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Abstract: The study of number sequences has been a source of attraction to the
mathematicians since ancient times. Since then many of them are focusing their interest
on the study of the fascinating triangular numbers. In a recent study Behera and Panda
tried to find the solutions of the Diophantine equation 1+2+ - - - +(n-1) = (n+1) + (n+2) +

.-+ (n+r) and found that the square of any n eZ" satisfying this equation is a triangular

number. It can be also shown that if r eZ" satisfies the above equation then r? +r is also
a triangular number. If a pair (n, r) constitutes a solution of the above equation then n is
called a balancing number and r is called the balancer corresponding to n. In the joint
paper “On the square roots of triangular numbers” published in “The Fibonacci
Quarterly” in 1999, Behera and Panda introduced balancing numbers and studied many
important properties of these numbers. In this paper we establish some other interesting
arithmetic-type, de-Moivre’s-type and trigonometric-type properties of balancing
numbers. We also establish a most important property concerning the greatest common
divisor of two balancing numbers.

1. INTRODUCTION

Recently, Behera and Panda [3] introduced balancing numbers neZ" as solutions
of the equation
142+ - -+ (n =1) = (n+1) + (n+2) + - - - + (n+1),

calling reZ", the balancer corresponding to the balancing number n. For example 6, 35
and 204 are balancing numbers with balancers 2, 14 and 84 respectively. It is also proved
in [3] that a positive integer n is a balancing number if and only if n? is a triangular
number, that is 8n” +1is a perfect square. Though the definition of balancing number
suggests that it must be grater than 2, Behera and Panda [3] accepted 1 as a balancing
number being the positive square root of the square triangular number 1.

Behera and Panda [3], while accepting 1 as a balancing number, have set By = 1, B;
= 6, and so on, using the symbol B, for the n™ balancing number. To standardize the
notation at par with Fibonacci numbers, we relabel the balancing numbers by setting B =
1, B, =6and so on.



Some results established by Behera and Panda [3] can be stated with this new
convention as follows:

The second order linear recurrence:
B, =6B —B ,;n=23"" ...()
The non-linear first order recurrence:

B, =3B, +8B2+1; n=12,- ..(2)

The relation:
B_,-BB, _ ,;r=12--n-2 ...(3)

The Binet form:

B, MRy n=12,-- ...(4)
}“1_7“2

where &, =3++/8 and i, =3-+/8.

The interesting relation:
B..1-B.; = (B, +1)(B, -1). -.-(5)

n+1
Now using (1) we canset B, =B, -6B, =6-6x1=0.

In the next section we establish some arithmetic-type properties and other
interesting properties of balancing numbers.

2. SOME INTERESTING RESULTS ON BALANCING NUMBERS

Throughout this section F, is the n™ Fibonacci number, L, is the n™ Lucas

number, B, is the n" Balancing number and C, =/8B? +1where neZ*. Some of the
following results suggest that C, isassociated with B, in the way L, is associated
with F,.

We know that if x and y are real or complex numbers, then
(x+y)(x—=y)=x*-y?. In the following theorem we prove an analogous property of
balancing numbers. This theorem also generalizes equation (5).

Theorem 2.1: If m and n are natural numbers and m>n, then
(Bm + Bn)(Bm - Bn) = Bm+n ' Bm—n'
Proof: Using the Binet form (4) and keeping in mind that A,A, =1, we have



(}\’ m+n k2m+n)(xlm—n _}\sz—n)

B %
PronBnon = (A1 —2,)°
_ (™™ 425" = (™A 4",
) (1 =25)?
04" ") = 04" 2™
) (A1 =2,)?
_ (7\12m +7¥22m -20"2,") - (Mzn ‘”vz2n —2)"%,")
) (A1 =25)?

2 2
B }le _}\’zm ) Xln _}\’zn
7"1_7”2 7"1_7”2
= Bm2 - an =(By +B,)(By — By).

Remark: The Fibonacci numbers satisfy a similar property (see [4], p.59)
F. -F . =F*—(1)™"F?2

The identity of Theorem 1 looks more symmetric than this result.

We know that if n is a natural number, then 1+3+---4+(2n-1)=n?,
2+4+---+2n=n(n+1) and 1+2+---+2n=n(2n+1). In the following theorem we
prove three properties of balancing numbers similar to the above three identities.

Theorem 2.2: If n is a natural number then
(a) Bl + BS oot BZn—l = an’
(b) BZ + B4 t-- BZn = Ban+l’
(C) Bl + Bz teot BZn = Bn(Bn + Bn+1)'

Proof: From Theorem 2.1 we have
Bm+n ’ Bm—n = Bm2 - an
where m > n. Replacing m by n +1 in the above identity and keeping in mind that B; = 1

we obtain
2
n )

BZn+l = Br1+12 -B
from which (a) follows.

Replacing n by 2n and r by n in equation (3) we find
BZn = Bn+1 ’ Bn - Bn Bn—l’
from which (b) follows.

The identity (c) directly follows from (a) and (b).



The complex identity (cosx+isinx)" =cosnx+isinnx 1is known as the
de-Moivre’s formula (see [1]). The following theorem looks like de-Moivre’s formula.

Theorem 2.3: If n and r are natural numbers, then (C, +x/§Bn)r =C,, +\/§Bm.

Proof: Using the Binet form (4) we obtain

n n 2
C,2=8B°+1=8 MoThe |y
X1_7‘2

2n 2n
:8{—% 4 _2}+1

(2+/8)?
2n 2n n n 2
_11 + 4, +2_ A+,
4 2 '
Hence
c :k1"+k2”.
" 2
Now
IRy A=A,
C,++8B, =" 72 4 JgZt — 2 ) " ..(6
> 78 : (6)
Thus

(C, +/8B,)" =(,") =1, =C,, +/8B,,.

Remark: The Fibonacci numbers satisfy a similar property

|:Ln +\/g|:n }r _ Lrn +\/g|:rn

2 2

Corollary 2.4: If n and r are natural numbers, then (C,, —\/§Bn)r =C,, —\/anr-

Proof: Since
A A" A=A
Cn_\/an:l 2_\/§1 2 )"
2 24/8 i
the result follows.
The  following  theorem  looks like the  trigonometric  identity

sin(X+ y) =sin Xcos y + COS XSin y.

Theorem 2.5: If m and n are natural numbers, then B, =B, C, +C_B,.



Proof: If m and n are natural numbers, then using equation (6) we obtain
(C,, ++/8B,)(C, +~/8B,) = 4"4" = 4,™" 0
= (Cpn +/8B,,.,).
On the other hand,
(C,, ++/8B,)(C, +~/8B,)
- (C,C, +8B,B,)+~/8(B,C, +8C,B,).
Comparing equations (7) and (8) we get
C.. ++8B_. =(C.C,+8B, B )+8(B.C. +C,B.). ...(9)
Equating the rational and irrational parts from both sides of equation (9) we obtain
C...=C.,C, +8B,B,

...(8)

and
B,., =B,C,+C,B,.

Remark: The corresponding property for Fibonacci numbers
Fm+n = %[Fm Lf'l + Lm Fn]’
does not look like the trigonometric identity sin(x + y) = sin Xxcos y + cos xsin y.

The  following  corollary  looks like the  trigonometric  identity
sin(X —y) =sin Xcosy —Ccos Xsin y.

Corollary 2.6: If m and n are natural numbers and m>n, then B, , =B, C, —-C,_B,.

Proof: Same as Theorem 2.5.
The following corollary resembles the trigonometric identity sin2x = 2sin X cos x.

Corollary 2.7: If n is a natural number, then B,, =2B,C,.

Proof: Directly follows from Theorem 2.5 with m =n.

Remark: The corresponding property for Fibonacci numbers F,, =F L, (see [4]) does
not look like sin2x = 2sin X cos x.

For any two integers m and n, let us denote the greatest common divisor of m and n
by (m, n). We know that F_ divides F if and only if m dividesnand (F,, F))=Fg, -

The following results show that the balancing numbers also enjoy these beautiful
properties.

Theorem 2.8: If m and n are natural numbers, then B, divides B, if and only if m
divides n.



To prove Theorem 2.8 we need the following lemmas.

Lemma 2.9: If m and n are natural numbers, then (B, ,C,) =1.
Proof: Since C,* =8B,* +1, it follows that (B, ,C,?) =1 and thus (B, , C,) =1.
Lemma 2.10: If n and k are natural numbers, then B, divides B, .

Proof: The proof is based on induction. The hypothesis is trivial for n =1. Assume that it
is true for n=r. We need only to show that it is also true for n=r+1, that is, B,

divides B,y . Since B, =B,., =B,C, +C,B, by Theorem 2.5, (B, ,C,)=1 by
Lemma 2.9 and B, divides B, by assumption, it follows that B, divides B, .

Lemma 2.11: If n and k are natural numbers, then (B, ,C, ) =1.

Proof: By Lemma 2.9, (B,, ,C, ) =1. Since B, divides B,, by Lemma 2.10, it follows
that (B, ,C,) =1.

Lemma 2.12: If n and k are natural numbers and B, divides B, , then k divides n.

Proof: Certainly n>k . If n=k then the proof is trivial. Assume that n > k. Then by
Euclid’s division lemma ([2], Theorem 2.1), there exists integers q and r such that
g210<r<k and n=gk+r. By Theorem 2.5, B, =B, , =B,C, +C,B,. Since

gk ='r

B, divides By by Lemma 2.10, and (B,,C,)=1 by Lemma 2.11, it follows that

B, divides B,. Since r <k, it follows that B, =0and hence r=0. Thus n=gk and
therefore k divides n.

gk+r

It can now be readily seen that Theorem 2.8 directly follows from Lemmas 2.10
and 2.12.

The following theorem tells something more than Theorem 2.8.

Theorem 2.13: If m and n are natural numbers, then (B, B,) =B

(m, n)*

Proof: If m=n, the proof is trivial; else let us assume without loss of generality that
m<n. By Euclid’s division lemma, there exists integers gq,andr, such that

g; 21 0<r, <m and n=gm+r,. Now by Theorem 2.5
(Bm . Bn)=(Bn, Bqlm+rl)
=(Bn s BgmCr, +CqmBs)-



Since B, divides By, by Lemma 2.10 and (B, C,,)=1 by Lemma 2.11, it follows
that (B, B,)=(By, B;) and (m, n)=(m, gym+r)=(m, r;). If r, >0, then there
exists integers g, andr, such that q, >1,0<r, <r, and m=q,r, +r,. Now again by
Theorem 2.5,
(Bn» By)=(Bn. By)
= (Bg,nsr,0 Br)
= (B,,,Cr, +C
=(B,,, By),
and (m, ) =(q,n +r,, 1) =(r,, ;). This process may be continued till a newly arising
r; does not equal to zero. Since r; >r, >---, it follows that  <m—i, so that after at
most m steps some r; will be equal to zero. If r,_, >0, and r, =0, then we have
By, B.)=(B,,, B, )=(By,., B, ,)=B,
and (m, n)=(r_,, hy)=0"qs Ny)="rcy. Thus (B, B,)= B, =Bmn and the
proof is complete.

B, By)
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