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Abstract: The study of number sequences has been a source of attraction to the 

mathematicians since ancient times. Since then many of them are focusing their interest 
on the study of the fascinating triangular numbers. In a recent study Behera and Panda 
tried to find the solutions of the Diophantine equation 1+2+ · · · +(n-1) = (n+1) + (n+2) + 
· · ·+ (n+r) and found that the square of any n ∈ℤ+ satisfying this equation is a triangular 
number. It can be also shown that if r ∈ℤ+ satisfies the above equation then rr +2  is also 
a triangular number. If a pair (n, r) constitutes a solution of the above equation then n is 
called a balancing number and r is called the balancer corresponding to n. In the joint 
paper “On the square roots of triangular numbers” published in “The Fibonacci 
Quarterly” in 1999, Behera and Panda introduced balancing numbers and studied many 
important properties of these numbers. In this paper we establish some other interesting 
arithmetic-type, de-Moivre’s-type and trigonometric-type properties of balancing 
numbers. We also establish a most important property concerning the greatest common 
divisor of two balancing numbers.  

 
1. INTRODUCTION  

    Recently, Behera and Panda [3] introduced balancing numbers n∈ℤ+ as solutions 
of the equation   
             1+2+ · · · + (n −1) = (n+1) + (n+2) + · · · + (n+r),             
calling r∈ℤ+, the balancer corresponding to the balancing number n. For example 6, 35 
and 204 are balancing numbers with balancers 2, 14 and 84 respectively. It is also proved 
in [3] that a positive integer n is a balancing number if and only if n2 is a triangular 
number, that is 18 2 +n is a perfect square. Though the definition of balancing number 
suggests that it must be grater than 2, Behera and Panda [3] accepted 1 as a balancing 
number being the positive square root of the square triangular number 1. 
 
    Behera and Panda [3], while accepting 1 as a balancing number, have set B0 = 1, B1 
= 6, and so on, using the symbol Bn for the nth balancing number. To standardize the 
notation at par with Fibonacci numbers, we relabel the balancing numbers by setting B1 = 
1, B2 = 6 and so on.  
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    Some results established by Behera and Panda [3] can be stated with this new 
convention as follows: 

 
The second order linear recurrence:  

             ⋅=−= −+ L,3 ,2  ;6 11 nBBB nnn                        …(1) 
    The non-linear first order recurrence: 
             ⋅=++=+ L,2 ,1  ;183 2

1 nBBB nnn                     …(2) 
 
    The relation: 
             .2,,2 ,1  ;11 −=−⋅= −−−+ nrBBBBB rnrrnrn L               …(3) 
 
    The Binet form: 

             ⋅⋅⋅=
λ−λ
λ−λ

=  2, 1,  ,
21

21 nB
nn

n                          …(4) 

    where .83 and  83 21 −=λ+=λ  
 
    The interesting relation: 
             ).1)(1(. 11 −+=−+ nnnn BBBB                          …(5) 
 
    Now using  (1) we can set .01666 120 =×−=−= BBB  
     
    In the next section we establish some arithmetic-type properties and other 
interesting properties of balancing numbers. 
 

2. SOME INTERESTING RESULTS ON BALANCING NUMBERS 
 

Throughout this section nF  is the nth Fibonacci number, nL  is the nth Lucas 

number, nB  is the nth Balancing number and 18 2 += nn BC where n∈ℤ+. Some of the 
following results suggest that nn BC  with associated is   in the way  nL is associated    
with .nF  

 
    We know that if x and y are real or complex numbers, then 

.))(( 22 yxyxyx −=−+  In the following theorem we prove an analogous property of 
balancing numbers. This theorem also generalizes equation (5). 
 
Theorem 2.1:  If m and n are natural numbers and nm > , then 

.))(( nmnmnmnm BBBBBB −+ ⋅=−+  
Proof: Using the Binet form (4) and keeping in mind that ,121 =λλ  we have 
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Remark: The Fibonacci numbers satisfy a similar property (see [4], p.59) 
             .)1( 22

n
nm

mnmnm FFFF +
−+ −−=⋅  

The identity of Theorem 1 looks more symmetric than this result.  
 
    We know that if n is a natural number, then ,)12(31 2nn =−+++ L  

)1(242 +=+++ nnnL  and ).12(221 +=+++ nnnL  In the following theorem we 
prove three properties of balancing numbers similar to the above three identities. 
 
Theorem 2.2: If n is a natural number then 
    (a) ,2

1231 nn BBBB =+++ −L   
    (b) ,1242 +=+++ nnn BBBBB L  
    (c) ).( 1221 ++=+++ nnnn BBBBBB L    
 
Proof: From Theorem 2.1 we have  
             22

nmnmnm BBBB −=⋅ −+  
where m >  n. Replacing m by n +1 in the above identity and keeping in mind that B1 = 1 
we obtain 
             ,22

112 nnn BBB −= ++    
from which (a) follows. 
 
    Replacing n by 2n and r by n in equation (3) we find  
              ,112 −+ −⋅= nnnnn BBBBB  
from which (b) follows. 
 
    The identity (c) directly follows from (a) and (b). 
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    The complex identity nxinxxix n sincos)sin(cos +=+  is known as the              
de-Moivre’s formula (see [1]). The following theorem looks like de-Moivre’s formula. 
 
Theorem 2.3: If n and r are natural numbers, then .8)8( nrnr

r
nn BCBC +=+   

 
Proof: Using the Binet form (4) we obtain 
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Thus 
             .8)()8( 11 nrnr

nrrnr
nn BCBC +=λ=λ=+  

 
Remark: The Fibonacci numbers satisfy a similar property 
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Corollary 2.4: If n and r are natural numbers, then .8)8( nrnr

r
nn BCBC −=−  

 
Proof: Since 
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the result follows. 
 
    The following theorem looks like the trigonometric identity 

.sincoscossin)sin( yxyxyx +=+   
 
Theorem 2.5: If m and n are natural numbers, then .nmnmnm BCCBB +=+  
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Proof: If m and n are natural numbers, then using equation (6) we obtain 

             
).8(                                         

)8)(8( 111

nmnm

nmnm
nnmm

BC
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+
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==++ λλλ
             …(7) 

On the other hand, 

             
).8(8)8(                     

)8)(8(

nmnmnmnm

nnmm

BCCBBBCC

BCBC

+++=

++
      …(8) 

Comparing equations (7) and (8) we get  
             ).(8)8(8 nmnmnmnmnmnm BCCBBBCCBC +++=+ ++       …(9) 
Equating the rational and irrational parts from both sides of equation (9) we obtain 
             nmnmnm BBCCC 8+=+  
and  
             .nmnmnm BCCBB +=+  
 
Remark: The corresponding property for Fibonacci numbers  
             [ ]nmnmnm FLLFF +=+ 2

1 , 
does not look like the trigonometric identity .sincoscossin)sin( yxyxyx +=+  
 
    The following corollary looks like the trigonometric identity 

.sincoscossin)sin( yxyxyx −=−   
 
Corollary 2.6: If m and n are natural numbers and m > n, then .nmnmnm BCCBB −=−  
 
Proof: Same as Theorem 2.5. 
 
    The following corollary resembles the trigonometric identity .cossin22sin xxx =   
 
Corollary 2.7: If n is a natural number, then .22 nnn CBB =  
 
Proof: Directly follows from Theorem 2.5 with m = n. 
 
Remark: The corresponding property for Fibonacci numbers nnn LFF =2 (see [4]) does 
not look like .cossin22sin xxx =  
 
    For any two integers m and n, let us denote the greatest common divisor of m and n 
by (m, n). We know that nm F F  divides  if and only if m divides n and )  ,()  ,( nmnm FFF = . 
The following results show that the balancing numbers also enjoy these beautiful 
properties. 
 
Theorem 2.8: If m and n are natural numbers, then nm B dividesB    if and only if m 
divides n. 
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    To prove Theorem 2.8 we need the following lemmas. 
 
Lemma 2.9: If m and n are natural numbers, then 1), ( =nn CB .  
 
Proof: Since 18 22 += nn BC , it follows that 1), ( 22 =nn CB  and thus 1)  , ( =nn CB . 
 
Lemma 2.10: If n and k are natural numbers, then kB  divides nkB . 
 
Proof: The proof is based on induction. The hypothesis is trivial for 1=n . Assume that it 
is true for rn = . We need only to show that it is also true for 1+= rn , that is, kB  
divides krB )1( + . Since krkkrkkrkkr BCCBBB +== ++ )1(  by Theorem 2.5, 1), ( =kk CB  by 
Lemma 2.9 and kB  divides rkB  by assumption, it follows that kB  divides krB )1( + .  
 
Lemma 2.11: If n and k are natural numbers, then 1),( =nkk CB . 
 
Proof: By Lemma 2.9, 1), ( =nknk CB . Since kB  divides nkB  by Lemma 2.10, it follows 
that 1), ( =nkk CB . 
 
Lemma 2.12: If n and k are natural numbers and nk B dividesB  , then k divides n. 
 
Proof: Certainly kn ≥ . If  kn =  then the proof is trivial. Assume that kn > . Then by 
Euclid’s division lemma ([2], Theorem 2.1), there exists integers q and r such that 

krq <≤≥ 0 ,1  and rqkn += . By Theorem 2.5, rqkrqkrqkn BCCBBB +== + . Since 
 kB divides qkB  by Lemma 2.10, and 1),( =qkk CB  by Lemma 2.11, it follows that 
 kB divides .rB  Since kr < , it follows that 0=rB and hence 0=r . Thus qkn =  and 

therefore k divides n. 
 
    It can now be readily seen that Theorem 2.8 directly follows from Lemmas 2.10 
and 2.12. 
 
    The following theorem tells something more than Theorem 2.8. 
 
Theorem 2.13: If m and n are natural numbers, then )  ,()  ,( nmnm BBB = . 
 
Proof: If nm = , the proof is trivial; else let us assume without loss of generality that 

nm < . By Euclid’s division lemma, there exists integers 11  and rq  such that 
mrq <≤≥ 11 0  ,1  and .1rqmn +=  Now by Theorem 2.5 
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Since mB  divides mqB
1

 by Lemma 2.10 and 1)  ,(
1

=mqm CB  by Lemma 2.11, it follows 
that )  , ( )  , (

1rmnm BBBB =  and )  ,()  ,()  ,( 111 rmrmqmnm =+= . If 01 >r , then there 
exists integers 22  and rq  such that 122 0 ,1 rrq <≤≥  and .212 rrqm +=  Now again by 
Theorem 2.5, 
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and )  ,()  , ()  ,( 1212121 rrrrrqrm =+= . This process may be continued till a newly arising 

ir  does not equal to zero. Since L>> 21 rr , it follows that imri −≤ , so that after at 
most m steps some ir  will be equal to zero. If 0  and  ,01 =>− kk rr , then we have  
             

11112
)  ,( )  , ()  , (

−−−−−
===

kkkkkk rrrqrrnm BBBBBBB  
and 11112 )  ,()  ,()  ,( −−−−− === kkkkkk rrrqrrnm . Thus ) ,(1

)  ,( nmrnm BBBB
k

==
−

 and the 
proof is complete. 
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