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Abstract—In this paper, we present a cooperative spec-
trum sensing technique to identify the spectral location of
primary users (PUs) in a wideband spectrum. Here we first
divide the wideband into narrow bands of equal bandwidth
and deploy arbitrarily located cognitive radio (CR) sensors
to sense the narrowbands. The CR sensors operate on
conventional energy detection principle and we assume that
their spectrum sensing range overlap over each other so
as to exploit diversity and mitigate deep fade problem. In
order to have energy efficiency, we introduce probabilistic
active and sleep state for individual CR sensors. CR sensors
in active state compute energy in the specified sensing
range and communicate it to a fusion center. Assuming
sparse occupancy of PUs in the wideband and by Parseval’s
theorem, we represent energies of sub-bands in form of
sparse vector. Next, we exploit concept of compressive
sensing (CS) at fusion center to reconstruct the vector
representing energies in the sub-bands. Since individual
CR sensors randomly take active or sleep state in a time
epoch, the sensing matrix for reconstruction is identified as
random matrix. Extending the analysis, we also investigate
the value of probability of active/sleep state for which
sensing matrix satisfies Restricted Isometry Property (RIP).
Finally, we compare the reconstructed energies of sub-band
with a specified threshold to make decision on presence or
absence of PU in the particular sub-bands. We validate our
approach via simulations in which we show performance
with (i) variation in probability of sleep state; (ii) variation
in number of time epochs or measurements; (iii) varying
degree of overlap in spectrum sensing range.

Index Terms—Cognitive radio, wideband spectrum sens-
ing, compressive sensing, energy efficiency.

I. INTRODUCTION

The recent trends in wireless communication technol-
ogy is witnessing an exponential increase in high data
rate applications. However, scarcity in usable spectrum
is putting limits on increasing demand of data rate
and capacity. Cognitive Radio (CR) is an upcoming
technology to overcome the drawbacks of static spec-
trum allocation policy by opportunistically exploiting
the underutilized spectrum. The technology is built on
concepts of an intelligent wireless system which on
the basis of operating environment conditions provides
reliable communications to both licensed (primary user
- PU) and unlicensed (secondary user - SU) spectrum
users [1]. Specifically, the SUs in CR networks seck
transmission opportunities over a given band of spectrum
that is temporarily unoccupied by PUs. For the success

of CR technology, the foremost challenge is rapid and
accurate identification of unused spectrum holes over a
wide spectrum band. An efficient sensing of wide-band
spectrum will not only increase throughput and capacity
of SUs but also enables possibility of multi-secondary
user communication [2].

Though wideband spectrum sensing is a promising
technique for CR networks, it faces substantial challenge
in Analog to Digital Converter (ADC) hardware design
over GHz band. This is due to requirement of very
high sampling rate for conventional spectral estimation
methods which specifically operate at or above Nyquist
criterion [2]. One simple strategy to sense entire wide-
band spectrum is to divide it into large number of small
narrow bands and then perform sequential narrow band
sensing. However, such a strategy is highly inefficient
as it will have large sensing time resulting in small
transmission time in dynamically changing spectrum en-
vironment [3]. A similar approach to detect the spectrum
holes is to once again divide the complete wideband into
non-overlapping narrow-bands and at the receiver side
employ a bank of narrow band filter each of which is
tuned to a particular sub-band [4]. This method is highly
complex as it needs numerous RF components and
introduces large latency in detection process. Many other
approaches like multiband joint detection [5], wavelet
detection [6], [7] have been proposed to improve the
accuracy and reduce the hardware complexity; but all
these methods still require sampling the wideband at or
above Nyquist rate.

An alternative to large number of filter banks and high
rate ADCs is to exploit specific feature of spectrum, such
as sparsity. The PU occupancy in wideband spectrum
is defined as sparse if the percentage of occupancy is
very small, which is typical in open spectrum networks
like Television white space (TVWS) [8]. In this context,
several researchers have exploited concept of Compres-
sive Sensing (CS) for CR networks considering sparsity
in different domains. The basis concept of CS is to
reconstruct sparse signals from far fewer measurements
or samples than required by traditional Nyquist sampling
criteria [9]. In order to apply CS, the key requirements
are: (i) sparse representation of desired signal in some



transform domain; and (ii) acquiring incoherent measure-
ments of the signal to gather maximum information in
fewer measurements [10].

Exploiting concept of CS for spectrum hole detection,
[11] proposed a two-step compressed spectrum sensing
scheme for efficient wideband sensing. Taking a slightly
different approach, Bayesian compressive sensing frame-
work is proposed in [12] to reduce sampling requirement
and computational complexity by bypassing signal re-
construction. In [13], multiple CR sensors collaborate
to exploit spatial diversity against wireless fading and
establish consensus among local spectral estimates by
running a decentralized consensus optimization algo-
rithm. Similarly, compressive sampling is performed at
local CRs in [6] to sense wideband spectrum in which
measurements from local CR detectors are fused to
improves the detection performance, specially in deep
fading channels. Considering improvement in detection
performance, authors in [14] have proposed optimization
of threshold at fusion center on the basis of threshold
exploited at local sensors. Similarly, authors in [15] have
exploited multiple antennas to improve the detection
performance in cooperative spectrum sensing network.
It can be noted from above work that CS is a strong
contender for success of wideband sensing in CR net-
works and we believe a more diverse and goal oriented
approach like energy efficiency is still plausible. More
specifically, minimizing the energy required by local
sensors and mitigating the deep fade problem are still
under explored concepts.

In this work, we exploit concept of CS to identify
spectral location of primary users (PUs) in a given
wideband spectrum. The wideband is first divided into
narrow bands of equal bandwidth, and arbitrarily located
CR sensors are deployed to sense the narrowbands. Here
we assume that spectrum sensing range of individual
CR overlap over each other so as to exploit diversity
and mitigate deep fade problem. We also introduce
probabilistic active and sleep state for individual CR
sensors to have energy efficiency in spectrum sensing.
The CR sensors in active state compute energy in the
specified sensing range and communicate it to fusion
center. Assuming sparse occupancy of PUs in the wide-
band and by Parseval’s theorem, we represent energies of
sub-bands in form of sparse vector. Next, we formulate a
1 minimization problem at fusion center to reconstruct
the vector representing energies in sub-bands. Since
individual CR randomly take active or sleep state in
a time epoch, the sensing matrix for reconstruction is
identified as random matrix. In order to improve energy
efficiency, we investigate larger values of probability of
sleep state for which sensing matrix satisfies Restricted
Isometry Property (RIP).
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Fig. 1. Sparsely occupied wideband spectrum

II. SYSTEM MODEL

Consider a wideband spectrum of bandwidth WHz
which can divided into N non-overlapping narrow sub-
bands of equal bandwidth, represented by Wy, =
(%)HZ, as shown in Figure 1. For analytical simplicity,
we assume primary users (PUs) occupy spectrum in sub-
bands, i.e., PUs are located in specific sub-bands only.
Further, we assume sparse occupancy of spectrum by
PUs; thus, if [ is the number of sub-bands occupied by
primary users, then by sparsity [ << N. Our objective
in such a scenario is to identify PU occupied sub-bands
which can be allocated to secondary users (SUs) on
demand.

In order to sense the considered wide-band spectrum,
we consider M cognitive radio (CR) sensors which
are arbitrarily located in the space. Here we further
assume that the sensing range of CR sensors overlap
over each other. Overlap in spectrum sensing range
helps in mitigating the deep fade problem. Thus, if a
particular sensor is in deep fade, PU user occupancy can
be detected by another CR sensor which has overlapped
sensing range and is not in deep fade. In addition, overlap
in spectrum sensing range reduces the quantity of CR
sensors required to sense the wideband spectrum. The
sub-bands sensed by the CR sensors can be represented
by a M x N matrix A whose elements a,, , are given
as,

{1 n"'sub-band is sensed by m‘" CR sensor
Qm,n =

0 otherwise
(1)
where, m € {1,2,---M} and n € {1,2,---N}. The
sensed signal at sensing time index i by m** CR sensor



can be expressed as,

Emli] = {”’" i

hom, [Z] Sm [Z] + N [Z]

Huypothesis Hy

Hypothesis Hy '
2

in which, s,,[i] denotes the sample of PU signal sensed
by m!* CR sensor; h,,[i] and n,,[i] denotes fading
coefficient sample and additive noise sample at m** CR
sensor, respectively. Here we assume flat fading with
fading coefficient h,,[i] to be Rayleigh distributed and
additive noise w,,[i] to be white Gaussian distributed
with mean 0 and variance 2. The m!" CR sensor can
sense the signal under binary hypothesis: H - absence
of PU and H; presence of PU signal.

Assuming conventional energy detector, if m!* CR
sensor gathers L. samples, then the computed energy
can be expressed as,

L.—1
gm =Y |zmlill*.
i=0

Next, applying Parseval’s theorem, the computed energy
gm 1s equal to the total energy present in sub-bands of
of the m! CR sensor sensing range. Thus, if ey is
a N x 1 vector, with n‘" element represent energy in
nt" sub-band then the energy sensed by m‘" CR sensor
is summation of energy in the corresponding spectrum
sensing range. In vector form this can be represented,

“)

where a,, denotes m"" row of A matrix. The energies
computed by all M sensors in form a vector g can be
expressed as,

3)

gm = Qm - €f
th

g = Aes ®)

Here, we would like to remind our readers that due
to assumption of sparse PU occupancy, vector € is a
sparse vector. However, depending upon the overlap in
spectrum sensing range of individual CR sensors, g may
not be a sparse vector.

Next, we introduce two states for all M CR sensors:
Active state in which CR sensor will sense the spectrum;
and sleep state in which CR sensor will perform energy
conservation and will not participate in sensing. We
model probability of a particular sensor being in active
or sleep state in an epoch by Bernoulli distribution. Here
epoch is defined by decomposing the total sensing time
in K equal parts. We further assume that state probability
of sensors are identical and independent of each other,
and denote probability of a CR sensor being in sleep
state be p. Let L be the total number of samples that
can be sensed in complete sensing time, then number
of sample an active CR sensor collects in an epoch is
L/K. Thus, if L, = L/K then g, is the energy sensed
by m!* CR sensor in each epoch.

Finally, we assume that the CR sensors in active state
communicate the sensed energy at the end of each epoch

to fusion center. Here we assume ideal communication
between spatially located CR sensors and fusion center,
i.e., all measurement transmission are synchronized and
there are no loss of packets.

III. COMPRESSIVE SENSING EQUIVALENT PROBLEM
FORMULATION

In order to apply concept of compressive sensing (CS)
on our system model we first need to identify the vector
which is compressible, i.e., can be expressed by sparse
representation in some known transform domain. It can
be observed from equation (5) that g is compressible
vector which can be expressed by sparse representation
ey in the transform domain spanned by columns of
matrix A. Next we define sparsity order as the number
of non-zero elements in the sparse representation. Since,
I out of total N sub-bands are occupied by PUs, &
is a sparse vector of sparsity order [ and dimension N
(I << N).

The task of compressive sensing is to recover sparse
vector from reduced set of measurements. In our system
model, weighted sum of energies sensed by active CR
sensors in a given epoch denoted as measurement for that
epoch. The weights for sensed energy are multiplied at
CR sensors itself and summation of received weighted
energies is performed at fusion center. Thus, fusion
center receives a set of K measurements (since we have
divided sensing time into K epochs) where weights for
CR sensor can be expressed by a K x M matrix C whose
elements cy, ,,, are expressed as,

0 when m!" CR sensor is in sleep state,
with probability p

« when m!" CR sensor is in active state,

with probability (1 — p)/2

when mt" CR sensor is in active state,

with probability (1 — p)/2

Ckom =

(6)
Matrix C forms measurement matrix and finally the K x
1 measurement vector y can be expressed as,
y = Cg = CAeg (7
The theory of compressive sensing indicates that respec-
tive energies in sub-band €f can be accurately recovered
from measurements y, if characteristics of incoherent
measurements and Restricted Isomerty Property (RIP)
are satisfied. In next section we discuss the structure of
A and C matrix and identify the value of probability of
sleep state p required for satisfying RIP property.

IV. REPRESENTATION AND MEASUREMENT MATRIX

The quality of sparse reconstruction in CS depends on
the properties of sparse representation basis and sensing
or measurement matrix.



Sparse representation basis: In case of CS, a signal
may not appear sparse in a given domain, but it may have
sparse representation in some known transform domain.
For such representation, we need to identify application
specific basis functions. It can be observed that for the
considered CR network scenario, vector € represents
energies in sub-bands and is sparse vector (based on
assumption of sparse PU occupancy). However, energies
computed by CR sensors represented by vector g may
not be sparse. Vectors € and g are related by transform-
ing matrix A which is essentially mapping the sparse
sparse vector € in some sub space (assuming M < N).

Since matrix A denotes overlap in spectrum sensing
range of local CR sensors, the structure of A is typically
a non-square banded matrix. For example, if there is
uniform spectrum sensing overlap in which local CR
senses its sub-band and adjacent sub-bands, then matrix
A can be expressed as,

11000 --- 0 0 O
111060 --- 0 0O
L
0o000©O0- -- 111
0o o0o0o0®O0 -- 011

Now if vector €y is I, sparse then the vector g will
also be sparse with sparsity order I, < 2[.. Thus, g is
also expected to be sparse with reduces sparsity order.
In general, if r is the maximum number of CR sensors
sensing the same sub-band, then sparsity order reduces
to I < rle. In special case when M is quite small then
g may not be sparse. For example, when M = 2 the
sparsity may be completely lost as both the sensors might
be sensing the PU energies. Thus, there is tradeoff in
performance in reducing number of CRs and the overlap
in spectrum sensing range.

Random Sampling Matrix: Typically, Gaussian and
Bernoulli matrices are used as sampling matrices as with
high probability they satisfy the RIP property [16]. In
[17], authors have proved Joshnson Lindenstrauss (JL)
embedding for the matrix similar to measurement matrix
C of equation (7) and can be stated here as:

Consider a arbitrary set of n points denoted by P in
d-dimensional space; these point can be arranged in form
of a nxd matrix H. Let R be a dx k random matrix with
elements r; ; (i € {1,---,d},j € {1,---,k}) being
independent and identical distributed as,

+1 with probability
Tij = V3¢ 0 with probability % . ®)
—1 with probability

o=

=

Further let E = ﬁHR
Now, if & > %, for some ¢, 3 > 0; then with
probability atleast 1 — n~?, for all u,v € P,

(1 =)llu—v[> < [If(u) = fF()II* < (1 +&)lfu—v]]?

where, function f maps i" row of H matrix to i*" row
of E matrix.

It is later shown in [16] that by following concentra-
tion of inequalities, the random matrix presented in equa-
tion (8) also satisfies RIP property. It can be observed
that matrix of equation (8) is equivalent to our sensing
matrix C of equation (7) with p = 1 and o = /(3).
Thus, sparse energy vector € can be reconstructed with
high probability even if % times CR sensor can be in
sleep sate, or in other words approximately, 66% energy
can be conserved.

In order to investigate further improve energy effi-
ciency, we follow the work presented in [18] where it is
shown that the elements of matrix R can in general be
represented as,

+1 with probability 5-
7i.; = /84 0 with probability 1 — % . )
—1 with probability %

It can be noted here that when s = 1, matrix R is a
Bernoulli matrix, and when s = 3, R is same as equation
(7). Thus, matrix of equation (10) is equivalent to our
sensing matrix C of equation (7) with p = i and o =
\f(s). It is further discussed in [18] that one does not
restrict s to 3. In fact, it is shown that when considered
vector is very sparse, s = %, i.e., log(N) fraction
of samples is sufficient to accurately estimate the sparse
vector where N is the length of sparse vector. This is
due to exponential tail error bound, which is common in
normal like distributions such as Binomial distribution.
Once again following he concentration of inequalities
one can prove RIP property for R of equation (10) as
well with s = %. However, it is recommended in the

work to choose s less aggressively, for example s = /3.
In our simulations we compare detection performance for
various levels of energy efficiency by varying values of
s.

V. RECONSTRUCTION PROBLEM FORMULATION

After accumulating the measurements from local CR
sensors and arranging them in form of measurement
vector y (7), fusion center reconstructs the sparse vector
e; by solving following convex optimization problem,

man.
s.t.

el

¥ — CA&]3 < o2 (10)

where ||.||; denotes {1 norm; ||.||2 denotes I3 norm; and
o? is the variance of AWGN noise in the wideband
spectrum. Once sparse energy vector €y is recovered,
the PU spectral location in wideband are identified
by comparing the individual sub-band energies with a
specified threshold. The threshold is computed based on
system parameter like minimum desired probability of

false alarm.
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Fig. 2. Comparison of detection performance under different levels of
energy conservation by varying value of ’s’

VI. SIMULATION RESULTS

In this section we present performance of the proposed
wideband cooperative cognitive radio strategy under var-
ious sensing scenarios. Here we consider number of sub-
bands N = 256 with sparsity order [ = 2. The primary
users (PU) are assumed to be located in space near to
SU locations and signal power in an unknown occupied
sub-band is assumed to be 0.5 watts; thus, total signal
power is 1 watt in complete wideband spectrum. The CR
sensors are also assumed to be spatially distributed near
PU transmission. The threshold for energy detection is
computed assuming probability of false alarm 1073,

Fig. 2 shows probability of detection performance vs
signal to noise ratio (SNR) under no energy conservation
i.e., Bernoulli distributed sensing matrix (s = 1) and
energy conservation based sensing matrix with s = 3
and s = VN = 16. It can be observed that detection
performance for s=1 and s=3 is almost equivalent, while
inferior performance is achieved for s=16. This is due to
increase in number of CR sensors going to sleep state in
case of s=16, compared to no sensor going to sleep state
for s=1 and (2/3)" times CR sensor going for sleep state
for s=3. Thus, we observe a tradeoff between accuracy
in PU detection and the amount of energy conservation
via CR sensors going to sleep state.

In previous scenario we considered sensing coefficient
(M/N) to be 0.25 i.e. we had 64 observation vec-
tors/measurements which is too high for a sparsity order
of 2. In the following discussion we compare the detec-
tion performance with decreasing number of observation
vectors. It can be observed from Fig. 3 that on reducing
the number of observation vectors, there is degradation
in probability of detection performance. Derivation of
expression for minimum number of observation vector
required for accurate reconstruction is scope of our future
work.
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Fig. 3. Comparison of detection performance under different lengths
of observation vector
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Fig. 4. Comparison of detection performance under zero fading and
fading scenario

Next we incorporate fading in our analysis. As we
have divide complete wideband into number of non-
overlapping narrow bands, we assume flat fading over
each sub-band. The channel fading coefficient is assumed
to be zero mean with unity power. It can be observed
from Fig. 4 that fading degrades detection performance.
However, for high SNR, the signal strength becomes
significant to mitigate deep fade and thus detection
performance under fading converges towards no fading
scenario.

Finally, to mitigate fading we analyze the scenario
when CR sensors have overlap in spectrum sensing
range. It can be observed from Fig. 5 that with increase
in spectrum overlap, there is improvement in detection
performance without any increase in probability of false
alarm. However, care needs to be taken while increasing
the overlap in spectrum sensing range as it reduces
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Fig. 5. Comparison of detection performance under different levels of
overlap in spectrum sensing range

sparsity and may result in CS getting ineffective.

VII. CONCLUSION

In this paper, we have presented CS based cooperative
spectrum sensing technique to identify spectral location
of primary users (PUs) in a wideband spectrum. In order
to mitigate fading and exploit diversity, we have assumed
that spectrum sensing range of individual CR overlap
over each other. Further, to improve energy efficiency in
spectrum sensing, we also introduced probabilistic active
and sleep state for individual CR sensors. Assuming
sparse occupancy of PUs in the wideband and by Parse-
val’s theorem, we formulated a /; minimization problem
at fusion center to reconstruct the vector representing
energies in sub-bands. Since individual CR random take
active or sleep state randomly in a time epoch, the
sensing matrix for reconstruction is identified as random
matrix. Our analysis also identifies the larger values of
probability of sleep state (so as to have more energy
efficiency) for which sensing matrix satisfies restricted
isometric property (RIP).
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