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ABSTRACT 

In this article, the nonlinear dynamic behavior of axially functionally graded non-uniform beam is investigated 

using finite element method. The beam material is graded in the axial direction following the exponential rule 

and three different taper profiles are selected namely; linear, parabolic and exponential. Euler-Bernoulli beam 
theory is utilized along with Hamilton’s principle to formulate the forced vibration problem. Geometric 

nonlinearity present in the system is taken care of using von Karman type nonlinear geometrical relations. The 

beam is considered to be under the action of uniformly distributed external excitation of harmonic nature. The 

results are validated with those available in the literature and new results are presented showing the effect of 

material gradient parameter, excitation amplitude, taper profile and taper parameter on the frequency response 

curves.  
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1. INTRODUCTION 

Functionally graded materials (FGM) are treated as new generation materials in which the 

material properties vary continuously along spatial directions and that claim many advantages 

over traditional materials as well as layered composites. Due to these advantages such 

materials can be employed in various advanced structures especially in large scale space and 

aerospace applications. As a result, FGMs came into the attention of many researchers and 

numerous studies on these materials are carried out. Sankar (2001) provided elasticity 

solutions for transversely loaded FG beam and also developed a beam theory similar to Euler-

Bernoulli beam theory assuming that the plane sections remain plane. A new beam element 

was developed by Chakraborty et al. (2003) to account the variation of elastic and thermal 

properties along the thickness direction and studied static, free vibration and wave 

propagation problems. Agrawal et al (2006) presented a total Lagrangian formulation of a 

geometrically nonlinear beam element to conduct static and wave propagation analysis on FG 

beams using first order shear deformation theory.  

Aydogdu and Taskin (2007) carried out free vibration analysis on simply-supported FG 

beams using different higher order shear deformation theories and classical beam theories. 

Simsek and Kocaturk (2009) investigated the dynamic behaviour of FG beams under action 
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of concentrated moving harmonic load. Simsek (2010) implemented nonlinear dynamic 

analysis on FG beams subjected to moving harmonic load. Lagrange’s equations were used to 

generate equations of motion of the system and these were solved using Newmark-β method 

and a direct iteration method. Paul and Das (2015) studied the large amplitude free vibration 

behaviour of FG beams using variational approach considering Timoshenko beam 

assumptions and Von Karman strain-displacement relations. Wu et al. (2016) performed 

similar study on carbon nanotube reinforced FG beams using Ritz method. 

A close scrutiny of the literature reveals that the studies are primarily focused on thickness-

wise functionally graded materials and studies on axially functionally graded materials are 

relatively scarce. There are some works on non-uniform beams having axial functional 

gradation, for example, by Huang et al. (2013), Tang et al. (2014) and Liu et al. (2016), but 

those too only provide insight into the linear behavior of the structure. Also, it is observed 

that free vibration studies exist in plenty, whereas studies on forced vibration are 

comparatively rare. So an effort has been made in the present work to extend the works on 

beams with in-plane inhomogeneity to the nonlinear domain. 

2. MATHEMATICAL FORMULATION 

The present nonlinear forced vibration problem is formulated using finite element method 

(FEM) and the governing differential equations are obtained utilizing Hamilton’s principle. 

The beam is modelled using Euler-Bernoulli theory i.e. the effect of shear deformation and 

rotary inertia are neglected. Von Karman type nonlinear strain displacement relations are 

considered to incorporate geometric nonlinearity in the system. The analysis is based on the 

assumption that the system attains equilibrium at peak amplitude value. This unique 

assumption helps in reducing the dynamic problem into an equivalent static problem. 

The material properties of the beam are considered to be varying exponentially along axial 

direction using the following relationship, 
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Here, x  is the gradient parameter along the x directions. E0 and ρ0 are Young’s modulus and 

material density, respectively, at the left side of the beam. The thickness of the beam is also 

considered to be varying along the x-axis following three different taper profiles namely, 

linear profile, parabolic profile and exponential profile. The expressions of these taper 

profiles are as follows, 
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where, h0 is the root thickness and r is the taper parameter. 

Following the assumptions of Euler-Bernoulli beam theory and using Von Karman type 

geometrical nonlinearity, the strain-displacement relation is expressed as, 
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From above relation, the total strain energy (U), work potential (V) and total kinetic energy of 

the beam can be expressed as, 
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p(x) in Eq. (6) is the uniformly distributed harmonic excitation which has the expression 

( )
i t

p x e
 . p  is the amplitude of harmonic excitation for uniformly distributed load per unit 

length,  is the frequency of excitation and 1i   . 

A two-noded beam element having one node at each end is selected in the analysis. Three 

degrees of freedom are considered at each node, where u and w are the two displacements 

along x and z directions respectively and   is the rotation about y axis. 

The nodal displacement vector of the elements can be written as, 
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The displacement fields at any point in the element are approximated by suitable functions 

called shape functions and nodal displacements, 
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where, le  is element length and the shape function Ni are given as, 
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An indirect approach is adopted for solving the problem, where the problem is reduced to a 

static case by assuming that the dynamic system fulfils the force equilibrium conditions at 

maximum amplitude of excitation. This assumption helps to solve the dynamic problem as an 

equivalent static problem, where the system response depends on the excitation frequency 

and amplitude of the harmonic excitation. 

The formulation of the large amplitude forced vibration analysis is based on Hamilton’s 

principle which is stated as, 
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The expressions of T, U and V, as in Eq. (4), Eq. (5) and Eq. (6) respectively, are utilized to 

obtain the governing differential equations for forced vibration analysis of the beam as, 

     fM q K q   
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Assuming the beam is subjected to harmonic excitation force (    i
ef f  ), the 

displacement function is expressed as     iq q e  . The above equation can now be 

rewritten as, 

   2K M q f    
    

   (8) 

here, Ω is the excitation frequency. The above equation is nonlinear in nature and solved 

using an iterative scheme. 

3. RESULTS AND DISCUSSION 

First of all, it is important to establish the validity and correctness of the mathematical 

formulation and solution methods used in the current work. The results of large amplitude 

forced vibration analysis are validated with respect to a uniform isotropic beam. The system 

under consideration is a clamped beam subjected to concentrated harmonic excitation force of 

amplitudes 0.134 N and 2.0 N at mid-point of the beam. The frequency response curves 

generated through current method are compared with those published by Ribeiro (2004) and 

the comparative plot is presented in Figure 1. The abscissa in this figure represents the 

frequency ratio ( 0/ ) where   is the frequency of excitation and 0  is the first natural 
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frequency and the ordinate represents dimensionless amplitude (
max 0/w h ). It can be seen that 

the results show good agreement with published result. 

  

Figure 1. Validation plot for nonlinear forced vibration analysis for isotropic uniform beam subjected to 

concentrated load at mid-point (a) p = 0.134 N (b) p = 2 N. 

The frequency-response curves obtained from various analyses on beams are presented here. 

It can be seen in the figures that there are two distinct branches of frequency-response curve 

which is due to discontinuous behavior of the nonlinear structure. The first branch is known 

as the increasing branch as, when the excitation frequency is slowly increased from zero, the 

response follows this curve. On the other hand, when the excitation frequency is slowly 

decreased from a higher value, the response follows the second branch and hence it is called 

the decreasing branch. 

Frequency response curves for clamped and simply supported AFG beam are drawn in Figure 

2, which explain the effect of material gradient on nonlinear forced vibration response. The 

value of amplitude of external excitation is taken as 100 N/m for clamped beam and 50 N/m 

for simply supported beam. It is seen that, increasing the material gradient parameter reduces 

the response amplitude at low amplitude range for both boundary conditions and as the 

response amplitude increases all the curves try to merge together.  

The effect of excitation amplitude is shown in Figure 3 for AFG uniform beams. For clamped 

boundary condition the values of excitation amplitudes are 10 N/m, 50 N/m and 100 N/m and 

for simply supported beam the values are 10 N/m, 30 N/m and 50 N/m. The material gradient 

has been kept constant at 1.0. It is observed that, at low response zone that the response 

amplitude increases with the excitation amplitude however, at higher response zone, all the 
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response curves try to merge together, irrespective of excitation force. Another observation 

that can be made by comparing the results of clamped and simply supported beams is that the 

simply supported beams exhibit higher amplitudes for same frequency ratio even though the 

excitation amplitude is lower. 

  

Figure 2. Effect of material gradient on frequency-response of uniform AFG beam (a) clamped (b) simply 

supported. 

  

Figure 3. Effect of excitation amplitude on frequency-response of uniform AFG beam (a) clamped (b) simply 

supported. 

The effect of different taper patterns on frequency response curves is also studied using three 

taper patterns (Linear, parabolic and exponential) and the results are shown in Figure 4. The 

taper parameter is kept constant at 0.8 for generation of the results. The graphs show that for 

similar conditions beams with parabolic taper exhibit higher stiffness and beams with 

exponential taper exhibit lower stiffness indicated by the response amplitudes. Frequency 

response curves of linearly tapered AFG beam with different taper parameters are shown in 

Figure 5 for clamped and simply supported boundary conditions. Three taper parameters are 

selected (0.2, 0.5 and 0.8) for generating the results. It is seen that as the taper parameter is 
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increased, the response amplitude decreases in low amplitude region but all the curves try to 

merge together as the response amplitude increases. 

  

Figure 4. Effect of taper profile on frequency-response of AFG beam (a) clamped (b) simply supported. 

 

  

Figure 5. Effect of taper parameter on frequency-response of AFG beam (a) clamped (b) simply supported.  

4. CONCLUSION 

In this paper, geometrically nonlinear forced vibration analysis on AFG non-uniform beam is 

carried out using finite element method. The formulation is based on Euler-Bernoulli beam 

theory and the governing equations are generated using Hamilton’s principle. von Karman 

type nonlinear strain displacement relations are used to account for the nonlinearity present in 

the system. The results are first validated with those already available in the literature. The 

effect of different parameters like material gradient, excitation amplitude, taper profile and 

taper parameter is studied in detail. It is seen that the response amplitude decreases with 

increase in material gradient and the reason behind it can be attributed to the enhancement of 
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overall system stiffness. The general trend is that, at low response zone the response 

amplitude increases with the excitation force however, as the amplitude increases, the 

increasing branches of all the response curves merge together, irrespective of excitation force. 

For similar conditions, beams with parabolic taper exhibits higher stiffness compared to 

exponential taper, as indicated by the response curves. It is also seen that as the taper 

parameter is increased, the response amplitude decreases in low amplitude region but the 

curves try to merge together as the response amplitude increases.   
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