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Abstract: The present investigation deals with the dynamic stability behavior of laminated composite curved panels with c
subjected to in-plane static and periodic compressive loads, analyzed using the finite element method. A generalized shear de
Sanders’ theory with tracers is used in this study. Numerical results obtained for vibration and buckling of composite panels with c
compare well with literature. The principal dynamic instability region of composite perforated panels is obtained using Bolotin
proach. The study reveals that curved panels with cutouts depict higher stiffness with the addition of curvatures. The laminated hy
paraboloid panel shows the highest stiffness with the onset of instability at higher excitation frequencies. The effect of curva
laminated composite curved panels is reduced with an increase in size of the cutout. The principal instability regions are influence
lamination parameters. Thus, the laminate construction, coupled with cutout geometry, can be used to the advantages of tailorin
design of composite structures for practical applications.
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Introduction

Plate and shell structures are used in a multitude of thin-wa
lightweight load bearing structural parts for various modern ae
space, offshore, nuclear, automative, and civil engineering st
tures. Cutouts are inevitable in structures mainly for practi
considerations. Cutouts are commonly used as access port
mechanical and electrical systems, damage inspection, alte
the resonant frequency of the structures, and to serve as doors
windows. This wide range of practical applications demand
fundamental understanding of vibration, buckling, and dynam
stability characteristics. In contrast to transverse loads, pa
with cutouts often lose stability at fairly low stress levels. Stru
tures under in-plane periodic forces may undergo unstable tr
verse vibrations, leading to parametric resonance, due to ce
combinations of the values of load parameters and natural
quency of transverse vibration. Thus, the dynamic stability
structures with cutouts is of great technical importance for und
standing the behavior of dynamic systems under periodic loa

Despite the practical importance of these structures, the n
ber of technical papers and reports dealing with the subjects
limited due to the complexity involved. An extensive bibliogra
phy of earlier works on dynamic stability is given in review pa
pers ~Evan-iwanowski 1965; Ibrahim 1978; Simitses 198!
through 1987. Most of the investigators~Cederbaum 1992; Ar-
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gento and Scott 1993; Ng et al. 1998! have studied the dynamic
stability of closed cylindrical shells with simply supported bound
ary conditions, using an analytical approach. The dynamic ins
bility of conical shells is studied by Ganapathi et al.~1999! using
a generalized differential quadrature method. The study of t
parametric instability behavior of laminated composite curve
panels is sparsely treated in the literature. The dynamic stabi
results on uniform loaded cylindrical panels are presented by G
napathi et al.~1994!. The parametric resonance characteristics
laminated composite shells subjected to nonuniform loading
studied by Sahu and Datta~2001a!.

Previous investigations involving cutouts are mainly confine
to free vibration and buckling of composite plates. Rajamani a
Prabhakaran~1977a,b! have assumed the effect of the cutouts a
equivalent to an external loading on the plate and investigated
dynamic response of thin, simply supported, and clamped lam
nates with circular or square cutouts. Lee et al.~1987! have pre-
dicted the natural frequencies of composite rectangular pla
with cutouts, neglecting shear deformations and rotary inert
Reddy~1982! has investigated the linear and nonlinear free vibr
tion frequencies of isotropic, orthotropic, and laminated compo
ite plates neglecting rotary inertia. Lee and Lim~1992! have pre-
sented the natural frequencies of isotropic and orthotropic pla
with rectangular cutouts subjected to in-plane forces using R
leigh’s method. The effects of shear deformation and rotary in
tia are discussed in the study by Lee et al.~1992! on natural
frequencies of rectangular composite plates with cutouts. The
fects of square cutouts on the natural frequencies and m
shapes of cross ply laminates are studied by Jenq et al.~1993!
experimentally and using the finite element method~FEM!. Siva-
kumar et al.~1999! have investigated the free vibration of com
posite plates in the presence of cutouts undergoing large am
tude oscillations using a Ritz finite element model. Chen et
~2000! have studied the free vibration of symmetrically laminate
thick doubly connected plates.

Nemeth~1988! has predicted the buckling of rectangular, sym
metrically laminated angle-ply plates with central circular hole
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using the FEM and experimental results. Lin and Kuo~1989!
have studied the buckling of rectangular composite laminat
with circular holes under in-plane static loading. The optimum
design of the cutouts in laminated composite structures is a
tempted by Vellaichamy et al.~1990! using the finite element
method. Srivatsa and Murty~1992! have studied critical buckling
loads of laminated fiber reinforced plastic thin square pane
using FEM, based on classical lamination theory. Nemeth~1996!
has presented a review of works on buckling and postbucklin
behavior of rectangular composite plates with cutouts. Ko~1998!
has investigated the anomalous buckling characteristics of lam
nated metal-matrix composite plates with central square hol
using the structural performance and resizing~SPAR! finite ele-
ment program. The free and forced vibration of isotropic an
laminated composite shells with cutouts are studied by Chakr
vorty et al. ~1998! employing finite element methods. The influ-
ence of the cutout diameter and shape upon the buckling of squ
carbon fiber reinforced plastics~CFRP! panels is studied by
Bailey and Wood~1996! using theANSYSfinite element code.
The behavior of curved panels with cutouts subjected to in-pla
periodic loads, however, is less understood. Recently, the d
namic stability of isotropic curved panel with geometrical discon
tinuity was investigated by Sahu and Datta~2002!. The results
indicate that the excitation frequency increases with the introdu
tion of curvature from flat to curved panels with cutouts. How
ever, the hyperbolic paraboloid with cutout shows similar insta
bility behavior as that of a flat panel with no stiffness being adde
due to the curvature of the panel with cutout. The effect of cu
vature on instability regions is reduced for curved panels with a
increase in size of the cutout.

The studies on dynamic stability of laminated composit
curved panels with cutouts are not available in the literature. Su
studies would shed light on the effect of anisotropy when predic
ing the widths of the dynamic instability region~DIR! for curved
panels with cutouts. Besides this, the studies involving stability
curved panels with cutouts are difficult due to nonuniform in
plane stress distribution which alters the stresses, frequencies
vibration, buckling load, and dynamic instability regions. The dy
namic stability of composite curved panels with cutouts is studie
in the present investigation. The effects of size of cutout, p
orientation, static and dynamic load factors, curvature, geomet
and various boundary conditions on the instability behavior o
laminated composite curved panels with cutouts are investigate

Theory and Formulations

A laminated composite curved panel with cutout subjected
uniaxial in-plane periodic loads is considered with the coordinat
x, y along the in-plane directions andz along thickness direction
as shown in Fig. 1.

Governing Equations

The governing differential equations of equilibrium for free vibra
tion of a shear deformable doubly curved panel subjected to e
ternal in-plane loading can be expressed as~Chandrasekhara
1989; Leissa and Qatu 1991!
1246 / JOURNAL OF ENGINEERING MECHANICS © ASCE / NOVEMBER
s

-

i-
s

-

re

e
-

-

h
-

f

of

,

.

s

-

]Nx

]x
1

]Nxy

]y
2

1

2
C2S 1

Ry
2

1

Rx
D ]Mxy

]y
1C1

Qx

Rx
1C1

Qy

Rxy

5P1

]2u

]t2
1P2

]2ux

]t2

]Nxy

]x
1

]Ny

]y
1

1

2
C2S 1

Ry
2

1

Rx
D ]Mxy

]x
1C1

Qy

Ry
1C1

Qx

Rxy

5P1

]2v

]t2
1P2

]2uy

]t2

]Qx

]x
1

]Qy

]y
2

Nx

Rx
2

Ny

Ry
22

Nxy

Rxy
1Nx

0
]2w

]x2
1Ny

0
]2w

]y2

5P1

]2w

]t2

]Mx

]x
1

]Mxy

]y
2Qx5P3

]2ux

]t2
1P2

]2u

]t2

]Mxy

]x
1

]M y

]y
2Qy5P3

]2uy

]t2
1P2

]2u

]t2

§

(1)

whereNx , Ny , andNxy5in-plane stress resultants.Mx , M y , and
Mxy5moment resultants andQx , Qy5transverse shear stress re
sultants.

~P1 ,P2 ,P3! (
k51

n E
zk21

zk

~r!k~1,z,z2!dz (2)

where n5number of layers of composite curved pane
(r)k5mass density ofkth layer; andzk5distance ofkth layer from
midplane.

The constantsRx , Ry , andRxy identify the radii of curvature
in the x and y directions and the radius of twist.C1 and C2 are
tracers by which the analysis can be carried out by shear defo
able version of the theories of Sanders, Love, and Donnells
C15C251, the equation corresponds to Sanders’ theory. For
caseC151, C250 the equation reduces to Love’s theory. Fo
C15C250, the equation corresponds to Donnell’s theory.

Dynamic Stability Studies

The equation of motion for a laminated composite curved pan
with a cutout under in-plane loads can be expressed as

Fig. 1. Geometry and coordinate systems of curved panel w
cutout
2003
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@M #$q̈%1@@Ke#2N~ t !@Kg##$q%50 (3)

Here, @Ke#, @Kg#, and @M#5global elastic stiffness, geometric
stiffness, and mass matrices, respectively.N(t) and q5load pa-
rameter and displacement, respectively. The in-plane loads ca
periodic and may be expressed as

N~ t !5Ns1Nt cosVt (4)

whereNs5static portion ofN(t). Nt5amplitude of the dynamic
portion of N(t) and V5frequency of excitation. The stability
analysis of the composite curved panels is performed expres
the periodic load in terms of the linear static buckling loadNcr as

N~ t !5aNcr1bNcr cosVt (5)

where a,b5termed as static and dynamic load factors, resp
tively. Using Eq.~5!, the equation of motion is obtained as

@M #$q̈%1@@Ke#2aNcr@Kg#2bNcr@Kg# cosVt#$q%50 (6)

Eq. ~6!5Mathieu type equation, describing the instability beha
ior of the composite curved panel with a cutout. The dynam
instability regions~DIR! are determined~Bolotin 1964! from the
boundaries of instability, which represent the periodic solution
Periods T and 2T where T52p/V. The dynamic instability
boundaries of Period 2T are of practical significance~Bolotin
1964!. To obtain points on the boundaries of the dynamic ins
bility region ~DIR!, the componentsq are written in Fourier series
as

q5 (
k51,3,5

` F $ak%sin
kVt

2
1$bk%cos

kVt

2 G (7)

These expressions are substituted into Eq.~6! and the coefficients
of each sine and cosine terms are set equal to zero. The dete
nants are infinite and belong to a class of converging deter
nants. The first term solutions are sufficiently accurate for
practical purposes~Bolotin 1964!. For nontrivial solutions, the
determinants of the coefficients of these groups of equations
equal to zero. The equation becomes

F @Ke#2aNcr@Kg#6
1

2
bNcr@Kg#2

V2

4
@M #G$q%50 (8)

This leads to the generalized eigenvalue problem of the syste
For a given value ofa the variation of the eigenvaluesV with
respect tob can be found out. The plot of such variation in th
b2V plane shows the instability region associated with the lam
nated composite curved panel with a cutout subjected to harm
cally excited in-plane load.

Finite Element Formulation
A finite element analysis is performed using a eight-noded is
parametric shell element which can accommodate laminated
terials and transverse shear deformations. The element has
degrees of freedom (u,v,w,ux ,uy) per node, and based on first
order shear deformation theory, whereu, v, w are the displace-
ment components inx, y, and z directions andux , uy are rota-
tions.

Strain Displacement Relations
Green-Lagrange’s strain displacement is used throughout
structural analysis. Assuming that the material response is lin
the linear part of the strain is used to derive the elastic stiffne
matrix and the nonlinear part of the strain is used to derive
geometrical stiffness matrix.
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The linear strain displacement relations are~Sahu and Datta
2001b!
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andC1 andC25tracers by which the analysis can be reduced to
that of shear deformable theories of Love and Donnell. The ele
ment geometric stiffness matrix for the curved panel is derived
using the nonlinear in-plane Green’s strains with curvature com
ponent as per Sanders’ nonlinear theory of shells.

The nonlinear strain components are as follows:
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(12)

Constitutive Relations

The laminated curved panel is considered to be composed
composite material laminae~typically thin layers!. The material
of each lamina consists of parallel, continuous fibers embedded
a matrix material. Each layer may be regarded on a macroscop
scale as being homogeneous and orthotropic. Assuming consta
stress through the lamina, the stress resultants are related to
midplane strains and curvatures for a laminated shell element a

H Ni

Mi

Qi

J 5F Ai j Bi j 0

Bi j Di j 0

0 0 Si j

G H e j

kj

gm

J (13)

or

$F%5@D#$«% (14)
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The extensional, bending-stretching coupling and bending st
nesses are expressed as

~Ai j ,Bi j ,Di j !5(
k51

n E
zk21

zk

~Qi j !k~1,z,z2!dz i, j 51,2,6

(15)

The transverse shear stiffness is expressed as

Si j 5(
k51

n E
zk21

zk

k~Qi j !kdz i, j 54,5 (16)

wherek5transverse shear correction factor.
The above off-axis stiffness values are

Q115Q11m
412~Q1212Q66!m

2n21Q22n
4

Q125~Q111Q2224Q66!m
2n21Q12~m41n4!

Q225Q11n
412~Q1212Q66!m

2n21Q22m
4

(17)

Q165~Q112Q1222Q66!nm31~Q122Q2212Q66!n
3m

Q265~Q112Q1222Q66!mn31~Q122Q2212Q66!m
3n

Q665~Q111Q2222Q1222Q66!n
2m21Q66~n41m4!

The elastic constant matrix corresponding to transverse shear
formation is

Q445G13m
21G23n

2

Q455~G132G23!mn (18)

Q555G13n
21G23m

2

wherem5cosu andn5sinu; andu5angle between the arbitrary
principal axes with the material axes in a layer. The on-axis st
nesses are

Q115
E11

~12n12n21!

Q125
E11n21

~12n12n21!

Q215
E22n12

~12n12n21!
(19)

Q225
E22

~12n12n21!

Q665G12

Element Elastic Stiffness Matrix

@ke#e5E
21

1 E
21

1

@B#T@D#@B#Jdjdh (20)

where @B#5strain-displacement matrix;@D#5elasticity matrix;
and J5Jacobian. Reduced integration technique is adopted
avoid possible shear locking. Consistent element mass matri
expressed as

@m#e5E
21

1 E
21

1

@N#T@P#@N#Jdjdh (21)

where@N#5shape function matrix and
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Geometric Stiffness Matrix
Using the nonlinear strains, the strain energy can be written a
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This can also be expressed as

U25
1

2 Ev
@ f #T@S#@ f #dv (25)

where

$ f %5F]u

]x
,
]u

]y
,
]v
]x

,
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,S ]w
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2

u

Rx
D ,S ]w
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,
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(26)

and

@S#5F s 0 0 0 0

0 s 0 0 0

0 0 s 0 0

0 0 0 s 0

0 0 0 0 s

G (27)

where

@s#5F sx
0 txy

0

txy
0 sy

0 G5
1

h F Nx
0 Nxy

0

Nxy
0 Ny

0 G (28)

Since the stress distribution is not uniform due to the cutout,
in-plane stress resultantsNx

0, Ny
0, and Nxy

0 , at each Gauss point
are obtained separately by a plane stress analysis and the geo
ric stiffness matrix is formed with the stress resultants.

$ f %5@G#$de% (29)

where

$de%5@uvwuxuy#T (30)
R 2003



-
ech

an
di-

ls
,

ons

d

al

h

ly

of

-
,

t

lts

l

n

o-

cie
The strain energy becomes

U25
1

2 Ev
$de%

T@G#T@S#@G#$de%dv5
1

2
$de%

T@kg#e$de%

(31)

where the element geometric stiffness matrix

@kg#e5E
21

1 E
21

1

@G#T@S#@G#djdh (32)

The overall matrices@Ke#, @Kg#, and@M# are obtained by assem
bling the corresponding element matrices using the skyline t
nique.

Results and Discussions

The results are presented for a laminated composite flat
curved panels with different combinations of boundary con
tions. Shells of various geometries such as cylindrical (Ry /Rx

50), spherical (Ry /Rx51), and hyperbolic paraboloidal shel
(Ry /Rx521) are studied.S, C, andF denote a simply supported
clamped, and free edges, respectively. The notationSCSFiden-
tifies a panel with the edgesx50, y50, x5a, andy5b having
the boundary conditions in that order. The boundary conditi
are described as follows:
1. Simply supported boundary

S: u5w5uy50 at x50, a and v5w5ux50 at

y50, b; and

2. Clamped boundary

C: u5v5w5ux5uy50 at x50, a and y50, b.

Table 1. Convergence of Nondimensional Fundamental Frequen
of Simply Supported Square Plate with Cutout Size ofc/a50.5

Mesh
division

Nondimensional frequencies

Isotropic Orthotropic Composite

838 23.570 51.0597 48.2535
12312 23.4703 50.7899 48.0650
16316 23.4364 50.6944 48.0222
20320 23.4218 50.6505 48.0064

Reddy~1982! ~23.489! ~51.232! ~48.414!

Note: a/b51, b/h5100. Nondimensional frequency, l
5va2A(rh/D22).
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The nondimensional excitation frequency parameters are define
as

V5V̄a2Ar/E22h
2

whereV̄5excitation frequency in radians/second.

Convergence Study

Convergence studies are made for nondimensional fundament
frequencies of vibration of the simply supported~SSSS! square
laminated composite plate with a square hole of size ratioc/a
50.5. As shown in Table 1, the frequencies of vibration are com-
puted for different mesh sizes and the results are compared wit
the free vibration study on isotropic, orthotropic, and composite
flat panels by Reddy~1982!. The fundamental frequencies of vi-
bration gradually decrease with an increase of mesh size from
838 to 20320 and tend to converge at a mesh size of 20320.
The frequencies based on present formulation are comparative
lower to the results by Reddy~1982!, in which the effect of rotary
inertia is neglected. Based on the convergence studies, a mesh
20320 is employed to idealize the full panels with cutouts in the
subsequent dynamic stability studies.

Comparison with Previous Studies

The accuracy and efficiency of the present formulation are estab
lished through comparison of frequency parameters of isotropic
orthotropic and composite plates~0°/90° lamination! with differ-
ent thickness ratios and modes of vibration with the finite elemen
results of Reddy~1982!, as shown in Table 2. The present results
are in good agreement with the results by Reddy~1982!. For
verifying the accuracy of the present finite element solutions, the
buckling load of a laminated composite plate with cutout are
solved to compare with the results by Ko~1998!, using the struc-
tural performance and resizing~SPAR! finite element program.
Good agreement exists between the present finite element resu
with the literature as shown in Table 3. After validating the free
vibration and buckling results of the laminated composite pane
with a cutout, the investigation is then extended for the dynamic
instability studies.

Dynamic Stability Studies

Numerical results are presented for dynamic stability studies o
laminated composite curved panels with cutouts. All of the lami-
nae are assumed to be of the same thickness and made of orth

s

Table 2. Comparison of Nondimensional Fundamental Frequencies of Simply Supported Square Plate with Cutout Size ofc/a50.5

a/h

Isotropic Orthotropic Composite

l11 l13 l11 l13 l11 l13

10 22.730 59.754 42.380 82.865 43.320 96.786
~22.804! ~60.205! ~42.693! ~83.451! ~43.728! ~97.379!

20 23.188 67.409 47.592 98.643 46.578 126.614
~23.240! ~68.391! ~47.934! ~100.10! ~46.971! ~128.56!

25 23.262 68.878 48.543 101.718 47.074 133.441
~23.309! ~70.032! ~48.907! ~103.43! ~47.464! ~135.85!

100 23.476 73.024 50.802 109.281 48.076 152.355
~23.489! ~75.076! ~51.232! ~112.22! ~48.414! ~156.85!

Note: Results in bracket are from Reddy~1982!. D225E22h
3/12(12n12n21). Nondimensional frequency,l5va2A(rh/D22).
L OF ENGINEERING MECHANICS © ASCE / NOVEMBER 2003 / 1249
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Table 3. Comparison of Buckling LoadsNx in lb/in. of Square Simply Supported Panel with Cutout with@90/0/0/90#2 Lamination

Reference

Buckling load in lb/in.

c/a50.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Present 50.0166 47.8651 43.5676 40.2852 38.2599 36.9991 36.1332 35.70

Ko ~1998! 49.2286 46.9455 42.8393 39.6854 37.7255 36.4901 35.6396 35.22

Note: a5b520 in., h50.064 in.EL527.723106 lb/in.2, ET518.093106 lb/in.2, GLT58.153106 lb/in.2, nLT50.3.
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tropic material. The material properties considered here are
typical titanium metal matrix composite and are as follows:

EL5191.13 GPa~27.723106 lb/in.2!,

ET5124.73 GPa~18.093106 lb/in.2!,

GLT556.19 GPa~8.153106 lb/in.2!, nLT50.3

The dynamic instability regions~DIR! are plotted for a flat and
cylindrical composite panel with/without static component to co
sider the effects of static load factor, size of cutout, different pa
geometries, and boundary conditions. The computed buckl
load of the simply supported composite panel with dimensio
a5b5500 mm, h52 mm, and lamination properties@45°/
245°/245°/45°#2 is taken as the reference load for all furthe
computations in line with Moorthy et al.~1990!.

The effects of the size of the cutout on the instability region
a flat panel are studied fromc/a50.0 ~no cutout! to 0.8 at an
interval of 0.1. However, for clarity, the plots are shown for siz
of a cutoutc/a50.0 ~no cutout! to 0.8 at an interval of 0.2 and
c/a50.5. The variations of the instability region versus dynam
in-plane load is shown in Fig. 2. It can be observed that the on
of instability occurs with lower excitation frequencies for sma
cutouts in simply supported plates up toc/a50.2. With an in-
crease of the cutout size, the onset of excitation frequency
creases along with wider dynamic instability regions. The onse
instability occurs with higher excitation frequency for plates wi
a cutout size ofc/a50.4 onward than that of plate without a
cutout (c/a50.0). The onset of instability occurs at higher exc
tation frequencies up to plate with a cutout ofc/a50.8 with
wider instability regions. This may be attributed to the reducti
of mass and predominance of the boundary restraints over
entire plate. The results show that the dynamic instability beh
ior for composite curved panels with geometrical discontinuity
more pronounced in comparison to the corresponding isotro
cases~Sahu and Datta 2002!. The effect of the static componen

Fig. 2. Effect of size of cutout on instability region of simply sup
ported plate forc/a50, 0.2, 0.4, 0.5, 0.6, and 0.8,a/Rx50, b/Ry

50.0, a50.0
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of load on the instability regions of the plate with a cutout of siz
c/a50.5 is studied fora50.0, 0.2, and 0.4, as shown in Fig. 3
Due to an increase of compressive static in-plane load, the in
bility regions tend to shift to lower frequencies and become wid
Further investigations are done with a static load factor of 0
~unless otherwise mentioned!. Studies have also been made fo
comparison of instability regions for different shell geometrie
with the introduction of curvature. The dynamic instability re
gions are plotted for plate and different curved panels such
cylindrical (b/Ry50.25), spherical (a/Rx5b/Ry50.25), and hy-
perbolic paraboloids (a/Rx520.25,b/Ry50.25) with cutouts of
c/a50.5 and are compared in Fig. 4. It is observed that the
citation frequency increases with an introduction of curvatu
from laminated composite flat panels to curved panels with c
outs. The excitation frequency is higher for the cylindrical pan
to that of a flat panel and still increases for a spherical panel w
curvature. The onset of instability occurs later for hyperbolic p
raboloid with narrow instability regions unlike the isotropic case
Fig. 5 shows the influence of different boundaries~SSSS, SCSC,
CSCS, CCCC! on the principal instability regions. As expected
the instability occurs at a higher excitation frequency from simp
supported to clamped edges due to the restraint at the edges
laminated cylindrical panels with clamped straight edges and s
ply supported curved boundaries show higher excitation frequ
cies with narrow instability regions than panels with clampe
curved edges and simply supported straight edges. The effec
size of the cutout on instability regions of a simply supporte
cylindrical panel is investigated forc/a50.0, 0.2, 0.4, 0.5, 0.6,
and 0.8. In Fig. 6, as expected, the onset of instability occurs la
for cylindrical panels to that of a flat plate with cutout. The ons
of instability occurs earlier with an increase of size of the cuto
up toc/a50.6. This may be due to the effect of curvature grad
ally reducing the effect due to an increase in size of the cuto
With further increase of cutout size (c/a50.8), the excitation

Fig. 3. Effect of static load factor on instability region of simply
supported plate with cutout:a/b51, a/Rx50.0, b/Ry50.0, c/a
50.5 for a50.0, 0.2, and 0.4
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frequency suddenly increases having wider dynamic instability
regions. The onset of instability occurs with a higher excitation
frequency for the cylindrical panel with a cutout sizec/a50.8
than that withc/a50.6 with very wide DIR. This is due to the
fact that the curved panels with a higher size of a cutout behave
as a plate and the excitation frequency increases. The onset
instability will even occur earlier for a cylindrical panel with a
cutout size ofc/a50.8 for a higher value of dynamic load be-
yond b50.7. The effect of ply orientation on instability of the
eight layer symmetric angle-ply curved panels with a cutout size
of c/a50.5 is studied as shown in Fig. 7. The onset of instability
is influenced by ply orientations. The onset of instability occurs
earlier for a ply orientation of 0, 15, and 30°. The onset of insta-
bility occurs later for 45, 60, 75, and 90° orientations. The curved
panel with a cutout shows a preferential ply orientation of 60° for
this size of cutout. The instability occurs for the laminated curved
panel with fibers parallel to loading than in perpendicular direc-
tion. Fig. 8 shows the variations in the dynamic instability region
of curved panels with a cutout sizec/a50.5 for two layups. The
onset of instability occurs earlier for a two layer angle ply layup
~45°/245°! than the eight layer symmetric angle ply@45°/
245°/245°/45°#2 . This may be due to the effect of bending
stretching coupling for the case of laminates.

Fig. 4. Effect of cutout on instability region of different curved pan-
els: flat panel (a/Rx5b/Ry50); cylindrical (a/Rx50, b/Ry50.25);
spherical (a/Rx5b/Ry50.25); hyperbolic paraboloid (a/Rx5
20.25,b/Ry50.25) fora/b51, c/a50.5, anda50.2

Fig. 5. Effect of boundary conditions~SSSS, CSCS, SCSC, CCCC!
on instability region of curved panel fora/b51, a/Rx50.0, b/Ry

50.25,c/a50.3, anda50.2
JOURNAL
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Conclusion

The dynamic stability of laminated composite curved panels w
cutouts is investigated using the finite element method. Base
the parametric studies, the conclusions are
1. The excitation frequency decreases with the introduction

cutout in laminated composite flat panels. With a further
crease of size of the cutout, the onset of instability occ
later but with wider instability regions. This may be due
reduction of mass and predominance of boundary restra
at the edges.

2. The onset of instability occurs later for a composite cur
panel by introducing curvatures. The laminated hyperb
paraboloid shows highest excitation frequencies out of
geometries considered.

3. Instability occurs earlier with an increase of the static co
pressive in-plane load with wider dynamic instability regio
for the composite curved panels with cutouts.

4. For any laminated cylindrical panel, the excitation freque
reduces with increasing cutout size. With an increase of
of the cutout, the effect of curvature is reduced for which
onset of instability occurs earlier. On further increase of
cutout, the effect of curvature is reduced and the cur
panel behaves like a flat panel and the excitation freque
increases drastically.

Fig. 6. Effect of size of cutout on instability region of simply su
ported cylindrical panel forc/a50, 0.2, 0.4, 0.5, 0.6, and 0.8,a/Rx

50, b/Ry50.25, anda50.2

Fig. 7. Effect of ply orientation on instability region of curved pan
c/a50.5, a/Rx50, b/Ry50.25, anda50.2
OF ENGINEERING MECHANICS © ASCE / NOVEMBER 2003 / 1251
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5. The excitation frequency increases due to restraint prov
at the edges of the laminated curved panel with a cutout.
onset of instability occurs later for composite curved pan
with restraints at the straight edges than restraints at
curved boundary.

6. The instability of composite curved panels with cutouts
influenced by the lamination parameters and preferentia
orientation is suggested.

From the above studies, it can be concluded that the insta
behavior of laminated curved panels with geometrical discont
ity is greatly influenced by the size of the cutout, geometry,
layup, and orientation and boundary conditions. So the des
has to be cautious while dealing with curved panels with cut
subjected to periodic loading. This can be used to the advan
of tailoring during design of composite structures.

Notation

The following symbols are used in this paper:
a, b 5 dimensions of shell;
c, d 5 dimensions of cutout;

E11, E22 5 Young’s modulus;
G12, G13,

G23 5 shear modulus;
@K# 5 stiffness matrix;

@Kg# 5 geometric stiffness matrix;
@M# 5 mass matrix;
Ncr 5 critical buckling load;
$q% 5 vector of generalized cordinates;

Rx , Ry 5 radii of curvature of shell;
Rxy 5 radius of curvature of twist;

w 5 deflection of midplane of doubly curved
panel;

a, b 5 static and dynamic load factors;
ux , uy 5 rotations about axes;

n12, n21 5 Poisson’s ratio;
r 5 mass density;

sx , sy , txy 5 initial in-plane stresses; and
V,v 5 frequency of forcing function and transverse

vibration.

Fig. 8. Effect of ply lay-up on instability region of curved pan
c/a50.5, a/Rx50, b/Ry50.25, anda50.2
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