
Detection of Control Layer DDoS Attack using

Entropy metrics in SDN: An Empirical Investigation

 Kshira Sagar Sahoo Manikanta Vankayala

Department of Computer Science Department of Computer Science

National Institute of Technology, Rourkela, India National Institute of Technology, Rourkela, India

Email: kshirasagar12@gmail.com, manikanta.v403@gmail.com

 Bibhudatta Sahoo Ratnakar Dash

Department of Computer Science Department of Computer Science

National Institute of Technology, Rourkela, India National Institute of Technology, Rourkela, India

bibhudatta.sahoo@gmail.com ratnakar@nitrkl.ac.in

Abstract— The Software Defined Networks (SDN) and

OpenFlow technologies become the emerging networking

technology that supports the dynamic nature of the network

functions through simplified network management. The main

innovation behind SDN is the decoupling of forwarding plane

and control plane. In control plane, the controller provides a

pivotal point of control to distribute the policy information

throughout the network through a standard protocol like

OpenFlow. Despite numerous benefits, SDN security is still a

matter of concern among the research communities. The

Distributed Denial-of-Service (DDoS) attack have been posing a

tremendous threat to the Internet since a long back. The variant

of this attack is quickly becoming more and more complex. With

the advancement in network technologies, on the one hand SDN

become an important tool to defeat DDoS attacks, but on another

hand, it becomes a victim of DDoS attacks due to the potential

vulnerabilities exist across various SDN layer. Moreover, this

article focuses on the DDoS threat to control plane which is the

central point of SDN. The entropy-based DDoS detection method

is a wildly used technique in the traditional network. For

detection of DDoS attack in control layer of SDN, few works have

employed entropy method. In this paper, taking the advantages

of flow based nature of SDN, we proposed General Entropy (GE)

based DDoS attack detection mechanism. The experimental

results show that our detection mechanism can detect the attack

quickly and achieve a high detection accuracy with a low false

positive rate.

Keywords—SDN; Controller; DDoS; General Entropy

I. INTRODUCTION

Safeguarding the security of the network is a rat race

process between attackers and victims for many years. Both

academic and industry experts have been working in this area

since a decade ago. Advancement of the technology, open up

new attack tools to launch various attacks, consequently, the

defenders require sophisticated and up-to-date defense

mechanism to countermeasure the attack. As contrasting to

other attacks, Distributed Denial of Service (DDoS) attack,

can cause a massive interruption in any kind of network

infrastructure. The intention behind the DDoS attacks is many,

including political advantage, financial advantage, criminal

extortion, and personal grudge etc. On the top list e-

commerce, blogging sites, finance sectors are the target of the

DDoS attack. With the recent advancement of virtualization-

based cloud computing, Software Defined Network (SDN)

paradigm, OpenFlow protocol many organization and

researchers are adopting the security solutions using these

technologies [1], [16].

In SDN the entire control decisions are made by a separate

entity called controller. This decoupling framework brings

many benefits to the network management and provides an

easy solution to improve the overall network efficiency [12],

[13]. As the control plane separate from the data plane, the

OpenFlow protocol designs a secure channel for the

communication. Hence, it is believed that a flexible and

scalable network can be designed to the ever-changing

business requirements through SDN. On one hand, the

programmability and centralized view of the entire network

help SDN controller to easily detect the attack, whereas on the

other hand the centralized control architecture is considered as

more vulnerable. Thus, for instance, SDN paradigm itself is

likely to target by DDoS threat [17], [19].

Basically, there are two ways to detect this attack. One is

signature based and another is anomaly based DDoS detection.

In the signature based system, for an efficient detection, the

signature needs to update continuously [18]. The DDoS attack

can be categorized into the low rate or high rate attack

depending on the speed of the malicious traffic. In anomaly-

based detection systems, attackers train the detection systems

to detect the attack traffic [2]. Usually, the false positive rate

using the anomaly-based detection method is usually higher

than the signature-based detection technique. It is difficult to

set the actual thresholds which help to balance the false

positive rate as well as the false negative rate.

mailto:kshirasagar12@gmail.com,%20manikanta.v403@gmail.com
mailto:bibhudatta.sahoo@gmail.com

In anomaly detection metric the threshold is fixed, hence an

abnormal deviation of some statistical features from benign

traffic, can help to identify abnormal traffic. Therefore, the

choice of statistical techniques is so vital in case of DDoS

detection. The information theory based metrics such as

entropy can identify the variations of the traffic behavior of

such events [11]. The main contribution of the paper are:

 Investigate various security issues of SDN and then

focus on DDoS threat to the control layer.

 Implemented entropy metric based on incoming

packets coming to the controller for identifying the

attack traffic.

 Analyse the GE metric and compare the result with

Shannon metric. We utilize these information to

identify low rate DDoS attack.

 We simulate the above scenario on Mininet emulator

along with POX controller.

The rest of the paper is organized as follows. Section II

describes the motivation behind this work and related work.

Section III discussed the information metrics used in the work.

The detection procedure explains in section IV. The

experimental setup is clearly mentioned in Section V. The

performance of the algorithms and results are well discussed

in Section VI. Finally, Section VII ends with concluding

remarks.

II. MOTIVATION AND RELATED WORK

 The OpenFlow protocol provides a secure communication

channel between the controller and the underlying switches.

The controller is the central element of SDN that takes all the

routing decision for the incoming flows to the network. All

incoming flows are managed by flow tables of switches. There

is a search in the flow table for every new packet to the

switch. For a successful match, the flow action will carry out.

Otherwise, the packet will be sent to the controller for further

instructions. In turn, the controller will either add a flow rule

or drop the flows from the flow table. Spoofing IP address is a

common practice in the DDoS attack. In SDN scenario, for

spoofed address, there is a mismatch each time on the table.

Therefore, for each unmatched flow, a packet_in will send to

the controller [14]. If the arrival rate of packet_in is very high

in case of DDoS attack, the controller resources will start to

deplete soon. A high rate IP spoofed may overwhelm the

controller and as a result, it disconnects from the data plane. In

a centralized SDN controller architecture single point of

failure will defunct the entire network [15]. Hence, it is

necessary to identify the DDoS traffic from the benign traffic.

In the last few years, there is significant research

carried out on SDN security. Most of the authors have used

the traditional solutions to the SDN. A Self-Organizing Maps

(SOM) based machine learning model was used for detecting

DDoS attack traffic by Braga et al. [3], but ignores the control

plane attacks. Shin et al. proposed AVANT-GUARD, for

detection and prevention of SYN flooding attack [4]. Anomaly

detection mechanism proposed by Giotis et al., leverage the

properties of both OpenFLow and sFlow [5]. The sFlow is

used for traffic sampling and OpenFlow protocol is used for

mitigating the attack by modifying the priority values of the

existing flows. The COFFEE framework utilizes the

OpenFlow protocol to identify the zombie’s activities and

delete the flow entries [6]. An adaptive flow collection method

has proposed in [7] and [8] for DDoS detection in SDN. A

traffic measurement tool called OpenSketch, uses a hash table

for measuring the traffic. Instead of flow sampling, this tool

uses a three stage pipeline process to collect traffic and

identify the malicious traffic from them. Most of the DDoS

detection solutions for SDN, have used machine learning and

knowledge-based techniques to identify the attack traffic.

Very few authors utilize the statistical method for attack

detection in SDN [9]. An entropy based solution was proposed

by Mousavi et. al. [10], for early detection of DDoS attack in

SDN. In their experiment, after an extensive experiment, the

threshold value of entropy has been chosen. The threshold

value can be adjusted with the dynamic nature of the incoming

traffic. Although the true positive rate is much higher, but the

false positive still exist in their work. Motivated by this, we

have evaluated the above work and in addition to this we have

used general entropy (GE) metric to lower the false positive

rate.

III. BACKGROUND OF GENERAL ENTROPY

 Entropy was introduced to measure the uncertainty of an

event associated with a given probability distribution X. The

formal definition of entropy in terms of a discrete variable X,

with possible outcomes x1 ,x2,…,xn can be defined as:

)(log)(

)(

1
log)()(

1

2

1

2

i

n

i

i

i

n

i

i

xpxp

xp
xpXH













 (1)

In Equation 1, p(xi) is the probability of the ith outcome of X. A

generalized entropy (GE) can be defined as:

 









 








N

ni

ipXH 2log
1

1
)((2)

By varying the α order of Equation 2, different types of

entropy values can be obtained. When α = 0, it indicates the

maximum value of the generated information. It can be

derived as:

nXH 20 log)( . But, when α=1, the GE can be expressed

as:)(log)()(
1

21 i

n

i

i xpxpXH 


 , which is termed as

Shannon Entropy (Esh).

Lemma 1. H(X) ≥ 0Proof: It’s already known that:

)()(ii xXprobxp  is the probability of ith outcome of

X. ,1)(0  ixp implies that 0
)(

1
log 

ixp
.

Lemma 2.)(log)(XHXH aab 

Proof: aMaM bb logloglog  . This property of entropy

allow us to change one base to another of the logarithm.

Minimum entropy information can be obtained when α value

is ∞ i.e. H∞. The probability density is high when α value is

When α≥ 0, the derivate of Hα  0. It implies that the GE

value is a non-increasing function of α. So it can be written as:

)()(21 xHxH   (3)

The GE value depends on _ which increase the differences

between two probability distributions while comparing with

the Shannon entropy (Esh). When we analyse the formulas of

GE and (Esh), it can be concluded that the high probability

event can provide more information to the GE than (Esh) at α

> 1. Hence, according to the requirement, we can get different

and better detection result by adjusting the value of α. The

Equation 4 shows when α= 2 the GE value can be:

 



n

i

ipxH
1

2

22 log)((4)

We formulate our SDN based DDoS attack detection on the

above analysis.

IV. DDOS DETECTION ALGORITHM

Before discussing the detection algorithm, we

formalize certain terms for further explanation. For a SDN

flow, there are certain header fields exist. We define the input

flow by 6 tuple such that:

IFi = {srcip; destip; srcMAC, destMAC, srcMAC, destport}.

It is a set of packets containing the similar properties moving

through a same network channel in a given time period. The

Algorithm 1 is meant for statistics collection for the

unmatched incoming flows. When the number of packet_ins

reached to 100, it creates a hash table for the incoming flows.

For every incoming packet_in coming to the controller, the

module (Algorithm 2) first unwraps it and get the flow

information from the flow table. Then extract the destip and

stored into a hash table. The hash table H, contains the destip

and occurrence of it. This information helps for computing the

entropy and GE. The order of α value helps to improve the

detection rate. In the first experiment, we have collected the

entropy values of attack traffic and normal traffic on the

different value of α for 80 windows.

Algorithm 1 Flow_Statistics_Collections

Input: sampling interval (∆)T,r=0

Output: Hash table H(destip, occurrence)

1. For all packet_ins received by the controller

C do

2. Create a hash table

3. End For

4. When (∆)T over,

5. For all dest_ip

6. If dest_ipi  H(destip_i,r) do

7. H(destip_i, r) ←1

8. Else

9. H(destip_i, r) ←r+1

10. End If

11. End For

Output: Return H(destip, occurrence)

Algorithm 2 HR_DDoS Attack_Detection

Input: Hash table H(dest_ip, occurrence)

Output: Detection of DDoS attack

1. Set the threshold (_) using Equation 7

2. For all IP Hashtable do

3. Find the probability distribution

4. Calculate entropy(Esh)

5. If Esh < δ then

6. DDoS attack detected

7. Else

8. Normal Traffic

9. End If

10. End For

Output: Return DDoS attack Alert

We assume that if the calculated entropy value is less than the

preset threshold value for a 10 consecutive windows, then it

has considered that there will be a possible of attack.

Detection of 1000 packets within 10 entropy periods gives an

early alert of attack to the SDN controller.

V. EXPERIMENTAL SETUP

In this work, an OpenFlow (OF) controller has connected

to the network consisting of OF enabled switches to create an

SDN network. During a DDoS attack scenario, some

important issues need to be considered. The GE of the

controller traffic is evaluated under attack and non-attack

scenario.

A. Controller

Before experiment choosing a controller is an important

task. Among few available controllers, the POX controller is

used in our experiment. As it is a fast and lightweight

controller, most of the authors have used this in their

experiment. This controller can work on all most all available

platforms.

B. Network Emulator:

To emulate the data plane of testbed networks, we use

Mininet emulator tool. The kernel namespace feature of

Mininet helps to prototype a network scenario in a single PC.

The individual process will have their own routing table,

network interface etc. Mininet takes the help of this features

and utilizes the process based virtualization concept to run

network elements in the kernel. In addition to Mininet we have

used Scapy tool for network traffic generation.

C. Packet Generation Tool:

In order to create DDoS attack scenario on Mininet we

need to generate custom attack packets and send them to

victims. To accomplish this task the packet generation tool

Scapy has been used. With regard to the proposed method, the

Scapy tool is considered as a powerful tool to generate real

flooding attacks [20]. In our experiments this tool has been

used to generate both TCP and UDP packets and spoof the

source IP address of the packet. We have used the “randrange”

function of Python to generate random IP addresses.

D. Network Setup:

We run our experiment on a PC with Intel Core i7-4770

processor, 3.4GHz clock speed with 4GB RAM. The operating

system is Linux Ubuntu 14.04 LTS and Mininet V 2.2.26

which supports the OF version 1.3. Using MiniEdit, a simple

user interface located in Mininet, a tree type network has been

created. The network consists of 10 switches and 64 hosts.

The Open Virtual Switches are acted like OF switches. The

OVS is referred to as the OpenFlow enabled switch. The L3

learning module is used for SDN controller. In reactive mode,

this module serves several things such as: learn the association

between IP and MAC addresses, generating ARP requests in

case of a destination IP is not known, install the flow rule in

the flow table etc. The bandwidth of each link between OF

switches is 800 Mbps and the link between hosts to switch is

100 Mbps.

VI. PERFORMANCE EVALUATION

In order to evaluate the proposed method, we have

conducted various experiments on the above-stated SDN test

bed. In case of DDoS attack scenario, all attack nodes attack to

the victims in a distributed coordinated manner using a shared

logic program. For threshold value we have used the method

used by Mousavi et al. If the calculated entropy value persists

for ten consecutive windows and less than the threshold then

we conclude that an attack is in progress. To find the optimal

threshold value, we conduct a set of experiments. For

comparison purpose we generate different rates of incoming

packet_ins to the controller. The packet rate R can be decided

by the Equation 5.

 100*
norm

attack

P

P
R  (5)

Here Pattack and Pnorm denotes the number of attack and normal

traffic respectively. The threshold value can be calculated as

follows. At first we calculate the possible minimum value of a

normal traffic entropy. This can be achieved by difference

between normal traffic mean entropy and confidence interval.

Then, we calculate the possible maximum value of the attack

traffic. It can be achieved by adding the attack traffic mean

entropy and confidence interval.

VII. SIMULATION RESULT

Keeping the window size 80, we test the experiment

several times. We conduct the experiment on four different

attack rate. In the 50% and 80% cases, since the attack packets

increases within the window, the drop in the value of the

entropy will be a minimal gap. All the scenarios are given

below.

Table I represent the threshold value selection in

different attack scenario. The Fig. 1, shows the drop for 10%

attack rate is very small compared to the other attack rate. The

entropy value not clearly discriminate the attack traffic from

the normal traffic in a lower rate attack scenario. In case of

50% and 80% attack rate, the entropy value drops

substantially as depicted in Fig. 4 and Fig. 5. The difference is

insignificant in case 10% attack rate. Although the true

positive rate is almost 100%, the false positive rate still high.

At the higher rate of DDoS attack, the false positive is near

about 2%. Table II represents the obtained error rate during

the simulation. From this, we conclude that it is not only to

identify the attack traffic correctly, at the same time it should

identify the benign traffic as well. Hence, the entropy value is

not sufficient to discriminate the benign traffic correctly. To

solve this we have employed GE.

In the beginning, we have used the destination IP

address to calculate the entropy value within a time window.

The individual probability value of the IP addresses is within

the value of 0 and 1. For total entropy, we sum all the

individual probability within the window. The generalized

entropy value of different α order and the spacing between the

attack and benign traffic has shown in Fig. 6.
.

TABLE I. Threshold value comparison w.r.t. different attack rate

Parameters
Normal
Traffic

10%

attack
traffic

20%

attack
traffic

30%

attack
traffic

50%

attack
traffic

80%

attack
traffic

Mean 0.8189 0.80705 0.7751 0.72994 0.6274 0.3327
Standard
Deviation 0.0152 0.0193 0.0256 0.03007 0.0374 0.03711

Confidence-
Max 0.8204 0.80988 0.77760348 0.733955 0.63103 0.33627

Confidence-
Min 0.8174 0.80421 0.77260259 0.723955 0.623748 0.32908

Confidence-
Interval 0.00301 0.00566 0.004957 0.0080157 0.0072816 0.007219

Threshold 0.8058 0.7894 0.75174762 0.6346 0.3439

Fig. 1: 10% attack rate

Fig 2: 20% Attack rate

Fig 3: 30 % attack rate

 Fig 4: 50 % attack rate

Fig 5: 80% attack rate

TABLE II. Different attack rate with error rate

Fig 6: variation of spacing between GE and Shanon

Table III. Attack rate with error rate (α = 10)

To evaluate the performance of GE metric, we test it

in the following scenario. We observe the variation of the

spacing by changing the attack rate. The goal of our work is to

reduce the false positive in a low rate attack rate. Fig. 6 shows

that the spacing of Shannon (Esh) and GE are increasing in

nature with respect to the increasing number of attack traffic.

During the initial stage of the spacing between Esh and GE are

not so discriminative, because of the low rate attack. However,

the spacing of the GE has stable value when α = 10. It can be

observed that the spacing of Esh cannot produce a stable value

with the increasing number of attack traffic.

VIII. CONCLUSION

Low rate DDoS attack is a serious threat to the SDN control

layer. It is very much important to identify the attack much

 Value
10% attack

rate

20%

30%

50%

80%

True Positive
Rate 93 94 96 96 98

False Positive
Rate 7 5 3 3 2

 Value
10%

attack rate
 20%

attack rate

True Positive
Rate 98 97

False
Positive Rate 1 2

before it happens. One of the way the controller layer can be

attacked by increasing the number of packet_in control

packets. When packet_in events increases, it becomes a

bottleneck for the controller. In such situation, normal Shanon

entropy is a less efficient method to detect the false alarm.

Hence, we have employed general entropy (GE) metric to

discriminate low rate DDoS attack and normal traffic. We

have observed that this metric can able to identify attack

traffic from legitimate traffic to a greater extent with a better

false positive rate. In the future work, we can employ this

technique for high rate DDoS attack and try to set the

threshold more dynamic way in a real traffic scenario such

that the detection can be done as early as possible.

REFERENCES

[1] Hu, F., Hao, Q. and Bao, K. (2014). A Survey on

Software-Defined Network and OpenFlow: From

Concept to Implementation. IEEE

Communications Surveys & Tutorials, 16(4),

pp.2181-2206.
[2] Swain, Biswa Ranjan, and Bibhudatta

Sahoo.(2009) "Mitigating DDoS attack and

Saving Computational Time using a Probabilistic

approach and HCF method." In IEEE

International Advance Computing Conference

(IACC),pp. 1170-1172.

[3] Rodrigo Braga, Edjard Mota, and Alexandre

Passito(2010). "Lightweight DDoS flooding

attack detection using NOX/OpenFlow." 35th

Conference on. Local Computer Networks (LCN),

pp.408-415 ,IEEE.

[4] Shin, Seungwon, Vinod Yegneswaran, Phillip

Porras, and Guofei Gu. "Avant-guard: Scalable

and vigilant switch flow management in software-

defined networks.(2013)" In Proceedings of the

2013 ACM SIGSAC conference on Computer &

communications security, pp. 413-424.

[5] Giotis, K., Argyropoulos, C., Androulidakis, G.,

Kalogeras, D. and Maglaris, V. (2014).

Combining OpenFlow and sFlow for an effective

and scalable anomaly detection and mitigation

mechanism on SDN environments. Computer

Networks, 62, pp.122-136.

[6] Schehlmann, Lisa, and Harald Baier.(2013)

"COFFEE: a Concept based on OpenFlow to

Filter and Erase Events of botnet activity at high-

speed nodes." In GI-Jahrestagung, pp. 2225-

2239.
[7] Zhang, Ying. (2013)"An adaptive flow counting

method for anomaly detection in SDN." In
Proceedings of the ninth ACM conference on
Emerging networking experiments and
technologies, pp. 25-30. ACM.

[8] Yu, Minlan, Lavanya Jose, and Rui Miao.(2013)
"Software Defined Traffic Measurement with
OpenSketch." In NSDI, vol. 13, pp. 29-42.

[9] Wang, Rui, Zhiping Jia, and Lei Ju. (2015)"An

entropy-based distributed DDoS detection

mechanism in software-defined networking." In

Trustcom/BigDataSE/ISPA, vol. 1, pp. 310-317.

IEEE.

[10] Mousavi, Seyed Mohammad, and Marc St-

Hilaire. (2015) "Early detection of DDoS attacks

against SDN controllers." In International

Conference on, Computing, Networking and

Communications (ICNC), pp. 77-81. IEEE.

[11] Xiang, Yang, Ke Li, and Wanlei Zhou. (2011)

"Low-rate DDoS attacks detection and traceback

by using new information metrics." IEEE

Transactions on Information Forensics and

Security 6,(2),pp. 426-437.

[12] Jarraya, Yosr, Taous Madi, and Mourad

Debbabi.(2014) "A survey and a layered

taxonomy of software-defined networking." IEEE

communications surveys & tutorials 16(4), pp.

1955-1980.
[13] Farhady, Hamid, HyunYong Lee, and Akihiro

Nakao.(2015)"Software-defined networking: A
survey." Computer Networks 81, pp.79-95.

[14] Haleplidis, Evangelos, Kostas Pentikousis, Spyros

Denazis, J. Hadi Salim, David Meyer, and

Odysseas Koufopavlou (2015). Software-defined

networking (SDN): Layers and architecture

terminology. No. RFC 7426.

[15] Sahoo, Kshira Sagar, Sagarika Mohanty, Mayank

Tiwary, Brojo Kishore Mishra, and Bibhudatta

Sahoo.(2016)"A Comprehensive Tutorial on

Software Defined Network: The Driving Force

for the Future Internet Technology." In

Proceedings of the International Conference on

Advances in Information Communication

Technology & Computing, pp. 114,ACM.

[16] Gyires, Tibor. "Software Defined Networking;

OpenFlow."

[17] Akhunzada, Adnan, Ejaz Ahmed, Abdullah Gani,

Muhammad Khurram Khan, Muhammad Imran,

and Sghaier Guizani.(2015) "Securing software

defined networks: taxonomy, requirements, and

open issues." IEEE Communications Magazine

53(4), pp. 36-44.

[18] Sahoo, Abhaya Kumar, Kshira Sagar Sahoo, and

Mayank Tiwary. (2014)"Signature based malware

detection for unstructured data in Hadoop." In

2014 International Conference on Advances in

Electronics, Computers and Communications

(ICAECC), pp. 1-6, IEEE.

[19] Sahoo, Kshira Sagar, Bibhudatta Sahoo, and

Abinas Panda.(2015) "A secured SDN framework

for IoT." In International Conference on Man and

Machine Interfacing (MAMI), pp. 1-4. IEEE.

[20] Secdev.org. (2017). Scapy. [online] Available at:

http://www.secdev.org/projects/scapy/ [Accessed

9 Dec. 2017].

