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Abstract: Co-balancing numbers and co-balancers are defined and introduced. Many properties of co-
balancing numbers are explored. A link between the Pythagorean triplets and the co-balancing numbers is 
also established.  
 

1. INTRODUCTION  
    Recently, Behera and Panda [1] introduced balancing numbers n∈ℤ+ as solutions 
of the equation   
             1+2+ · · · + (n −1) = (n+1) + (n+2) + · · · + (n+r),               (1) 
calling r∈ℤ+, the balancer corresponding to the balancing number n. 6, 35 and 204 are 
examples of balancing numbers with balancers 2, 14 and 84 respectively. Behera and 
Panda [1] also proved that a positive integer n is a balancing number if and only if n2 is a 
triangular number, that is, 18 2 +n is a perfect square. Though the definition of balancing 
numbers suggests that no balancing number should be less than 2, in [1], 1 is accepted as 
a balancing number being the positive square root of the square triangular number 1. 
 
    In [3] and [4] Subramaniam has explored many interesting properties of square 
triangular numbers without linking to balancing numbers because of their unavailability 
in literature till that time. In a latter paper [5], he introduced the concept of almost square 
triangular numbers (triangular numbers that differ from a square by unity) and linked 
them with the square triangular numbers. In this paper we introduce co-balancing 
numbers that are linked to a third category of triangular numbers that can be expressed  as 
product of two consecutive natural numbers (approximately as the arithmetic mean of 
squares of two consecutive natural numbers i.e. )1(2/])1([ 22 +≈++ nnnn ). Indeed, in 
what follows, we introduce the co-balancing numbers in a more natural way like the 
balancing numbers.  
 
    By slightly modifying equation (1), we call n∈ℤ+ a co-balancing number if   
             1+2+ · · · + n = (n+1) + (n+2) + · · · + (n+r)                  (2) 

for some r∈ℤ+. Here, we call r the co-balancer corresponding to the co-balancing 
number n. 
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    The first three co-balancing numbers are 2, 14 and 84 with co-balancers 1, 6 and 35 
respectively. 
   
    It is clear from (2) that, n is a co-balancing number with co-balancer r if and only if 

             
2

)1)(()1( +++
=+

rnrnnn ,                              

which when solved for r gives 

             .
2

188)12( 2 ++++−
=

nnnr                                  (3)  

    It follows from (3) that n is a co-balancing number if and only if 188 2 ++ nn is a 
perfect square that is, n(n+1) is a triangular number. Since 8×02+8×0+1=1 is a perfect 
square, we accept 0 as a co-balancing number, just like Behera and Panda [1] accepted 1 
as a balancing number, though, by definition, a co-balancing number should be grater 
than 1. 
 
    From the above discussion it is clear that if n is a co-balancing number, then both 
n(n+1) and n(n+1)/2 are triangular numbers. Thus our search for co-balancing number is 
confined to the pronic triangular numbers, i.e., triangular numbers that are also pronic 
numbers. It is worth mentioning here that a positive integer is called a pronic number if it 
is expressible in the form n(n+1) for some positive integer n. Since 1)1( +<+< nnnn , 

it follows that if T is a pronic triangular number then ][ T  must be a co-balancing 
number, where [·] denote the greatest integer function. For example, T = 6 is a pronic 
triangular number and therefore [√6] = 2 is a co-balancing number. 
 

2. SOME FUNCTIONS OF CO-BALANCING NUMBERS 
 
    In this section we introduce some functions of co-balancing numbers that also 
generate co-balancing numbers. For any two co-balancing numbers x and y, we consider 
the following functions: 
             11883)( 2 ++++= xxxxf ,  

             8188617)( 2 ++++= xxxxg , 

             1188)12(188)( 22 +++++++= xxxxxxh ,  

             
].

[
1188188188)12(              

188)12()12)(12(2),(
222

2
2
1

−+++++++++

++++++=

yyxxxxy

yyxyxyxt
 

We first prove that the above functions always generate co-balancing numbers. 
 
    Theorem 2.1: For any two co-balancing numbers x and y, f(x), g(x), h(x) and      
t(x, y) are all co-balancing numbers. 
 
    Proof: Suppose that u = f(x). Then x < u and  



 3

             .11883 2 +++−= uuux  
Since x and u are non-negative integers, 188 2 ++ uu must be a perfect square, and hence 
u is a co-balancing number. 
  
    Since f(f(x)) = g(x), it follows that g(x) is also a co-balancing number. 
 
    We can also directly verify that 1)(8)(8 2 ++ xhxh  and 1),(8),(8 2 ++ yxtyxt  are 
perfect squares so that h(x) and t(x, y) are co-balancing numbers. But these verifications  
would involve lengthy algebra. To avoid algebraic complications, we provide relatively 
easy proofs of these results in Section 6 using Theorem 6.1.  
     
    Next we show that for any co-balancing number x, f(x) is not merely a co-balancing 
number, but it is the co-balancing number next to x. 
     
    Theorem 2.2 If x is any co-balancing number, then the co-balancing number   next 
to x is 11883)( 2 ++++= xxxxf  and consequently the previous one is xxf 3)(~

=  

1188 2 +++− xx .  
 
    Proof: The proof of the fact that 11883)( 2 ++++= xxxxf  is the co-balancing 
number next to x is exactly same as the proof of Theorem 3.1 of [1], and hence it is 
omitted. Since ,))(~( xxff =  it follows that )(~ xf  is the largest co-balancing number less 
than x. 
 

3. RECURRANCE RELATIONS FOR CO-BALANCING NUMBERS 
 
    For n = 1, 2, · · ·, let bn be the nth co-balancing number. We set b1 = 0. The next two 
co-balancing numbers are b2 = 2 and b3 = 14.  
 
        Behera and Panda [1], while accepting 1 as a balancing number, have set B0 = 
1, B1 = 6, and so on, using the symbol Bn for the nth balancing number. To standardize the 
notation at par with Fibonacci numbers, we relabel the balancing numbers by setting B1 = 
1, B2 = 6 and so on.  
 
    Theorem 2.2 suggests  

             11883 2
1 ++++=+ nnnn bbbb  

and  

             .11883 2
1 +++−=− nnnn bbbb  

Adding the last two equations we arrive at the conclusion that the co-balancing numbers 
obey the second-order linear recurrence relation  
             26 11 +−= −+ nnn bbb .                                (4) 
An immediate consequence of  (4) is the following: 
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    Theorem 3.1 Every co-balancing number is even. 
 
    Proof: The proof is based on mathematical induction. The first two co-balancing 
numbers b1 = 0 and b2 = 2 are even. Assume that bn is even for kn ≤ . Using (4) one can 
easily see that bk+1 is also even. 
 
    Using the recurrence relation (4) we can derive some other interesting relations 
among the co-balancing numbers. 
 
    Theorem 3.2 
       (a)  11

2 1)1( +−+=− nnn bbb , 
       (b)  for n > k≥2, 
             ,11 knkknkkn bBbBbb −−+− −+=  
       (c)  ),1( 112 −−= −+ nnnnn BbbBb  
       (d)  .)1( 1112 nnnnn bBbBb −+= +++  
 
    Proof: From (4) we have  

             .6
211 =

−+ −+

n

nn

b
bb

 

Replacing n by n −1 we obtain 

             ,6
2

1

2 =
−+

−

−

n

nn

b
bb

 

which implies  

              
1

211 22

−

−−+ −+
=

−+

n

nn

n

nn

b
bb

b
bb

, 

which when rearranged gives  
             .)1()1( 2

2
111

2
nnnnnn bbbbbb −−+− −−=−−  

Now iterating recursively we obtain 
             1140)12()1()1( 2

31
2

211
2 =×−−=−−=−− +− bbbbbb nnn , 

from which (a) follows. 
 
    The proof of (b) needs an important link between balancing numbers and co-
balancing numbers, which is to be established in the next section after Theorem 4.1. Till 
then, we postpone the proof of  (b). 
     
    The proof of (c) follows from (b) by replacing n by 2n and k by n. Similarly the 
proof of (d) follows from (b) by replacing n by 2n+1 and k by n+1.  
 

4. GENERATING FUNCTION FOR CO-BALANCING NUMBERS 
 
    In Section 3 we developed the recurrence relation 26 11 +−= −+ nnn bbb  for co-
balancing numbers. Using this recurrence relation we first obtain the generating function 
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for co-balancing numbers and then establish a very interesting link between balancing 
numbers and co-balancing numbers. 
 
    Recall that the ordinary generating function ([3], p.29) for a sequence { }∞=0nnx  of 
real numbers is defined as  

             ∑
∞

=

=
0  

.)(
n

n
n sxsg  

 
    From [1] we know that the generating function for the sequence of balancing 
numbers { }∞=0nnB  with the definition B0 = 1, B1 = 6,··· is  

             261
1)(

ss
sg

+−
= . 

But in accordance with the new convention B1 = 1, B2 = 6,··· one can easily see that the 
generating function for the sequence of balancing numbers { }∞=1nnB  takes the form 

             .
61

)( 2ss
ssg
+−

=                                  (5)  

 
    Theorem 4.1 The generating function for the sequence of co-balancing numbers 
{ }∞=1nnb is  

             
)61)(1(

2)( 2

2

sss
ssf

+−−
=                              (6)  

and consequently for n ≥ 2 
             )...(2 121 −+++= nn BBBb . 
 
    Proof: From (4) for n = 1, 2, · · ·  we have .26 12 =+− ++ nnn bbb  Multiplying both 
sides by sn+2 and summing over n = 1 to n = ∞, we obtain 

             ,26
1

2

1 1

21
1

1

2
2 ∑∑ ∑∑

∞

=

∞

=

∞

=

+
+

∞

=

+
+ =+−

n

n

n n

n
n

n
n

n

n
n sssbssbssb  

which in terms of  f(s) can be expressed as 
             )1(2)()(62)( 322 )( sssfsssfssf −=+−− . 
Thus 

             

).()(2        

)(
1
2

611
2

)61)(1(
2)(

2

22

2

sgss

sg
s

s
ss

s
s

s
sss

ssf

⋅⋅⋅++=

⋅
−

=
+−

⋅
−

=
+−−

=
 

Now for n ≥ 2, the coefficient of sn in f(s) can be obtained by collecting the coefficient of 
sr from g(s) and the coefficient of sn-r from )(2 2 ⋅⋅⋅++ ss  for r = 1, 2, …, n −1. While the 
coefficient of sr in g(s) is Br , the coefficient of sn-r in )(2 2 ⋅⋅⋅++ ss is 2. Hence 
             )...(2 121 −+++= nn BBBb . 
 This completes the proof. 
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    The following corollary and Theorem 3.1 are direct consequences of Theorem 4.1. 

    Corollary 4.2: .
2

  1 nn
n

bb
B

−
= +   

 
    We are now in a position to prove Theorem 3.2(b). 
 
 
 
 
 
    Proof of Theorem 3.2(b): The proof is based on induction on k. It is easy to see 
that the assertion is true for n > k = 2.  Assume that the assertion is true for 2≥≥> krn , 
that is  
             ⋅−+= −−+− rnrrnrrn bBbBbb 11                            (7) 

From [1] we know that the balancing numbers obey the recurrence relation 
             ⋅−= −+ 11 6 nnn BBB       
Applying this relation, (4), (7) and Corollary 4.2 to (6) we obtain 

             

  .                   
2                   

)26()6(                   

11

111

111

111

nrnrrnrr

rnrrnrrr

rnrnrrnrrr

rnrrnrr

bbBbBb
bBbBBb

bbBbBBb
bBbBb

=−+=
−+−=

+−−−+=
−+

−−+−

−−+−+

+−−−−+

−−−++

  

Thus the assertion is also true for k = r+1. This completes the proof of Theorem 3.2(b). 
 

5.  BINET FORM FOR CO-BALANCING NUMBERS 
 
    From Section 4 we know that the co-balancing numbers satisfy the recurrence 

relation 
             26 11 +−= −+ nnn bbb  

which is a second order linear non-homogeneous difference equation with constant 
coefficients. Substituting 2/1+= nn bc  we see that cn obey the recurrence relation 
             11 6 −+ −= nnn ccc  
which is homogeneous. The general solution of this equation is  
              nn

n BAc 21 λ+λ=                                   (8) 

where 83   and  83 21 −=λ+=λ  are the two roots of the auxiliary equation  
             0162 =+λ−λ . 
Substituting 2/5  and  2/1 21 == cc  into (8) we obtain 

             
( ) ( )212211

1  and  1
λ−λλ

=
λ−λλ

= BA  

where 21   and  21 21 −=λ+=λ . Thus 
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             ⋅⋅⋅=
λ−λ
λ−λ

=λ+λ=
−−

 2, 1,  ; 
21

21
21

2/12/1

nBAc
nn

nn
n  

which implies 

             ⋅⋅⋅=−
λ−λ
λ−λ

=
−−

 2, 1,  ; 
2
1

21

21
2/12/1

nb
nn

n  . 

 
    The above discussion proves the following theorem: 
 
    Theorem 5.1 If bn  is the nth co-balancing number then its Binet form is  

             ⋅⋅⋅=−
λ−λ
λ−λ

=
−−

 2, 1,  ; 
2
1

21

21
2/12/1

nb
nn

n   

where 83  ,83 21 −=λ+=λ , 21   and  21 2/1
2

2/1
1 −=λ+=λ . 

 
 
6.RELATIONS AMONG BALANCING NUMBERS, CO-BALANCING 

NUMBERS, BALANCERS AND CO-BALANCERS 
    
    Let B be any balancing number with balancer R and b any co-balancing number 
with co-balancer r. Then by definition, the pairs (B, R) and  (b, r) satisfy respectively    
             1+2+ · · · + (B −1) = (B+1) + (B+2) + · · · + (B+R)              (9) 
and 
             1+2+ · · · + b = (b+1) + (b+2) + · · · + (b+r).                (10)  
Solving (9) for B and (10) for b we find  

             
2

188)12( 2 ++++
=

RRRB                           (11)  

and 

             
2

18)12( 2 ++−
=

rrb  .                             (12)  

We infer from (11) that if R is a balancer then, 188 2 ++ RR  is a perfect square and from 
(12) we conclude that if r is a co-balancer then, 8r2 + 1 is a perfect square. 
 
    The above discussion proves the following theorem: 
 
    Theorem 6.1 Every balancer is a co-balancing number and every co-balancer is a 
balancing number. 
 
    For n = 1, 2,⋅⋅⋅ as usual let Bn be the nth balancing number and bn, the nth co-
balancing number. We also denote by Rn, the balancer corresponding to Bn and rn, the co-
balancer corresponding to bn. What we are going to prove now is much stronger than 
Theorem 6.1. 
 
    Theorem 6.2 For n = 1, 2, ⋅⋅⋅, nnnn BrbR == +1   and  . 
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    Proof: We know that if B is a balancing number with balancer R then 

             
2

18)12( 2 +++−
=

BBR  (see[1], p.98). 

Thus 

             
2

18)12( 2
11

1
+++−

= ++
+

nn
n

BB
R ,                       (13) 

             
2

18)12( 2
11

1
+++−

= −−
−

nn
n

BB
R ,                       (14) 

Also, from Theorem 3.1 and Corollary 3.2 of [1] we have 
             183 2

1 ++=+ nnn BBB ,                              (15) 
and              
             183 2

1 +−=− nnn BBB .                               (16) 
Substituting (15) and (16) into (13) and (14) respectively we obtain 
 

             
2

1182 2

1
−++

=+
nn

n
BB

R ,   

             
2

118514 2

1
−++−

=−
nn

n
BB

R . 

Adding the last two equations we get  

             

.26                   

2
2

18)12(
6                   

  
2

218612

2

2

11

+=

+
+++−

⋅=

−++−
=+ −+

n

nn

nn
nn

R

BB

BB
RR

   

This gives  
             26 11 +−= −+ nnn RRR . 
Thus Rn satisfies the same recurrence relation as that of bn. Further, since R1 = b1 = 0 and     
R2 = b2 = 2, it follows that Rn = bn for n = 1, 2,⋅⋅⋅. This proves the first part of the theorem. 
 
    We prove the second part of the theorem in a similar way. Using (3) we obtain 

             
2

188)12( 1
2

11
1

++++−
= +++

+
nnn

n
bbb

r                       (17) 

and 

             
2

188)12( 1
2

11
1

++++−
= −−−

−
nnn

n
bbb

r .                     (18) 

Substituting  
             11883 1

2
11 ++++= +++ nnnn bbbb    
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into (17) and  
             11883 1

2
11 ++++= −−− nnnn bbbb    

into (18) we obtain  

             
2

11882 1
2

1
1

++++
= −+

+
nnn

n
bbb

r  

and        

             
2

7188514 1
2

1
1

−+++−
= −−

−
nnn

n
bbb

r . 

Adding the last two equations we get 

             

.6 
2

188)12(
6                   

  
2

6188612

2

2

11

n
nnn

nnn
nn

r
bbb

bbb
rr

=
++++−

⋅=

−+++−
=+ −+

   

Thus rn satisfies the same recurrence relation as that of Bn. Further, since 121 == rB and 
632 == rB  it follows that 1+= nn rB  for n = 1, 2,⋅⋅⋅ . This completes the proof of the 

theorem. 
 
    Corollary 6.3 Every balancer is even. 
 
    Proof: Directly follows from Theorem 3.1 and Theorem 6.2. 
 
    Corollary 6.4 nnn BRR 21 +=+ . 
 
    Proof: Directly follows from Corollary 4.2 and Theorem 6.2. 
 
    We are now in a position to prove that h(x) and t(x, y) are co-balancing numbers as 
stated in Theorem 2.1. 
     
    We first show that if x is a co-balancing number then  
             1188)12(188)( 22 +++++++= xxxxxxh  
is also a co-balancing number. 
 
   From Theorem 3.1 of [1] we know that if y is a balancing number then 

182 2 += yyu  is also a balancing number and the balancer corresponding to u is  

             .1828 
2

18)12( 22
2

+−=
+++−

= yyyuuR              (19) 

If  x is the balancer corresponding to the balancing number y then from (11) we find 

             ,
2

188)12( 2 ++++
=

xxxy
 

so that 
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       ( ) .188)12(2            

5188)12(4242418
2

2

222

++++=

++++++=+

xxx

xxxxxy

           
(20) 

Substitution of  (20) into (19) gives 
 
 
 
 
 

             [ ]
).(188)12(188    

188)12(2
2

188)12(22            

4188)12(42424

22

2
2

22

xhxxxxx

xxxxxx

xxxxxR

=++++++=

++++⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++++
−

++++++=

 

Thus for any balancer x, h(x) is always a balancer. Since by Theorem 6.1 every balancer 
is a co-balancing number the result follows. 
 
    We next prove that if x and y are co-balancing numbers then  

             ]
[

1188188188)12(              

188)12()12)(12(2),(
222

2
2
1

−+++++++++

++++++=

yyxxxxy

yyxyxyxt
 

is also a co-balancing number. From Theorem 4.1 of [1] we know that if u and v are 
balancing numbers then 
             1818 22 +++= uvvuw  
is also a balancing number. Let s, x and y be the balancers corresponding to the balancing 
numbers w, u and v respectively. Then  

   
( )( )[ ] (21)                              118218218188

2
1   

2
18)12(

2222

2

⋅−+−+−+++=

+++−
=

uvvuvuuv

wws
  

Now substituting  

             
2

188)12( 2 ++++
=

xxxu   

and  

             
2

188)12( 2 ++++
=

yyy
v

 
into (21) we find that  
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             ).,(   
1188188188)12(              

188)12()12)(12(2

]
[

222

2
2
1

yxt
yyxxxxy

yyxyxs

=

−+++++++++

++++++=

 

Again since every balancer is a co-balancing number by Theorem 6.1, the result follows. 
 
    Remark: t(x, x) = h(x). 
 
 
 
 
7.  AN APPLICATION OF CO-BALANCING NUMBERS TO THE 

DIOPHANTINE EQUATION 222 yxx =++ 1)(  
 

    As we know, the Diophantine equation ∈=++ yxyxx ,  ,)1( 222 ℤ+, is a particular 
case of the equation 222 zyx =+ , x, y, z ∈ℤ+.  Any solution (x, y, z) of the later equation 
is called a Pythagorean triplet. Behera and Panda [1] established a link between the 
solutions of the equation 222 )1( yxx =++  and balancing numbers. Here we are going to 
obtain an easy relation between the solutions of this equation with co-balancing numbers. 
 
    Let b be any co-balancing number and r its co-balancer and c = b + r. Then 
equation (2) can be re-written as  

             1+2+ · · · + b = (b+1) + (b+2) + · · · + c,  
from which we find b in terms of c as  

             .1221 2 +++−= ccb  
Thus 122 2 ++ cc  is a perfect square and also 
             .)1(122 222 ++=++ cccc  
This suggests that the Diophantine equation 222 )1( yxx =++ has the solution  

             .122  , 2 ++=+= ccyrbx  
Take for example b = 14, so that r = 6 and c = b + r = 20. Further 

22 29841122 ==++ cc  and we have  
             .292120 222 =+   
Similarly for b = 84, we have 1192 +1202 = 1692. 
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