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Abstract—The present work introduces two compilation tech-
niques for reduction of in-rush current in processors with power
gating (PG) facility. These are done by rescheduling the PG
instructions responsible in turning on multiple components from
sleep to active mode at overlapped time intervals. The first
method eliminates overlapped wake-up of the components result-
ing lesser in-rush current at the cost of performance degradation
due to increase in program size. The second method allows
overlapped wake-up as long as the resultant in-rush current is
tolerable by the system with lesser increase in delay and program
size. Algorithms are designed to automate these methods. The
efficacy of the proposed methods are evaluated on MiBench
and MediaBench benchmark programs. The original program
with PG and their translated versions are executed on gem5
which simulates ARM Cortex-M4F processor enhanced with PG.
McPAT is used to find the values of power consumed and in-rush
current. The first and second methods reduce in-rush current by
an average of 54% and 35%, respectively with corresponding
average performance loss of 21% and 9%.

I. INTRODUCTION

The emergence of deep submicron process technology with
the decrease in dimensions of the transistor has increased the
transistor count and speed of operation at the cost of greater
device leakage currents. Power gating (PG) is a technique
used to reduce power consumption of VLSI chips, by shutting
off the blocks that are not in use, thus reducing stand-by or
leakage power. Shutting down of the blocks can be initiated
either by software or by hardware. Many modern processors
are equipped with PG instructions to switch-off and switch-on
different blocks to sleep and active modes, respectively. This
allows the compiler and operating system to reduce runtime
leakage power.

When a power gated block is switched on from sleep mode
to active mode it draws a huge amount of in-rush current
due to simultaneous charging of its internal capacitors. In-rush
current is several times higher than the actual current required
by the block to function in active mode. The flow of in-rush
current may cause permanent damage to the circuit and also
lead to higher power consumption. It can reduce the battery
life for battery-operated systems due to rise in load current.

There exists several hardware schemes to reduce in-rush
current. Some of them are usage of multiple power switches,
daisy chaining, soft start with voltage regulators, discrete and
integrated load switches. Most of them are not practical in

PG design industry since they require more space and higher
design cost.

The present work proposes two software based approaches
for reduction of in-rush current due to overlapped wake-
up caused by PG instructions that simultaneously activates
multiple components. The first method eliminates overlapped
wake-up, while the second one allows overlapped wake-up
with guaranteed tolerable in-rush current. These techniques
can enable a compiler to generate target code that will reduce
in-rush current to tolerable levels.

The existing works on management of in-rush current in
PG systems are discussed in Sec. II. The proposed compila-
tion techniques are explained in Sec. III. Section IV covers
explaination of the experimental setup with analysis of the
results. Finally, Sec. V concludes the present work with future
directions.

II. RELATED WORKS

The existing research and development works on reduction
of in-rush current in systems with PG are based on hardware
techniques at circuit level. Some of the techniques are dis-
cussed in the following paragraph.

In [1] the authors proposed PG structures in which sleep
transistors are turned on in a non-uniform stepwise manner
to reduce the magnitude of peak current and voltage glitches
in the power distribution network requiring minimum time
to stabilize power and ground. In this case, the rush current
gradually increases as the number of switches is turned on.
However, the rush current can be large unless the daisy chain
is very slow. On the other hand, such a long daisy chain can
cause long propagation delay and the slowly rising voltage
can introduce other problems such as hot electron effects [2].
Another approach is to separate the power switches into two
passes: a weak transistor pass and a strong transistor pass [4].
At wake-up, the weak transistors are turned on first so as to
slowly turn on the rush currents. When the design is discharged
(charged) to a voltage close to zero (Vdd), the strong transistor
pass is turned on ready for normal operation. In [2] the
authors introduced a timing and voltage drop analysis tool
named CoolTime. It can guide the designer in setting power
switch structure and sequence for controlling wake-up (rush
current and wake-up time). An in-rush current limiter circuit
[3] invented by Ball can sense the increased load current and



produces sense current having a load current - sense current
ratio of 1000:1, hence reducing the in-rush current. Kiong et
al. introduced the in-rush current optimization power up flow
analysis with PFET removal algorithm [5] to improve the in-
rush current. In [6] the authors introduces two intermediate
scheme to reduce wake-up time. During wake-up procedure
their PG scheme implements a small transistor to control the
sleep transistor (ST), has two stages: relaxation stage and
completely turn-on stage. During the relaxation stage, the drain
to source voltage (Vds) of the ST reduces significantly while
limiting the current exponentially as the Vds of ST changes.
During the complete turn-on stage, the small control transistor
is turned off, and the ST acts like a current source. This two-
stage transition method reduces the peak voltage fluctuations
in the virtual ground and virtual power, and it also reduces
the circuit wake-up time. They also introduced two circuit
schemes with intermediate states to further reduce the ground
bounce based on their proposed power gating circuit scheme.
Meanwhile, the intermediate state saves more charges by
charge recycling while allowing the virtual ground or virtual
power floating between Vdd and ground. In [7] the authors
proposed model memory access power gating (MAPG), a low-
overhead technique to enable power gating of an active core
when it stalls during a long memory access. They described
a programmable two-stage power gating switch design that
can vary a core’s wake-up delay while maintaining voltage
noise limits and leakage power savings with controlled in-rush
current. A novel framework for generating a proper power-
up sequence of the switches to control the in-rush current
of a power-gated domain has been introduced in [8]. It also
minimizes the power-up time and reduces the dynamic IR
drop of the active domains. A detailed study of cause and
effects of in-rush current with remedies to reduce it has been
discussed in [9]. The authors explain in-rush current reduction
techniques like soft-start with the help of voltage regulators to
increase rise time. They explained that power switching with
a controlled rise time can be accomplished by using discrete
circuitry. Effective usage of integrated load switches in place
of the discrete solution was also highlighted. In [10] Kim et
al. discussed the reduction of in-rush current by turning on
each switch cell at different times. They showed that in-rush
current can be reduced even more if signal transition time to
switch each cell is adjusted.

The existing software methodologies to reduce leakage
current on systems with PG are mainly based on compilation
techniques [11], [12], [13], [15], [14], [16] which deals in
scheduling of PG instructions. Task scheduling with PG is
proposed in [17]. Reduction of in-rush current has not been
addressed in these works.

The current status of research carried in this field shows
that there is a scope to perform investigation on software
techniques for in-rush current management in systems with
PG. Existing hardware techniques add extra circuitry for in-
rush current management increasing design cost, design space
and average power consumption. The software techniques can
address these drawbacks.

III. PRESENT WORK

An arrangement for instruction controlled PG is shown in
Fig. 1. It has n PG components C0, C1, · · · , Cn−1. PG is done
with the help of the header p-MOS transistors having higher
threshold voltage (VT ). The header switches are controlled
by an n-bit power gating control register (PGCR) placed in
the power gating controller (PGC). The bits 0, 1, · · · , n − 1
are the PG bits of C0, C1, · · · , Cn−1, respectively. If any of
these bits α ∈ {0, 1 · · · , n − 1} is ‘0’, then the component
Cα is in active mode, otherwise Cα is in sleep mode. Let
there be two PG instructions switch off and switch on each
consuming three clock cycles - one cycle in each of instruction
fetch (IF), instruction decode (ID) and execution (EX) stages
of the instruction pipeline. To put Cα in sleep (or power gated)
mode the instruction switch off (Cα) is used to set the value
of αth bit of PGCR. Cα in sleep mode can be put to active
mode with the help of the instruction switch on(Cα) which
resets the value of αth bit of PGCR. Hence, a program can
use this PG facility.

Vdd

PGCR

C0C1· · ·Cn−1
01n-1· · ·· · ·

...

...

· · ·

PGCControl signals from power management unit

Fig. 1. An arrangement for instruction controlled PG system
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Fig. 2. In-rush current for overlapped and non-overlapped wake-up

When Cα in sleep mode is switched on using switch on(Cα)
it draws in-rush current Iα for a period of wα cycles where wα
is the wake-up time (Tw) of Cα. It is considered that Iα ≤ Itol
for wake-up of any individual PG component Cα, where Itol is
the maximum tolerable in-rush current for a given system. The
problem of intolerable in-rush current may arise during wake-
up of multiple components during an overlapped time interval.
Fig. 2(a) shows in-rush current (Ir) in milliampere (mA) for
overlapped wake-up of two components Cα and Cβ where
β ∈ {0, 1, · · · , n− 1} and β 6= α. wβ and Iβ are the wake-up
time and in-rush current of Cβ , respectively. The resultant in-
rush current is Iα + Iβ . Simultaneous overlapped wake-up of
several components can lead to higher flow of in-rush current
resulting higher peak power dissipation and reduction of chip
reliability. Hence, it is better to have non-overlapped wake-up
as shown in Fig. 2(b).

A. PG with Non-overlapped Wake-up (PGNW)

A program with switch on instructions may cause over-
lapped wake-up of PG components. Considering an assembly
language program with M instructions where ith instruction
Ji is switch on(Cα) and jth instruction Jj is switch on(Cβ),



Ji : switch on(cα);

Ji+1 :
...

Jj : switch on(cβ);

Jj−1 :

Jj+1 :

δi,j

wα

...

Jl :

Jl−1 :

Jl+1 :
...

(a) wα ≤ δi,j,

Ji : switch on(cα, cβ);

Ji+1 :
...

J ′i : switch on(cα);

J ′i+1 = Ji+1
...

J ′k : switch on(cβ);

J ′k−1 = Jk−1

J ′k+1 = Jk
Jk :

...

Jl :

...

Jk+1 :

Jk−1 :

Jl−1 :

Jl+1 :

Original code
Translated code

...

J ′l+1 = Jl

...

J ′l = Jl−1

J ′l+2 = Jl+1

nop

nop

...

Ji : switch on(cα);

Ji+1 :
...

Jj : switch on(cβ);

...

...

Jj+1 :

Jj−1 :

Jl−1 :

Original code

Translated code

Jm−1 :

Jm :

Jl :

...

Ji : switch on(cα);

Ji+1 :
...

Jj : switch on(cβ);

...

...

Jj+1 :

Jj−1 :

Jl−1 :

Original code
Translated code

Jm−1 :

Jm :

Jl :

...

J ′i : switch on(cα);

J ′i+1 = Ji+1
...

J ′j = Jj+1

...

...

J ′j+1 = Ij+2

J ′j−1 = Jj−1

J ′l−1 : nop

J ′m−1 = Jm−1

J ′m = Jm

J ′l : switch on(cβ);

...

J ′l+1 = Jl+1

nop

nop

... (wα − δi,j) nops

non-overlapped

(d) Overlapped wake-up, δi,j = 0 and wβ ≥ wα

(b) Overlapped wake-up, (δi,j + wβ) < wα, for wβ = δi,j, wβ < δi,j

(c) Overlapped wake-up, (δi,j + wβ) ≥ wα

no translation

Jk−1 :

...

Jk :

wβ
wβ
wα

δi,j

δi,j

wα

wβ

wα

wβ

wα

wβ

wα

wβ

wα nops

J ′i = Jj
J ′i+1 = Ji+1
...

J ′j−1 = Jj−1
J ′j = Ji;

J ′j+1 = Jj+1
...

J ′l−1 = Jl−1
J ′l = Jl
...

J ′m−1 = Jm−1

J ′m = Jm

nop

nop

...

...

wβ nops

if wβ = δi,j if wβ < δi,j if wβ > δi,j

wβ

wα

J ′i = Jj
J ′i+1 = Ji+1
...

J ′q−1 = Jq−1
J ′q = Ji;

J ′q+1 = Jq
...

J ′j = Jj−1
J ′j+1 = Jj+1
...

J ′m−1 = Jm−1

J ′m = Jm

nop

nop

...

...

wβ nops

wβ

wα

J ′i = Jj
J ′i+1 = Ji+1
...

J ′j−1 = Jj−1
J ′j = Jj+1;

J ′k−1 = Jk

...

J ′k = Ji
J ′k+1 = Jk+1
...

J ′m−1 = Jm−1

J ′m = Jm

nop

nop

...

...

wβ nops

wβ

wα

wake-up require

and wβ > δi,j

Fig. 3. Elimination of overlapped wake-up using PGNW

where i, j ∈ {0, 1, · · · ,M − 1} and i ≤ j. Let it take δi,j
cycles from Ji to reach Jj . If i = j, then δi,j = 0. For
i < j, δi,j =

∑j−1
p=i cycles(Ip, Ip+1), where cycles(Ip, Ip+1)

is the time gap (in cycles) between the entry of Jp and Jp+1 in
the EX stage. Ji and Jj will result non-overlapped wake-up of
Cα and Cβ if i < j and wα ≤ δi,j . Hence, no translation of the
program is required as shown in Fig. 3(a). Overlapped wake-up
occurs if wα > δi,j . Rescheduling of switch on instructions
for elimination of overlapped wake-up are shown in figures
3(b), 3(c) and 3(d) where 0 ≤ i ≤ q ≤ j ≤ k ≤ l ≤ m < M .
No-operation (nop) instructions are inserted in the translated
code to ensure the usage of a component after completion
of its wake-up. An nop is assumed to consume one byte of
memory space. It takes three clock cycles - one cycle in each of
IF, ID and EX stages. An nop being an immediate successor
of a switch on acts as a delay of one clock cycle after the
execution of switch on. This adds time and space overheads
of O(wα) if (δi,j +wβ) < wα. The time and space overheads
are O(wβ) for (δi,j +wβ) ≥ wα as well as in case of δi,j = 0
and wβ ≥ wα. The space overhead can be reduced to O(1)
by replacing nops with a loop having empty body or a single
nop depending on the values of wα and wβ .

The proposed Algorithm 1 (PGNW Algorithm) produces
the code for PG with non-ovelapped wake-up. It takes an
assembly language level code fragment of the source program

having M ′(M ′ ≤M) instructions with overlapped wake-up of
n′(n′ ≤ n) components. As output it produces an equivalent
PGNW code fragment with rescheduled switch on instructions
leading to non-overlapped wake-up for n′ components. The
time taken by M ′ instructions of input code fragment is T
clock cycles. The input and output code fragments always start
with a switch on instruction.
Algorithm 1 PG with non-overlapped wake-up (PGNW)

Input: A code fragment of M ′ instructions with overlapped wake-up of n′

components, where M ′ ≤M and n′ ≤ n.
Output: A code fragment with rescheduled switch on instructions leading to

non-overlapped wake-up of n components.
Initialization: (i) Store the switch on instructions in S in non-decreasing order of

earliest finishing time of the wake-up.
(ii) Consider the input code fragment as PGNW code.

1: α← S[1].component
2: At cycle 1, replace the switch on instruction with switch on(Cα).
3: t← wα + 1
4: for (u← 1;u ≤ n′;u← u+ 1) do
5: i← S[u].instruction
6: j ← S[u− 1].instruction
7: α← S[u].component
8: β ← S[u− 1].component
9: τ ← t− wβ + δi,j

10: if δi,j + wβ < wα then
11: At cycle τ , remove switch on(Cβ ).
12: Move all instructions starting from cycle τ + 1 backward by one step.
13: Move all instructions starting from cycle t forward by one step.
14: At cycle t, insert switch on(Cα).
15: Move all instructions starting from cycle t+ wα forward by wβ steps.
16: Insert wβ nops from cycle t+ wα − wβ to cycle t+ wα − 1.
17: else if δi,j + wα ≥ wβ then
18: At cycle τ , remove switch on(Cα).
19: Move all instructions starting from cycle τ + 1 backward by one step.
20: if δi,j > 0 then
21: At cycle t+ wβ − 1, insert an nop.
22: end if
23: Move all instructions starting from cycle t forward by one step.
24: At cycle t, insert switch on(Cα).
25: Move instructions starting from cycle t+wα forward by wβ − δi,j steps.
26: Insertwβ−δi,j nops from cycle t+wα−(wβ−δi,j) to cycle t+wα−1.
27: end if
28: t← t+ wα
29: end for

PGNW Algorithm considers an array data structure S having
n′ elements representing switch on instructions for n′ com-
ponents. S[u] is the uth switch on instruction, where u ∈
{1, 2, · · · , n′}. S stores the switch on instructions belonging
to the given code fragment in non-decreasing order of earliest
finishing time of the wake-up of components involved with
switch on instructions. S[u].instruction ∈ {0, 1, · · · ,M ′}
is the instruction number of switch on instruction assigned
to S[u]. The value representing the component turned on by
S[u] is denoted by S[u].component ∈ {0, 1, · · · , n− 1}. The
algorithm begins by considering the given input code fragment
PGNW code.

The input and output code fragments are considered to start
at clock cycle t = 1. Here, t and τ denotes number of clock
cycles starting from cycle 1. In step 2 the first instruction of
the input code fragment which runs during cycle 1 is replaced
by switch on(Cα). Steps 11 and 18 are involved in removal of
switch on instructions which run during cycle τ . This allow
steps 12 and 18 to move all instructions starting from cycle
τ + 1 b bytes backward to lower memory addresses of PGNW
code, where b is the size of the instructions switch on(Cα) and
switch on(Cβ). Hence, in PGNW code these instructions will
begin at cycle τ . Steps 13 and 23 moves all the instructions



starting at cycle t forward to higher memory address by b
bytes, delaying them by one cycle. This enable steps 14 and
24 to schedule switch on(Cα) at cycle t. Steps 15 and 25 move
all instructions staring at cycle t forward by wβ and wβ− δi,j
bytes, respectively. Thus delaying them by same number of
cycles. This allows steps 16 and 26 to insert wβ and wβ−δi,j
bytes, respectively.

Algorithm 1 considers all cases for overlapped wake-up
as shown in Fig. 3. At the beginning of each iteration of
the for loop of steps 4-29 indexed by u, the subarray con-
sisting of elements S[1], S[2], · · · , S[u − 1] constitutes the
currently scheduled switch on instructions that produces non-
overlapped wake-up, the element S[u] constitute the switch on
instruction to be scheduled in the current iteration u for non-
overlapped wake-up with previous u− 1 switch ons, and the
remaining elements of subarray S[u+ 1], S[u+ 2], · · · , S[n′]
constitutes the switch on instructions to be scheduled in
next n′ − u iterations for non-overlapped wake-up. This
property forms the loop invariant which is preserved during
initialization (in steps 1-3), maintenance (in steps 4-29, for
u ∈ {2, 3, · · · , n′}) and termination (when u = n′+1) phases
to ensure the correctness of the algorithm.

In each iteration the movement of O(M ′) instruc-
tions in O(M ′ × wβ) time results insertion of wβ nops
in the PGNW code. wβ is O(wmax), where wmax =
max(w0, w1, · · · , wn−1). Hence, it takes O(n′×M ′×wmax)
time to generate a PGNW code with O(n′ × wmax) nops.

The proposed PGNW method is strict in elimination of
overlapped wake-up. It is suitable for systems where reliability
has higher priority than delay. It may not be suitable for safety-
critical and real-time systems where apart from reliability
lower delay is crucial. Sec. III-B introduces a method to deal
with these issues.

B. PG with Tolerable In-rush current (PGTI)

PGNW guarantees tolerable in-rush current at the cost of
increase in delay and program size. These overheads can be
reduced by allowing overlapped wakepus within the limitation
maximum tolerable in-rush current. For each PG component
Cα an in-rush current table (ITα) is maintained. The tuple
t ∈ {1, 2, · · · , wα} of ITα denoted by ITα[t] stores the value
of Iα during tth cycle of wake-up of Cα. Iα is minimum
during cycles 1 and wα. Iα is maximum or at peak during
cycle wα

2 .
The proposed Algorithm 2 (PGTI Algorithm) produces

the code for PG with tolerable in-rush current. It takes an
assembly language level code fragment of the source program
having M ′(M ′ ≤M) instructions with overlapped wake-up of
n′(n′ ≤ n) components, in-rush current tables (ITs) for each
n′ components and maximum tolerable in-rush current (Itol)
as inputs. As output it generates an equivalent PGTI code frag-
ment with rescheduled switch on instructions that guarantees
atmost Itol amount of in-rush current due to overlapped wake-
up of n′ components. The input and output code fragments
always start with a switch on instruction. PGTI Algorithm
considers two array data structures Itot and S. Itot is an array

Algorithm 2 PG with tolerable in-rush current (PGTI)
Input: (i) A code fragment of M ′ instructions with overlapped wake-up of n′

components, where M ′ ≤M and n′ ≤ n.
(ii) In-rush current tables (ITs) for each n′ components.
(iii) Maximum tolerable in-rush current (Itol).

Output: A PGTI code with rescheduled switch on instructions leading to
overlapped wake-up of n components with tolerable in-rush current.

Initialization: (i) Itot[t]← 0 ∀t|t ∈ {1, 2, · · · , T}.
(ii) Store the switch on instructions in S using following rules:

(a) in order of their occurrences in the code fragment.
(b) if a switch on is having more than one component then store

switch on for each component in non-decreasing order of
wake-up time.

(iii) Consider the input code fragment as PGTI code.
1: α← S[1].component
2: for (t← S[1].start; t ≤ S[1].end; t← t+ 1) do
3: Itot[t]← ITα[t− S[1].start+ 1]
4: end for
5: for (u← 2;u ≤ n′;u← u+ 1) do
6: α← S[u].component
7: β ← S[u− 1].component
8: ∆t← 0
9: t← S[u].start

10: while (t ≤ S[u].end) do
11: if (Itot[t+ ∆t] + ITα[t− S[u].start+ 1]) > Itol then
12: if S[u].start = S[u− 1].start then
13: Move all successors of switch on(Cβ ) forward by one step.
14: Insert switch on(Cα) next to switch on(Cβ ).
15: else
16: Move switch on(Cα) and all its successors forward by one step.
17: Insert an nop as immediate predecessor of switch on(Cα).
18: end if
19: ∆t← ∆t+ 1
20: goto Step 9.
21: end if
22: end while
23: for (t← S[u].start; t ≤ S[u].end; t← t+ 1) do
24: Itot[t+ ∆t]← Itot[t+ ∆t] + ITα[t− S[u].start+ 1]
25: end for
26: end for

of T elements, where T is the total number of clock cycles
required by M ′ instructions belonging to the code fragment
given as input. Itot[t] ∈ R≥0 is the total in-rush current
due to overlapped wake-up during cycle t ∈ {1, 2, · · · , T}.
Initially, all the elements of Itot are assigned with zero. The
array S has n′ elements representing switch on instructions for
n′ components. S[u] is the uth switch on instruction, where
u ∈ {1, 2, · · · , n′}. S stores the switch on instructions in order
of their occurrences in the given code fragment. In case of a
switch on instruction is having more than one component, the
switch on instruction for each component are stored in non-
decreasing order of wake-up time. S[u].start and S[u].end are
the respective staring and finishing times (or cycles) of wake-
up due to S[u], where S[u].start, S[u].end ∈ {1, 2, · · · , T}
and S[u].start ≤ S[u].end. The value representing the com-
ponent turned on by S[u] is denoted by S[u].component ∈
{0, 1, · · · , n − 1}. The algorithm begins by considering the
given input code fragment as the PGTI code.

Steps 1-4 assigns the in-rush current values during the wake-
up of S[1] to the array Itot. In each iteration of the for
loop covering steps 5-26 reschedules S[u] for tolerable in-
rush current. The inner while loop comprising of steps 10-
22 check the possiblity of intolerable in-rush current caused
by wake-up of S[u].component overlapped with the wake-up
of S[1].component, S[2].component, · · ·S[u−1].component
considered in previous u− 1 iterations. For a particular cycle



t ∈ {S[u].start, S[u].start + 1, · · · , S[u].end}, if the total
in-rush current is found to be greater than Itol, then S[u] is
delayed by one cycle using an nop and the delay counter ∆t is
increased by 1. Another trial for checking of tolerable in-rush
current for S[u] is done. This goes on until S[u] is rescheduled
to guarantee tolerable in-rush current. On finding a tolerable
in-rush current the steps 23-24 adds in-rush current produced
by rescheduled S[u] to the total in-rush in Itot.

The steps 13 moves all successive instructions of
switch on(Cβ) forward to higher addresses by b bytes in
memory of PGTI code. Step 14 inserts a b byte instruction
switch on(Cα) as immediate succesor of switch on(Cβ). Sim-
ilarly, step 16 moves switch on(Cβ) and all its successive
instructions forward to higher addresses by 1 byte in memory
of PGTI code. This creates room for an nop inserted as
immediate predecessor of switch on(Cα) in step 17.

At the beginning of each iteration of the for loop of
steps 5-26 indexed by u, the subarray consisting of elements
S[1], S[2], · · · , S[u − 1] constitutes the currently scheduled
switch on instructions that produces tolerable in-rush current
due to overlapped wake-up, the element S[u] constitute the
switch on instruction to be scheduled in the current iteration
u for tolerable in-rush current due to overlapping with previous
u − 1 wake-up, and the remaining elements of subarray
S[u+1], S[u+2], · · · , S[n′] constitutes the switch on instruc-
tions to be scheduled in next n′ − u iterations for tolerable
in-rush current. This property forms the loop invariant which
is preserved during initialization (in steps 1-4), maintenance
(in steps 5-26, for u ∈ {2, 3, · · · , n′}) and termination (when
u = n′+ 1) phases to ensure the correctness of the algorithm.

In each iteration the inner while loop of steps 10-22 take
O(M ′) time due to movement of O(M ′) instructions to insert
an nop in PGTI code. In each iteration of the outer for loop,
the inner while takes O(T ×M ′) time inserting O(T ) nops
and the inner for loop of steps 23-25 take O(T ) time. Hence,
it takes O(n′ × T ×M ′) time to generate a PGTI code with
O(n′ × T ) nops.

IV. EXPERIMENT AND RESULTS

To establish the efficacy of the proposed approach, simu-
lations are carried out on gem5 [18] architecture simulator.
McPAT [20] is used for obtaining power values. gem5 is
configured with the instruction set and functional units (FUs)
of the ARM Cortex-M4F processor [19]. The processor has
seven FUs. Integer ALU (ialu) is not power gated because
it is used in majority of the instructions. The bits 0, 1, 2, 3,
4 and 5 of PGCR are the PG bits of Floating Point Divider
(fpdiv), Floating Point Multiplier (fpmul), Floating Point Adder
(fpadd), Integer Divider (idiv), Integer Multiplier (imul), and
Barrel Shifter (bshf ), respectively as shown in Fig. 4. The size
of the instruction cache is considered to be 32 KB.

McPAT is configured with the power model of ARM Cortex-
M4F based on 32nm process technology, where the leakage
power dissipation is almost 70% of the total power consump-
tion. Here, the processor clock frequency fclk = 1.0 GHz, and
power supply voltage Vdd = 0.9 V. VT of processor’s n-MOS

and p-MOS transistors are Vtn = 0.18 V and Vtp = −0.18
V, respectively. VT of p-MOS transistors which act as header
switches are −0.45 V. Itol = 200 mA. Table I show the values
of load capacitance (c(α)

l ), maximum operating current (I(α)
op ),

wα and peak Iα (Ipkα ) for each Cα belonging to ARM Cortex-
M4F with PG.

TABLE I
VALUES OF c

(α)
l , I

(α)
op , wα AND Ipkα

Cα fpdiv fpmul fpadd idiv imul bshf
c
(α)
l (in nF ) 6.58 5.9 3.89 2.24 1.81 0.8
I(α)
op (in mA) 17.24 15.47 12.84 9.63 8.12 4.72
wα(in cycles) 32 30 24 18 16 10
Ipkα (in mA) 185 177 146 112 102 72

The high level PG instructions switch off and switch on are
designed to support PG in high level languages. An assembly
language level instruction pg pgcr bit vector has been added
to the instruction set, where pgcr bit vector is a 32-bit vector
representing the PG bits of PGCR. Its size is five bytes. It
sets/resets corresponding PG bits of PGCR to switch OFF/ON
the FUs with PG in three clock cycles - one cycle in each of
IF, ID and EX stages. The GCC compiler for ARM Cortex-
M4F [21] is extended to replace high level switch on and
switch off instructions with equivalent pg pgcr bit vector
instruction. The features leading to generation of basic PG
(using [12], [14]), PGNW and PGTI codes are also added to
the GCC compiler for ARM Cortex-M4F.
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Fig. 4. A machine architecture model with PG control

TABLE II
BENCHMARK DESCRIPTION

Program fft ffti rsynth mpeg2 jpeg epic gsm pgp
Bench MiBench MiBench MiBench Media Media Media Media Media
Category Telecomm Telecomm Office Video Image Image Speech Crypto
#cfow 15 8 15 18 14 7 23 9

The proposed techniques are tested on MiBench [22] and
MediaBench [23] benchmark programs as shown in Table II,
where #cfow is the number of code fragments with overlapped
wake-up. The benchmark programs are compiled using up-
dated GCC compiler. The generated target code is executed
on gem5 behaving as ARM Cortex-M4F processor. The per-
formance values are generated by gem5. These performance



values along with process technology and power related pa-
rameters of ARM Cortex-M4F act as input to McPAT in a
prescribed XML file format. McPAT produces the power trace
with the help of information in the XML file. The values of
peak, average, dynamic and leakage power are produced by
McPAT. The values of overlapped in-rush current are obtained
from the peak power values.
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Fig. 5. Comparison of experimental results
The experimental results are shown in Fig. 5. PGNW and

PGTI are compared with respect to the normalized values of
power and performance related to basic PG program. Leakage
power savings achieved by PGNW and PGTI are similar to that
of PG. Peak power dissipation ∝ in-rush current ∝ number
of overlapped wake-up (#overlapped wake up). For PGNW
#overlapped wake up = 0 and for PGTI it is lesser than
that of PG. Hence, peak power and in-rush current for PGTI
are lesser than PG but higher than PGNW. Reduction of in-
rush current and peak power dissipation experienced by (i)
PGNW lies within 28-68% and 25-65%, respectively, and (ii)
PGTI lies within 16-47% and 18-45%, respectively. This leads
to reduction in total average power consumption for PGNW
and PGTI which lies within 7-21% and 2-9%, respectively.
The addition of nops in PGNW and PGTI codes increase ex-
ecution time. The loss in performance experienced by PGNW
and PGTI lie within 5-35% and 2-18%, respectively.

V. CONCLUSION

The present work introduces two compilation techniques
for reduction of in-rush current in PG sytems. The proposed
method PGNW reduces in-rush current by eliminating over-
lapped wake-up at the cost increased delay and program size.

To address these issues PGTI has been introduced. PGTI
allows ovelapped wake-up within the limitations of tolerable
in-rush current. These methods are evaluated on standard
benchmark programs. PGNW achieves higher reduction in in-
rush current. PGTI is better in terms delay and increase in code
size. The future work will investigate to reduce time and space
overheads of PGNW and PGTI codes. Thus making them fit
for real-time and safety-critical embedded systems.
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