 0)). Also all components of ∆2 are isomorphic
to A1 or A(0, 0). Then rank of ∆2 is greater than m+n, which is a contradiction. Similar argument
for ∆(C(n+ 1)) . �

Lemma 3.15. ∆(B(m,n))and ∆(B(0, n)) are not embedded in ∆(D(m,n)).

Proof. Because ∆(B(m,n)) and ∆(B(0, n)) has an odd root β such that 2β is an even root, but
∆(D(m,n)) has no such root. �

Lemma 3.16. ∆(C(n+ 1)) is not embedded in ∆(D(m,n)).

Proof. As ∆(D(m,n)) is embedded in ∆(B(m,n)) and ∆(C(n+1)) is not embedded in ∆(B(m,n)).
�

We can describe all the splints of ∆(D(m,n)) in the following way,

(1) The splint (∆(A(1, 0)), 2A1 + 2∆(A(0, 0))) of ∆(D(2, 1)) is given by

∆1 = {ε1 − ε2, δ1 − ε1, δ1 − ε2},
∆2 = {2δ1, ε1 + ε2} ∪ {δ1 + ε1, δ1 + ε2}.



(2) The splint (∆(A(1, 1)), 4A1 + ∆(A(0, 0))) of ∆(D(2, 2)) is given by

∆1 = {ε1 − ε2, δ1 − δ2, δ1 − ε1, δ1 − ε2, δ2 − ε1, δ2 − ε2},
∆2 = {ε1 + ε2, δ1 + δ2, 2δ1, 2δ2} ∪ {δ1 + ε1, δ1 + ε2, δ2 + ε1, δ2 + ε2}.

(3) The splint (∆(A(2, 0)), 4A1 + 3∆(A(0, 0))) of ∆(D(3, 1)) is given by

∆1 = {ε1 − ε2, ε1 − ε3, ε2 − ε3, δ1 − ε1, δ1 − ε2, δ1 − ε3},
∆2 = {ε1 + ε2, ε1 + ε3, ε2 + ε3, 2δ1} ∪ {δ1 + ε1, δ1 + ε2, δ1 + ε3}.

(4) The splint(∆(A(2, 1)) +A1, 5A1 + 6∆(A(0, 0)))of ∆(D(3, 2)) is given by

∆1 = {ε1 − ε2, ε1 − ε3, ε2 − ε3, δ1 − δ2, δ1 − ε1, δ1 − ε2, δ1 − ε3, δ2 − ε1, δ2 − ε2, δ2 − ε3} ∪ {2δ2},
∆2 = {ε1 + ε2, ε1 + ε3, ε2 + ε3, δ1 + δ2, 2δ1} ∪ {δ1 + ε1, δ1 + ε2, δ1 + ε3, δ2 + ε1, δ2 + ε2, δ2 + ε3}.

(5) The splint (∆(A(1, 2)) + 2A1, 5A1 + 6∆(A(0, 0)))of ∆(D(2, 3)) is given by

∆1 = {ε1 − ε2, δ1 − δ2, δ1 − δ3, δ2 − δ3, δ1 − ε1, δ2 − ε1, δ3 − ε1, δ1 − ε2, δ2 − ε2, δ3 − ε2} ∪ {2δ1, 2δ2},
∆1 = {ε1 + ε2, δ1 + δ2, δ1 + δ3, δ2 + δ3, δ1 + ε1, δ2 + ε1, δ3 + ε1, δ1 + ε2, δ2 + ε2, δ3 + ε2} ∪ {2δ3}.

(6) For either n−2 6 m or m > n the splint (∆(D(m,n−1))+A1, (2n−2)A1 +2m∆(A(0, 0)))
of ∆(D(m,n)) is given by

∆1 = {εi ± εj , δk ± δl, 2δk, δk ± εi : 1 ≤ i 6= j ≤ m, 2 ≤ k 6= l ≤ n} ∪ {2δ1},
∆2 = {δ1 ± δl, δ1 ± εi : 1 ≤ i ≤ m, 2 ≤ l ≤ n}.

Similarly, for either m − 2 6 n or n > m the splint (∆(D(m − 1, n)), (2m − 2)A1 +
2n∆(A(0, 0))) of ∆(D(m,n)) is given by

∆1 = {εi ± εj , δk ± δl, 2δk, δk ± εi : 2 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n},
∆2 = {ε1 ± εi, δ1 ± εk : 2 ≤ i ≤ m, 1 ≤ l ≤ n}.

(7) The splint (Dm + Cn, 2mn∆(A(0, 0))) of ∆(D(m,n)) is given by

∆1 = {εi ± εj , δk ± δl, 2δk : 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n},
∆2 = {δi ± εk : 1 ≤ i ≤ m, 1 ≤ k ≤ n}.

Table 4. ∆(D(m,n))

∆ ∆1 ∆2

D(2, 1) A(1, 0) 2A1 + 2A(0, 0)
D(2, 2) A(1, 1) 4A1 +A(0, 0)
D(3, 1) A(2, 0) 4A1 + 3A(0, 0)
D(2, 3) A(1, 2) + 2A1 5A1 + 6A(0, 0)
D(3, 2) A(2, 1) +A1 5A1 + 6A(0, 0)
D(m,n) Dm + Cn 2mnA(0, 0)
D(m,n) for either
n−2 6 m or m >
n D(m,n− 1) +A1 (2n− 2)A1 + 2mA(0, 0)
D(m,n) for either
m− 2 6 n or n >
m D(m− 1, n) (2m− 2)A1 + 2nA(0, 0)



3.5. G(3), F (4), D(2, 1;α).

(1) The ∆(G(3)) has two splints and the splints are (A2 + 3∆(A(0, 0)), A2 +A1 + 4∆(A(0, 0)))
and (B2 +A1 + 3∆(A(0, 0)), 2A1 + 4∆(A(0, 0))), these are given by

∆1 = {α2, α2 + α3, 2α2 + α3} ∪ {α1 + α2, α1 + α2 + α3, α1 + 3α2 + α3},
∆2 = {α3, 3α2 + α3, 3α2 + 2α3} ∪ {α1, α1 + 2α2 + α3, α1 + 3α2 + 2α3, α1 + 4α2 + 2α3} ∪ {2α1 + 4α2 + 2α3}.

And another one is

∆1 = {α2, α3, α2 + α3, 2α2 + α3} ∪ {2α1 + 4α2 + 2α3} ∪ {α1, α1 + α2, α1 + α2 + α3},
∆2 = {3α2 + α3, 3α2 + 2α3} ∪ {α1 + 2α2 + α3, α1 + 3α2 + 2α3, α1 + 4α2 + 2α3, α1 + 3α2 + α3}.

(2) From the positive root system of F (4) we can observe that the root systems ∆(C(4)),∆(B(0, 3)),∆(B(0, 2))
are not embedded in ∆(F (4)). Only the root system of ∆(D(2, 1)) is embedded in ∆(F (4))
which is identified as

{α2+α3, 2α2+α3+α4, 2α1+3α2+2α3+α4}∪{α1, α1+α2+α3, α1+2α2+α3+α4, α1+3α2+2α3+α4}.
So ∆(A(2, 1)) is also embedded in ∆(F (4)). Hence the root system ∆(F (4)) has only one
splint

(A1 +B3, 8A(0, 0)),

where ∆1 and ∆2 are all even roots and odd roots respectively.
(3) The root system D(2, 1;α) has two splints and these are (∆(A(1, 0))+A1, A1 +2∆(A(0, 0)))

and (3A1, 4∆(A(0, 0))) given by

∆1 = {α1, α2, α1 + α2} ∪ {α3},
∆2 = {2α1 + α2 + α3} ∪ {α1 + α3, α1 + α2 + α3}

and

∆1 = {α1, α3, 2α1 + α2 + α3},
∆2 = {α1, α1 + α2, α1 + α3, α1 + α2 + α3}

respectively.

Table 5. ∆(F (4)), ∆(G(3)), ∆(D(2, 1;α))

∆ ∆1 ∆2

G(3) A2 + 3A(0, 0) A2 +A1 + 4A(0, 0)
B2 +A1 + 3A(0, 0) 2A1 + 4A(0, 0)

F (4) A1 +B3 8A(0, 0)
D(2, 1;α) A(1, 0) +A1 A1 + 2A(0, 0)

3A1 4A(0, 0)

4. Concluding remarks

In this paper we have determined splints of all basic Lie superalgebras up to equivalence with
Weyl group of the corresponding algebra. We hope results of this paper can help us to some extent
in determining the branching coefficient. We want to delve in to this aspect of research in future.
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