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Abstract: Co-balancing numbers and co-balancers are defined and introduced. Many properties of co-
balancing numbers are explored. A link between the Pythagorean triplets and the co-balancing numbers is
also established.

1. INTRODUCTION

Recently, Behera and Panda [1] introduced balancing numbers neZ" as solutions
of the equation
1+2+ -+ (n=1) = (n+1) + (n+2) + - - - + (n+r), (1)

calling reZ", the balancer corresponding to the balancing number n. 6, 35 and 204 are
examples of balancing numbers with balancers 2, 14 and 84 respectively. Behera and
Panda [1] also proved that a positive integer n is a balancing number if and only if n? is a
triangular number, that is, 8n® +1is a perfect square. Though the definition of balancing
numbers suggests that no balancing number should be less than 2, in [1], 1 is accepted as
a balancing number being the positive square root of the square triangular number 1.

In [3] and [4] Subramaniam has explored many interesting properties of square
triangular numbers without linking to balancing numbers because of their unavailability
in literature till that time. In a latter paper [5], he introduced the concept of almost square
triangular numbers (triangular numbers that differ from a square by unity) and linked
them with the square triangular numbers. In this paper we introduce co-balancing
numbers that are linked to a third category of triangular numbers that can be expressed as
product of two consecutive natural numbers (approximately as the arithmetic mean of

squares of two consecutive natural numbers i.e. [n* +(n+1)?]/2~n(n+1)). Indeed, in

what follows, we introduce the co-balancing numbers in a more natural way like the
balancing numbers.

By slightly modifying equation (1), we call neZ" a co-balancing number if
142+ - -+ n=(n+1) + (N+2) + - - - + (N+r) (2)

for some reZ*. Here, we call r the co-balancer corresponding to the co-balancing
number n.



The first three co-balancing numbers are 2, 14 and 84 with co-balancers 1, 6 and 35
respectively.

It is clear from (2) that, n is a co-balancing number with co-balancer r if and only if

n(n+l)=(n+r)(g+r+1)’

which when solved for r gives

. —(2n+1)+v8n% +8n+1

> . 3)

It follows from (3) that n is a co-balancing number if and only if 8n® +8n+1is a
perfect square that is, n(n+1) is a triangular number. Since 8x0*+8x0+1=1 is a perfect
square, we accept 0 as a co-balancing number, just like Behera and Panda [1] accepted 1
as a balancing number, though, by definition, a co-balancing number should be grater
than 1.

From the above discussion it is clear that if n is a co-balancing number, then both
n(n+1) and n(n+1)/2 are triangular numbers. Thus our search for co-balancing number is
confined to the pronic triangular numbers, i.e., triangular numbers that are also pronic
numbers. It is worth mentioning here that a positive integer is called a pronic number if it

is expressible in the form n(n+1) for some positive integer n. Since n<4/n(n+1) <n+1,

it follows that if T is a pronic triangular number then [ﬁ] must be a co-balancing
number, where [-] denote the greatest integer function. For example, T = 6 is a pronic
triangular number and therefore [\V6] = 2 is a co-balancing number.

2. SOME FUNCTIONS OF CO-BALANCING NUMBERS

In this section we introduce some functions of co-balancing numbers that also
generate co-balancing numbers. For any two co-balancing numbers x and y, we consider
the following functions:

F(X) =3x-+/8x? +8x+1+1,

g(x) =17x+6/8x% +8x +1+8,

h(x) = 8x? +8x+1+ (2x + )/8X? +8x +1+1,
t(x,y) = t[2@x+ 1)@y +1) + 2x +1)y/8y? + 8y +1

+(2y +1)V8x? +8x +1++/8x2 +8x +1y8y2 +8y +1-1].
We first prove that the above functions always generate co-balancing numbers.

Theorem 2.1: For any two co-balancing numbers x and vy, f(x), g(x), h(x) and
t(x, y) are all co-balancing numbers.

Proof: Suppose that u = f(x). Then x < u and



X =3u—+/8u%+8u+1+1.

Since x and u are non-negative integers, 8u” +8u +1must be a perfect square, and hence
u is a co-balancing number.

Since f(f(x)) = g(x), it follows that g(x) is also a co-balancing number.

We can also directly verify that 8h®(x)+8h(x) +1 and 8t*(x,y)+8t(x,y)+1 are

perfect squares so that h(x) and t(x, y) are co-balancing numbers. But these verifications
would involve lengthy algebra. To avoid algebraic complications, we provide relatively
easy proofs of these results in Section 6 using Theorem 6.1.

Next we show that for any co-balancing number x, f(x) is not merely a co-balancing
number, but it is the co-balancing number next to x.

Theorem 2.2 If x is any co-balancing number, then the co-balancing number next
to x is f(X)=3x++/8x*+8x+1+1 and consequently the previous one is F(x) = 3X

—/8x% +8x+1+1.

Proof: The proof of the fact that f(x) =3x++/8x° +8x+1+1 is the co-balancing
number next to x is exactly same as the proof of Theorem 3.1 of [1], and hence it is
omitted. Since f(f(x)) = x, it follows that f (x) is the largest co-balancing number less
than x.

3. RECURRANCE RELATIONS FOR CO-BALANCING NUMBERS

Forn=1,2, - letb,be the n"" co-balancing number. We set b; = 0. The next two
co-balancing numbers are b, = 2 and bz = 14.

Behera and Panda [1], while accepting 1 as a balancing number, have set By =
1, B; = 6, and so on, using the symbol B, for the n" balancing number. To standardize the
notation at par with Fibonacci numbers, we relabel the balancing numbers by setting B, =
1, B, =6and so on.

Theorem 2.2 suggests

b,., =3b, +4/8b,°+8b, +1+1
b, =3b, —+/8b,% +8b, +1+1.

Adding the last two equations we arrive at the conclusion that the co-balancing numbers
obey the second-order linear recurrence relation

b,,=6b,—-b, ,+2. 4)
An immediate consequence of (4) is the following:

and



Theorem 3.1 Every co-balancing number is even.

Proof: The proof is based on mathematical induction. The first two co-balancing
numbers b; = 0 and b, = 2 are even. Assume that b, is even for n <k . Using (4) one can
easily see that by is also even.

Using the recurrence relation (4) we can derive some other interesting relations
among the co-balancing numbers.

Theorem 3.2
@ (b,-1)°=1+b b
(b) forn>k>2,
b, =by +Bb, s — B iby
(©) b2n = Bnbn+l - bn (Bn—l -1,
(d) b2n+1 = (Bn+1 +1)bn+1 - Bnbn'

n+l?

Proof: From (4) we have
b,,+b, -2

n+l — 6
b,
Replacing n by n —1 we obtain
bn +bn_2 _2 :6’
bnfl

which implies

bpyy +0y -2 by+b,, -2
bn bn—l
which when rearranged gives

(b, -1)?-b, b, ., =(b,, —1)*-b,b,.
Now iterating recursively we obtain

(by —1)% =0y, 4B,y = (b, —1)* —bby = (2-1)* -0x14 =1,
from which (a) follows.

The proof of (b) needs an important link between balancing numbers and co-
balancing numbers, which is to be established in the next section after Theorem 4.1. Till
then, we postpone the proof of (b).

The proof of (c) follows from (b) by replacing n by 2n and k by n. Similarly the
proof of (d) follows from (b) by replacing n by 2n+1 and k by n+1.

4. GENERATING FUNCTION FOR CO-BALANCING NUMBERS

In Section 3 we developed the recurrence relation b,,, =6b, —b,, +2 for co-
balancing numbers. Using this recurrence relation we first obtain the generating function



for co-balancing numbers and then establish a very interesting link between balancing
numbers and co-balancing numbers.

Recall that the ordinary generating function ([3], p.29) for a sequence {xn }::o of
real numbers is defined as

g(s) = D x,s".
n=0

From [1] we know that the generating function for the sequence of balancing
numbers {B, }”_, with the definition Bo = 1, By = 6, is

But in accordance with the new convention B; = 1, B, = 6,-:- one can easily see that the

generating function for the sequence of balancing numbers {Bn }le takes the form
S

1-6s+s®

g(s) = (5)

Theorem 4.1 The generating function for the sequence of co-balancing numbers
{bn }:10=1 iS
f(s) = 2s?
(1-s)(1—6s+5?)
and consequently for n > 2
b,=2(B,+B, +...+ B, ).

(6)

Proof: From (4) forn=1, 2, - - - we have b, —6b,,, +b, = 2. Multiplying both
sides by s and summing over n = 1 to n = oo, we obtain
D b,,28" 2 =65D by ys" 82> b s" =252 s",
n=1 n=1 n=1

n=1

which in terms of f(s) can be expressed as

(f(s)—2s2)—6sf (s)+52f(s) =2s°/(1—5).
Thus

2s? 2s s 2s
f(s) = NS > =7—"9(5)
@-s)@-6s+s°) 1-s 1-6s+s“ 1-s
=2(s+5%+---)g(s).

Now for n > 2, the coefficient of s" in f(s) can be obtained by collecting the coefficient of
s"from g(s) and the coefficient of s"" from 2(s+s®+---) forr=1, 2, ..., n —1. While the

coefficient of s"in g(s) is By, the coefficient of s""in 2(s+s? +---) is 2. Hence
bn= 2(Bl + 82 +...+ Bn—l) .
This completes the proof.



The following corollary and Theorem 3.1 are direct consequences of Theorem 4.1.

Corollary 4.2: B, = w

We are now in a position to prove Theorem 3.2(b).

Proof of Theorem 3.2(b): The proof is based on induction on k. It is easy to see
that the assertion is true for n > k = 2. Assume that the assertion is true for n>r >k > 2,
that is
bn = br + Brbn—r+l - Br—lbn—r ) (7)
From [1] we know that the balancing numbers obey the recurrence relation
Bn+1 = GBn - Bn—l :
Applying this relation, (4), (7) and Corollary 4.2 to (6) we obtain
br+1 + Br+lbn—r - Brbn—r—l
= br+1 + (GBr - Br—l)bn—r - Br (Gbn—r - bn—r+1 + 2)
= br+1 - ZBr + Brbn7r+l - Brflbnfr
= br + Brbn—r+l - Br—lbn—r = bn'
Thus the assertion is also true for k = r+1. This completes the proof of Theorem 3.2(b).

5. BINET FORM FOR CO-BALANCING NUMBERS

From Section 4 we know that the co-balancing numbers satisfy the recurrence
relation
b,,=6b, —-b ,+2
which is a second order linear non-homogeneous difference equation with constant
coefficients. Substituting ¢, =b, +1/2 we see that c, obey the recurrence relation
Chi = 6Cn —Ch
which is homogeneous. The general solution of this equation is

C, = AA] + BL) (8)
where A, =3+ /8 and A, =3-— \/8 are the two roots of the auxiliary equation
2> —6A+1=0.
Substituting ¢, =1/2 and ¢, =5/2 into (8) we obtain
L and B= 1

(=) Jha (= 22)
where \/x_1:1+\/§ and \/k_:l—ﬁ.Thus



n-1/2 _ An-1/2
C, = A}&+B}J‘2 :w; n=1,2,---
}Ll _kZ
which implies
nN-1/2 _ A n-1/2
bn:7\’l 7\’2 _E’ nzlaza'“

The above discussion proves the following theorem:

Theorem 5.1 If b, is the n™ co-balancing number then its Binet form is

n-1/2 _ 4 n-1/2
b, :M_i; n=1,2,---

where &, =3++/8, A, =3-+/8, AY2 =1++/2 and 242 =1-42.

6.RELATIONS AMONG BALANCING NUMBERS, CO-BALANCING
NUMBERS, BALANCERS AND CO-BALANCERS

Let B be any balancing number with balancer R and b any co-balancing number
with co-balancer r. Then by definition, the pairs (B, R) and (b, r) satisfy respectively
1+2+ ...+ (B-1)=(B+1) + (B+2) + - - - + (B+R) 9)
and
142+ -+ b= (b+1) + (b+2) + - - - + (b+r). (10)
Solving (9) for B and (10) for b we find

_ (2R+1)++8R? +8R+1

B > (11)
and
b (2r —1) +v8r? +1 | (12)

2

We infer from (11) that if R is a balancer then, 8R? +8R +1 is a perfect square and from
(12) we conclude that if r is a co-balancer then, 8r® + 1 is a perfect square.

The above discussion proves the following theorem:

Theorem 6.1 Every balancer is a co-balancing number and every co-balancer is a
balancing number.

For n = 1, 2,- as usual let B, be the n™ balancing number and b,, the n™ co-
balancing number. We also denote by R, the balancer corresponding to B, and r,, the co-
balancer corresponding to b,. What we are going to prove now is much stronger than
Theorem 6.1.

Theorem6.2 Forn=1,2,-, R, =b, and r,,, =B,.



Proof: We know that if B is a balancing number with balancer R then

_ —(2B+1) ++8B% +

5 ! (see[1], p.98).

—(2B,,; +1) ++/8B2, +1

Ry = > : (13)
— (2B, +1)++/8B2, +1

Rn—l = 2 ' (14)

Also, from Theorem 3.1 and Corollary 3.2 of [1] we have

B,.; =3B, ++8B. +1, (15)

B, =3B, -8B} +1
Substituting (15) and (16) into (13) and (14) respectively we obtain

R

Thus

and
(16)

2B, ++/8BZ +1-1
n+l = 2 )

R

~14B, +5,8B2 +1-1
n-1— 2 '
Adding the last two equations we get

n 128, +6,/8B2 +1-2

n+1 + n-1— 2

:6.—(28n +1) +,/8B2 1,

2

R

=6R, +2.
This gives
R, =6R,-R,; +2.
Thus R, satisfies the same recurrence relation as that of by. Further, since R; = b; = 0 and
Rz = by =2, it follows that R, = b, for n = 1, 2,---. This proves the first part of the theorem.

We prove the second part of the theorem in a similar way. Using (3) we obtain

— (20,4 +1) +/8b2,, +8b,,; +1
n+l — 2

I,

(17)

and

— (20, 4 +1)+4/8b2, +8b, ; +1
n-1— .
2

(18)
Substituting

b, =3b, +\/8b2 +8b,,, +1+1

n+1



into (17) and

b,, =3b, + \/8b§_1 +8b,; +1+1
into (18) we obtain

2, ++/8b2,, +8b, 4 +1+1
M = 2

and

b 5,802, +8b, , +1—7
n-1 = .
2

Adding the last two equations we get

—12b, +6,/80% +8b, +1-6

2

—(2b, +1)++/807 +8b, +1
= 6 . ( n ) 2 n n = Grn .
Thus r, satisfies the same recurrence relation as that of By. Further, since B, =r, =1and
B, =r; =6 it follows that B, =r,,; for n =1, 2, . This completes the proof of the

n+l
theorem.

M tha=

Corollary 6.3 Every balancer is even.
Proof: Directly follows from Theorem 3.1 and Theorem 6.2.

Corollary 6.4 R,,; =R, +2B,.

Proof: Directly follows from Corollary 4.2 and Theorem 6.2.

We are now in a position to prove that h(x) and t(x, y) are co-balancing numbers as
stated in Theorem 2.1.

We first show that if x is a co-balancing number then

h(x) =8x* +8x +1+ (2Xx +1)vV8x* +8x +1+1

is also a co-balancing number.

From Theorem 3.1 of [1] we know that if y is a balancing number then
u=2y48y? +1 is also a balancing number and the balancer corresponding to u is

_ 2
R= (2‘”1); VBUT+1 g2 oy fay? 41 (19)

If x is the balancer corresponding to the balancing number y then from (11) we find

yo (2x+1) +/8x% +8x +1

2

so that



8y? +1=24%% + 24x + 4(2x +1)V8x? +8x+1+5

= (2(2x +1) +Bx” +8x +1)2.

Substitution of (20) into (19) gives

(20)

R = 24x°% + 24X+ 4(2x +1)V8x% +8x +1 + 4
2
2[2(2x+1)+\2/8x +8x+l}_[2(2x+1)+ /8x2+8x+1]

=8x% +8x+1+ (2x +1)V8x% +8x+1 = h(x).

Thus for any balancer x, h(x) is always a balancer. Since by Theorem 6.1 every balancer
is a co-balancing number the result follows.

We next prove that if x and y are co-balancing numbers then
t(x,y) = t[2(2x+D(2y +1) + (2x+ Dy8Y? +8y +1

+(2y +1)V8X2 +8x +1 +/8x? +8x+1\/8y2 +8y+1-1]
is also a co-balancing number. From Theorem 4.1 of [1] we know that if u and v are
balancing numbers then
w=uy8v? +1+vy8u? +1
is also a balancing number. Let s, x and y be the balancers corresponding to the balancing
numbers w, u and v respectively. Then

.o —(2w+1) +v8w? +1

2
= %[SUV-F\/(SUZ +1X8v2 +1)—2u¢8v2 +1—2v+/8u2 +1_1]. (21)

Now substituting

Je (2x+1) +V8x? +8x +1

2

. (2y +1) ++/8y? +8y +1

2

and

into (21) we find that

10



[1]

s=1[2(x+D @2y +1) +(2x+1)y8y? +8y +1

+(2y +1)V8x2 +8x +1+/8x? +8x +1/8y? +8y +1—1]

=t(x,y).
Again since every balancer is a co-balancing number by Theorem 6.1, the result follows.

Remark: t(x, x) = h(x).

7. AN APPLICATION OF CO-BALANCING NUMBERS TO THE
DIOPHANTINE EQUATION x* +(x +1)* = y?

As we know, the Diophantine equation x? + (x+1)* = y?, x,y € Z*, is a particular
case of the equation x? + y? =z%,x,y,z €Z*. Any solution (X, y, z) of the later equation
is called a Pythagorean triplet. Behera and Panda [1] established a link between the
solutions of the equation x? + (x+1)® = y? and balancing numbers. Here we are going to
obtain an easy relation between the solutions of this equation with co-balancing numbers.

Let b be any co-balancing number and r its co-balancer and ¢ = b + r. Then
equation (2) can be re-written as
1+2+ - -+ b=(b+1) + (b+2) + - - - +¢,
from which we find b in terms of c as
b=-1++~/2¢? + 2¢c+1.
Thus 2¢? +2c +1 is a perfect square and also
2c? +2c+1=c? +(c+1)°.

This suggests that the Diophantine equation x? + (x +1)? = y? has the solution

Xx=b+r, y=v2c?+2c+1.
Take for example b = 14, so that r = 6 and ¢ = b + r = 20. Further
2c? +2¢ +1=841= 292 and we have

20% +21% = 292,
Similarly for b = 84, we have 119% +120° = 169%
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