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Abstract—A relatively new technique to solve the optimal
power flow (OPF) problem inspired by the animal migration
represented as Animal Migration Optimization(AMO) is pre-
sented in this paper. The generators active power, the generators
voltage, tap settings of the transformers, and capacitive shunt
VAR compensating devices, define the search space for the OPF
problem. IEEE 57 bus test systems are assessed for various
objectives to determine Animal Migration Optimization(AMO)
efficiency in handling the OPF problem after satisfying con-
straints. The numerical simulated results are extensively verified
through complete performance measurements with necessary
subsequent discussions. The achieved results confirm the effec-
tiveness, flexibility, and applicability of the proposed AMO based
OPF methodology in comparisons to other recent competing
heuristic-based algorithms in the literature.

Index Terms—Large-scale power systems, Optimal power flow
, Optimization, Fuel cost, IEEE-57 bus

I. INTRODUCTION

Optimal power flow is an important aspect of power system

studies [1]. Thus very topic has been a vital area of research

and study since the last few decades. The complexity of the

power flow is evident from the large number of variables and

constraints involved with the problem . IEEE has standardized

bus systems with specified data which can be used for the

power system studies . Various solution techniques have been

proposed for the optimal power flow. However on must also

look into the fact that optimal power flow carries numerous

cases of critical and non-critical optimal power flow along with

it as defined by[2]. Apart from this, optimal power flow can

be studied from the various objective functions point of view.

The main objective of this formulation is to have an optimum

flow of power in the system keeping the active and reactive

power flows within the specified constraints and also fulfill

the conditions of the objective functions like fuel cost, power

loss, voltage deviation minimization and voltage stabilization.

A number of optimization techniques have been proposed and

tested for the optimal power flow formulation.

A complex optimal power flow can be solved using determinis-

tic and non-deterministic approaches. However, the determin-

istic approach suffers from two shortcomings the algorithm

may stuck in a local minimum prevent to reaching it’s true

minimum and another its depends on the initial condition of

the problem [3] which is what makes the stochastic or non-

deterministic techniques more popular. The non-deterministic

techniques have superior global search properties and faster

convergence characteristics with proper selection of parame-

ters [3].Many swarm based or population based algorithm have

been develop which have by inspired the biological instinct[4–

8], or naturally occurring phenomenon [8, 9] .which each have

their own drawback. Due to application of these algorithm to

wide range of problem they are also known as general-purpose

algorithm. Some popular global optimization algorithms in-

clude genetic algorithm (GA) [10], Teaching-learning based

optimization [11],League championship algorithm(LCA)[8],

Black-hole-based optimization(BHBO)[8], Particle swarm op-

timization (PSO) , Grey wolf optimization (GWO)[5] ,differ-

ential evolution (DE), Modified artificial bee colony (MABC)

[6], Biogeography based optimization (BBO) [12], Grav-

itational search algorithm (GSA) [9], Seeker optimization

algorithm[7], Tree-seed algorithm (TSA)[4], bacteria foraging

algorithm [8], and Differential search algorithm [8] are used

to solve the OPF problem in power systems. In this work a

similar objective function as mentioned in the above references

is chosen comprising of various cases for optimal power flow

and a new stochastic method of optimization inspired from

the animal behavior of migration is applied for the global

solution search. The organization of the paper is initiated

with a literature survey of various authors contribution towards

the optimal load flow problem in the Introduction Section I,

followed by the problem formulation in Section II. Exhaustive

algorithm exploration in Section III. Section IV demonstrates

numerical simulations results, comparative analysis and perfor-

mance measures for the test cases under study. Finally, Section

V sums up the conclusion.

II. OPTIMAL POWER FLOW PROBLEM

FORMULATION

The main objective of optimal power flow is to optimize the

power system parameters framed as control variables by the

minimization of predefined objective functions with respect978-1-5386-5080-6/18$31.00 2018 IEEE



to limits of the system. The optimum power flow can be

described as non-linear constrained optimization problem as

given by [4, 6, 8, 10] which is:

Minimize j(x,u)

Subject to g(x,u)=0.

Where h(x,u)≤0.

A. VARIABLES

The main role of the control variables lie in the fulfillment

of the power flow equations. The set of control variables for

optimal power flow can be formulated as:

bT = [PG2 ...PGNG
VG1 ...VGGN

T1....TNTQC1 ....QCNC
]

where NG,NC and NT are the number of generator,Shunt VAR

compensators and regulating transformers.

The state variables on the other hand are useful for the

formulation of existing conditions of power system under

consideration. The state variable vector is designated as:

aT = [PG1VL1 ...VLLN
QG1 ....QGGN

Sl1 ....Slnl
] where NL and

nl are the number of load buses and number of lines in

the system. P,Q, S, T&V ,represent the active power,reactive

power ,power ,transformer tap ratio and voltages. And their

subscriptG,L,&C represent the generator,line and Shunt VAR

compensator receptively.

B. CONSTRAINTS

The optimal power flow is similar to other engineer-

ing optimization problems and comprises of both equal-

ity and non-equality constraints for better optimization.

EqualityConstraints : The realizable state of the power

system frames the equality constraints for the problem. In

other words, the power flow equations are treated as the

equality constraints.

Real Power Constraint

PGi
− PDi

= Vi

NB∑
j=1

Vj [Gij [cos(Θij) +Bij sin(Θij)]

ReactivePowerConstraint :

QGi
−QDi

= Vi

NB∑
j=1

Vj [Gij sin(Θij)−Bij cos(Θij)]

Where, Θij = Θi −Θj ,G and B are real and imaginary parts

of the Ybus.

InequalityConstraints : The limits of the power system

which are defined for the efficient operation of the system

leads to the formation of the inequality constraints.

GeneratorConstraint : The voltage, real power and reactive

power generated by all the generators including the one present

in the slack bus should lie within the stated limits. This is given

as:

V min
Gi

≤ VGi ≤ V max
Gi

i = 1.....NG

Pmin
Gi

≤ PGi
≤ Pmax

Gi
i = 1.....NG

Qmin
Gi

≤ QGi
≤ Qmax

Gi
i = 1.....NG

TransformerConstraint : The tap ratios of the trans-

formers involved the system should be adjusted within the

prescribed boundaries as follows:

Tmin
i ≤ Ti ≤ Tmax

i i = 1.....NT

Shunt VAR Constraint: The shunt VAR compensator’s should

have the compensatory outputs within their lower and upper

bounds which is formulated as:

Qmin
Ci

≤ QCi
≤ Qmax

Ci
i = 1.....NC

SecurityConstraint :This is a qualitative parameter which

is governed by the voltage magnitude on the load bus or

the PQ bus and the line loadings which should fall within

the minimum and maximum operational boundaries. The line

loadings on the other hand should be less than or equal to

the specified maximum loading of the line. The mathematical

formulation of the security constraint is given as:

V min
Li

≤ VLi
≤ V max

Li
i = 1.....NL

Sli ≤ Smax
li i = 1.....nl

The control variables are self-constrained [Trivedi, 2016].

They do-not require any external constraints. However the

state variables involve the inequality constraints with them

which consist of magnitudes of load bus voltage, active power

generated at the reference bus, reactive power generated and

the line loadings. These make up to a quadratic function.

A penalty factor now enters the objective function which is

dependent on the degree of violation of the limits by the state

variables. Mathematically, the penalty function is framed as:

Javg = J + λP (PG1
− P lim

G1
)2 + λV

∑NL
i=1(VLi

− V lim
Li

)2+

λQ

∑NG
i=1(QGi

−Qlim
Gi

)2 + λP

∑NL
i=1(Sli − Slim

l1
)2

where λP , λV λQand λS are penalty factor xlim is defined as

following

xlim =

{
xmax;x > xmax,

xmin; x < xmin

III. BASIC EXPLANATION OF ANIMAL MIGRATION

OPTIMIZATION(AMO) [13]

Li [13] has presented a very powerful optimization al-

gorithm based on the principle of animal migration where

they move from a given location termed as their current

territory to another location or migrate to a new territory in

search of better options for food, climate change, environment

conditions etc. The entire concept of movement revolves round

the collective behavior of the animals living in a herd. During

their journey in quest of finding a new habitat they go through

a search process and finally settles at a place which satisfy their

needs. This phenomenon exactly mimics that of a numerical

optimization problem where the primary concern is to find

the global optimum. And hence it is obviously expected that

animal migration behavior if can suitably be modeled in a

mathematical frame work, can emerge as a highly efficient

optimization tool to effectively solve complex problems and Li

was extremely successful in presenting such a nature inspired

algorithm to achieve the said goals.



A. Mathematical Model involving the process

The fundamental principle that governs this algorithm solely

depends upon certain assumptions. The leader is chosen among

the possible candidates whose fitness is the highest and is

retained till the next generation when it undergoes a fitness test

again to validate its claim else will be replaced by a new one.

While the search space is being explored and exploited with

a given number of individuals (animals) at the disposal, the

fitness of each individual is evaluated and in case the fitness is

found less than a given threshold, a new individual will replace

the current individual (which will be completely eliminated)

keeping the number of animals employed in the search process

constant. There are two distinct phenomena embedded into

this optimization technique. While the first one is denoted as

migration phase, the second phase is involved in population

updating. During the migration phase however it is mandatory

for each individual to follow certain rules as outlined here

under

• Movement should be in the direction of its neighbors

representing a collective approach rather than a personal

endeavor.

• While on move it must maintain a close proximity with

the neighbors there by increasing chance of success, else

leaving the herd will altogether diminish the possibility

of clinging to the group, thereby losing its identity

completely.

• Caution must be taken to ensure that while moving closer

it will not collide with any other individual in the neigh-

borhood because the exploitation will then be affected,

as no new information regarding optimum condition can

be extracted simply because there will be a repetition of

the observation.

In the migration phase the movement of the individual take

place under the constraints mentioned above and mathematical

expression is accordingly formulated. However before the

same is applied, initialization process is carried out followed

by migration phase and then reinforced by population update

phase and finally culminates with validating the so called

movements (from the two phases) according to their fitness

values. The entire process is explained as given below.

1) Initialization:

• A randomly distributed population of size NP is gen-

erated with animal positions X1, X2, X3...., XNP and

each animal position Xi is denoted by a D-dimensional

parameter vector which represents the variables of a given

system to be optimized within a bounded domain with a

lower limit of aj and an upper limit of bj as mentioned

in AMO [13].

So, the jth component (variable to be optimized) of ith vector

(individual) can be expressed as

xi,j = aj + rand(bj − aj) (1)

where rand is a uniformly distributed number between [0, 1]
and i = 1, 2, ....NP and j = 1, 2, ...D.

2) Movement during migration: During this process a ring

topology is formed in the neighborhood of the individual

(purely arbitrary) with a dimension of 5. Thus for ith individ-

ual, the Xneighborhood comprises of (i−2)th, (i−1)th, (i)th,

(i+1)th, (i+2)th individuals. Once the neighborhood topology

has been constructed, the neighbor is chosen randomly and the

new position is updated using following equation.

Xi(k + 1) = Xi(k) + δ(Xneighbourhood(k)−Xi(k)) (2)

Where Xneighborhood(k) is the current position (kth) of the

neighborhood and δ is a random number between [0, 1] con-

trolled by a Gaussian distribution and Xi(k) is given by

Xi(k) = [xi,1(k), xi,2(k), ....xi,D(k)]
3) Population updating phase: This is a critical phase

where an important decision is made either accepting or

rejecting a new movement strategy (mimicking the concept

of discarding unfit individual and creating a new one) of

an individual depending upon the probability of the fitness

value Pa compared with a random (dynamic) threshold

value. In case the individual is a winner (indicating a much

better fitness value) it is retained to take part again in

the competition in the next iteration with others but if the

individual loses the game (indicating a poor fitness value),

another new individual is generated and replaces it keeping

the population size fixed. Mathematically the explanation can

be described as [13].

For i = 1 to NP
For j = 1 to D

if rand > Pa

Xi(k + 1) = Xr1(k) + β(Xbest(k)−Xi(k))+

α(Xr2(k)−Xi(k))
(3)

end if

end

end

where α , β and rand are random numbers generated from

uniform distribution and Xr1 and Xr2 denote the positions

of the individuals randomly picked from shuffled sequence

vector of the population list among the entire population

with the indices value r1 and r2 which are integers with

the constraint r1 �= r2 �= i. This is a second movement

is the search space pertaining to the same iteration where

the individual is subjected to a new exploration. Here a

new position is randomly picked Xr1 and then an weighted

difference between the best position Xbest and current position

Xi is added to it along with further addition of an weighted

difference between another randomly picked new position

Xr2 and current position Xi and the process repeats till all

the variables in the entire population is exhausted. If the

probability of the fitness function is more than a dynamically

set threshold value(controlled by the random numbers) the

population update sequence will be bypassed and the positions

already updated in the migration phase is retained.

4) Validating the positions: Once the positions are updated

using the Eq. 3 , the fitness value for the updated positions



TABLE I Pseudo Code of Animal Migration Optimization Algorithm

1) Initialize NP (no. of population), D (no.of variables to be optimized), Itmax (maximum number of iteration) and the prescribed fitness
function F desired

i
2) The maximum and the minimum boundary limits for the variables are set. Initial positions XS

i = Xi(k) is randomly generated where
[Xi] = xi,j for j = 1, 2, ...D.

3) Fitness F s
i for each individual(animal) with position Xs

i is computed.

4) New positions Xnew−m
i = Xi(k) are determined using Eq.2 and the corresponding fitness value Fnew−m

i is evaluated in the migration
phase.

5) Fnew−m
i is compared with previously stored F s

i and if Fnew−m
i > F s

i then the corresponding positions Xnew−m
i replace the Xs

i

positions previously held else Xs
i is retained. Thus Xmig

i position is created along with fitness Fmig
i . Further, a probability indices vector

Pa of dimension NP is generated .

6) In the population update phase a second movement is done using Eq.3 ,and creating a new position Xnew−p
i , if a dynamically assigned

threshold value (randomly generated number) is more than the probability Pa, else the movement is prohibited. Then the positions are updated

to formulate Xpop
i by taking into account the successful Xnew−p

i and Xmig
i values.

7) The fitness F pop
i corresponding to Xpop

i is computed again and compared with Fmig
i and if F pop

i > Fmig
i , the positions corresponding

to F pop
i is accepted else positions Xmig

i are retained.

8) Iteration counter is incremented k = k + 1 and accordingly a new set of positions Xi(k + 1)) (either Xpop
i or Xmig

i as the case may be)
and the corresponding fitness Fi(k + 1) are evaluated to take part in the process for the next iteration.

9) Once iteration counter k reaches maximum number of iterations i.e, k > Itmax as prescribed or the termination criteria based on fitness
function is achieved i.e, Fi(k+1) > F desired

i , the optimization process stops yielding the optimal result else replace Xs
i with Xi(k+1))

and goto Step 3.

are compared with the previous one i.e, Eq. 2. Because while

the entire search space is probed, the primary concern is

to determine the optimum location. The decision to accept

or discard the updated one or the previous one exclusively

depends upon the fitness value. This infact validates that the

algorithm is capable of delivering the objective or not. Thus the

search continues till the termination condition is encountered,

i.e, whether the iteration counts are all exhausted or the desired

value is reached, whichever is earlier. The pseudo code if given

in the Table.I

IV. SIMULATION RESULTS AND DISCUSSION

The algorithm described above as Animal Migration Op-

timization has been applied to obtain the optimal power

flow of an IEEE 57 bus system. The algorithm aims to

optimize the parameters of the system framed into various

objective functions. The Computational resources used for the

fulfillment of the task are codes written in MATLAB 2016b

with additional package MatPower 6.0 version is used for

IEEEbus standards. The simulation is done on a 2.60GHz

i5 PC with 8GB RAM. The authenticity of the proposed

algorithm is tested and the practical feasibility is verified by

applying it to an IEEE 57 bus system which is shown in

FIG 1 The system includes 7 generating units, 17 regulating

transformers and 3 shunt VAR compensator’s . The algorithm,

Animal Migration Optimization has been exhaustively applied

and tested with 3 different cases for the minimization of fuel

cost, voltage deviation and active power loss which relate

to the performance of the power system. Table II gives

the optimization parameters which have been considered for

the work. The population size is fixed as 10 animals with

maximum number of iterations as 1000 and the dimension of

the search space is 34. The random value is chosen between

0 and 1[13].

Fig. 1 Single line diagram of Transmission network 57-bus

system

A. CASE I: Fuel Cost Minimization

The most common objective function optimized for a stan-

dard power system is, the cost of the fuel used for the

generation of power. It is minimized because of its direct

relation with the economics of the system. So our first and

foremost fitness function is the equation giving the fuel cost

which should be as minimum as possible. Therefore the fitness

function is:

Fobj1 =

NG∑
i=1

fi($/h)



where fi is the fuel cost of the ith generator and can be

simplified as

fi = ai + biPGi + ciP
2
Gi

where, ai, biandci are basic, linear cost coefficient of the ith

generator [4, 6, 8, 10].

Animal Migration Optimization when applied to the above ob-

jective function gives the minimal cost as low as 41679.83$/hr

the fuel cost for the case study when the fitness function

is evaluated without any optimization technique. The conver-

gence curve as obtained for this case is shown in Fig 2 where

it is clear that the discussed technique reaches the aforesaid

global optima at around 500 iterations.
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Fig. 2 Evolution of Fuel cost (case 1)

B. CASE II: ACTIVE POWER LOSS MINIMIZATION

The flow of power in the transmission lines come with some

losses as well which is the price paid for transmitting power.

The power loss is seen as a liability to the generators since

they dont aid for revenue generation. Therefore it is desirable

that this loss should be minimized and that can be done by

optimizing the following objective function[4]:

Fobj3 = Ploss =
NB∑
i=1

PGi
−

NB∑
i=1

PDi

.where Ploss is the power loss calculated as the difference

between the total active power generated and the total active

power consumed in the system. Table II shows that AMO

when applied to the objective function of active power loss,

the global minima achieved is 10.51MW . The figure 4

shows the convergence curve for the case of active power loss

minimization of the considered IEEE 57 bus system.

C. CASE III: Voltage Profile Improvement

The next vital power system parameter is the voltage profile

of the system. It is a measure of the degree of divergence

of the system voltage from the ideally desired voltage level

that is 1 p.u. Although in some cases the fuel cost can be

drastically minimized but at the cost of huge voltage deviations

which affects the system operations greatly. Hence the voltage

deviation minimization is also equally important. The objective
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Fig. 3 Minimization of active power transmission loss(case 2)

function can be framed as the following expression[4–9, 11,

12, 14]:

Fobj3 =

NL∑
i=1

| Vi − 1.0 |

where Viis the output voltage of each PQ or load buses. The

objective function here needs to be minimized and thereby

improve the voltage profile. The same algorithm as applied to

previous case is applied here also. The convergence pattern of

total voltage deviation(TVD) is shown in Fig. 4.
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Fig. 4 Evolution of Total Voltage Deviation(p.u) (case 3)

Using the same parametric set up (control variables limits,

initial conditions, and system data) for a fair comparison

OPF results with other evolutionary algorithms based OPF

results.Table III specifies detailed comparisons among the

AMO results and many optimization algorithms for fuel cost,

system Ploss and Total Voltage Deviations (TVD) in the IEEE

57-bus system. A comparative study of all the above three

cases shown in the Table III lead us to the conclusion that

each parameter is equally important and plays a vital role in the

power system operations. It is also seen that minimizing any

one parameter only will not suffice since they are interrelated.

Therefore a balance needs to be maintained among the three

parameters and a optima needs to be achieved for maximum

utilization of the resources with minimum wastage.

V. CONCLUSION

This paper has presented the application of AMO to solve

the OPF problem in electric power systems with the standard



TABLE II Optimal results for CASE 1 through CASE 3

Control Variable Case 1 Case 2 Case 3
PG1 (MW) 142.9591 201.9982 549.1549
PG2

(MW) 87.34414 0.178164 13.74047
PG3

(MW) 44.91829 139.9226 27.86313
PG6

(MW) 72.36826 99.98645 2.09679
PG8

(MW) 461.165 309.2318 407.448
PG9 (MW) 96.47669 99.99681 52.28
PG12

(MW) 360.7639 409.9963 231.8669
VG1

(p.u) 1.043192 1.023852 1.021706
VG2 (p.u) 1.040698 1.0188 1.012088
VG3

(p.u) 1.033568 1.026888 1.004953
VG6

(p.u) 1.046623 1.030174 1.003695
VG8

(p.u) 1.0649 1.037337 1.011436
VG9

(p.u) 1.033456 1.013597 0.985326
VG12 (p.u) 1.02761 1.016208 1.007158
T4−18 (p.u) 1.017333 1.030147 0.900036
T4−18 (p.u) 0.990691 0.956972 0.900061
T21−20 (p.u) 0.910129 0.903418 1.006189
T24−25 (p.u) 0.90481 0.901531 0.900007
T24−25 (p.u) 1.084807 1.09928 0.900004
T24−26 (p.u) 0.909221 0.901592 0.952824
T7−29 (p.u) 0.906805 0.926185 0.900007
T34−32 (p.u) 1.058765 1.051339 1.099985
T11−41 (p.u) 0.957012 1.08408 1.099995
T15−45 (p.u) 1.059081 1.046528 1.09932
T14−46 (p.u) 0.918647 0.918988 0.900003
T10−51 (p.u) 1.047126 1.097351 1.099162
T13−49 (p.u) 1.091921 1.094715 0.900127
T11−43 (p.u) 0.928345 0.920286 0.900499
T40−56 (p.u) 0.904553 0.902909 0.900038
T39−57 (p.u) 1.099324 1.091785 1.099878
T9−55 (p.u) 1.056397 1.072664 1.099989
QC18 (MVar) 11.65213 10.47622 2.394016
QC25 (MVar) 14.38414 14.76687 13.62671
QC53 (MVar) 12.58973 13.29287 10.22354
Fuel Cost($/hr) 41679.83 45036.95 56093.91
Ploss 15.19535 10.51031 33.65017
Qloss 174.3293 262.2002 45.04514
TVD(p.u) 2.487451 1.651117 0.74825

TABLE III Comparison of the simulation result for all cases[4]

Method Fuel Cost $/hr Method Ploss Method TVD(p.u)
ABC 41,781.00 ABC 12.63 ABC 0.85
IABC 41,684.00 IABC 11.16 IABC 0.66
PSO 41,688.68 PSO 25.02 PSO 0.74
TSA 41,685.07 TSA 12.47 TSA 0.72
AMO 41,679.83 AMO 10.51 AMO 0.75

IEEE57-bus systems. The optimization procedure is based on

sequential optimization for different objective functions of

the OPF problem. The AMO is capable of dealing with the

continuous and discrete control variables in the bus system.

Detailed comparisons among the results of the AMO based

OPF and other evolutionary algorithms have confirmed the

validity, robustness, and effectiveness of the proposed method-

ology. The fuel cost shows a decrement of 1.17$/hr when

compared Artificial Bee Colony(ABC). In case of Power loss

0.65MW decrement when compared to Improved ABC. The

simulation is performed on
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“Optimal power flow using gravitational search algo-

rithm,” Energy Conversion and Management, vol. 59, pp.

86–95, 2012.

[10] H. Bouchekara, A. Chaib, and M. Abido, “Optimal

power flow using ga with a new multi-parent crossover

considering: prohibited zones, valve-point effect, multi-

fuels and emission,” Electrical Engineering, vol. 100,

no. 1, pp. 151–165, 2018.

[11] M. Ghasemi, S. Ghavidel, M. Gitizadeh, and E. Ak-

bari, “An improved teaching–learning-based optimization
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