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Abstract—Incremental Least means squares algorithm(ILMS)
is one of the simplest algorithm for parameter estimation in
distributed wireless networks, which find a wide range of ap-
plications from monitoring environmental parameters to satellite
positioning. Digital implementation of adaptive filters results in
quantization errors and finite precision errors, which makes
the ILMS algorithm to suffer from drift problem. Incremental
Leaky LMS algorithm(ILLMS) introduces a leakage factor in
the update equation and overcomes the drift problem. But the
overall performance of ILLMS is similar to ILMS in terms of
convergence speed. To overcome this, an Incremental Modified
Leaky LMS(IMLMS) is proposed based on MLLMS algorithm
which in turn derived from the Least Sum of Exponentials(LSE)
algorithm. LSE algorithm employs sum of exponentials of errors
in its cost function and it results in convex and smooth error
surface with more steepness, which results in faster convergence
rate. Simulation results prove that the proposed IMLLMS out-
performs the ILLMS.
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I. INTRODUCTION

The distributed sensor signal processing deals with collec-
tion and processing of local noisy observations of a parameter
of interest in a geographical area where the micro sensors or
nodes are deployed[1][2]. All the nodes share their information
according to the network topology and estimate the parameter
of interest in a collaborative manner by utilizing their local
noisy observations and the shared information from their
immediate neighbors. In the traditional centralized processing,
all the nodes will collect its noisy local data and send them to a
centralized processor, which will perform the job of parameter
estimation and broadcasts the result back to all the individual
nodes. This involves a very powerful centralized processor and
huge communication burden. Whereas in distributed adaptive
solution all the nodes will have processing capabilities and
perform the job of parameter estimation individually using
their local data and information received form neighbor nodes.
This saves a lot of energy and bandwidth. The strategy of
cooperation between the nodes will decide the data bandwidth
and energy consumption. Basically there are three modes of
collaboration namely incremental mode, diffusion mode, and
probabilistic diffusion mode [3][4]. Each node in the adaptive
distributed network is adaptive and the efficiency depends on
the adaptation algorithm used and the mode of cooperation
between the nodes. Least Mean Square(LMS) algorithm is the
most popularly used due to its less computational complexity
and ease of implementation. Incremental mode of cooperation

requires less power and communication and hence incremental
mode is considered throughout the paper. The convergence
speed of the LMS algorithm depends on the eigen value
spread of the input fed to the nodes. Eigen value spread is
defined as the ratio of largest eigen value to the smallest eigen
value of the autocorrelation matrix of the input sequence. The
largest eigen value limits the allowable range of step size for
stability assurance and the smallest eigen value accounts for
slow convergence rate[5] [6]. So the best convergence rate is
achieved when all the eigen values are equal, which can be
achieved by pre-whitening the data before processing. LMS
algorithm suffers from drift problem, where the parameter
estimate will go unbounded even though the input sequence
and error quantities are bounded[7]. The accuracy and stability
of LMS cannot be assured in non-ideal or practical scenarios
where finite precision effects, quantization errors, inadequate
input excitation comes into picture [6][8][5].

A modification of the LMS algorithm is the Leaky LMS
algorithm(LLMS) primarily developed to overcome the drift
problem [6]. LLMS employs a leakage factor in its weight
update equation and so bounds the weights within limits by
leaking some energy out[9]. So ILLMS is developed to over-
come the drift problem, accuracy and stability issues arising in
ILMS. Though ILLMS overcomes drift issue,the performance
of ILLMS is similar to ILMS both in terms of convergence
speed and MSE. A modified Leaky LMS (MLLMS) is the
enhanced version of the LLMS, which is developed to obtain
superior performance compared to ILLMS. MLLMS is based
on LSE algorithm[10][11], which is a generalization of the
mixed norm gradient descent algorithms and employs sum
of exponentials of errors in its cost function. So the cost
function will have sum of even powers of error and so will
have the combined effect of the second order statistic (SOS)
algorithms like LMS, NLMS and under Higher order statistic
(HOS) algorithms like LMF[10][11]. This results in a convex
and smooth error surface with more steepness assuring faster
convergence rate and better MSE performance. Both LLMS
and MLLMS are implemented in incremental case of the
distributed network and are compared in terms of convergence
speed and MSE.

A. Modified LLMS

The LMS algorithm is one of the most famous adaptive
algorithms for linear estimation due to its simplicity and
ease of implementation. This has led to the development



of variations of LMS algorithm, which are available in the
literature. Some of the improved versions of LMS include
NLMS, sign LMS, variable step size LMS, sign error LMS,
sign regressor LMS etc. All these improved versions are
developed to achieve faster convergence and better MSE. One
of the main difficulties facing with LMS algorithm is the drift
problem, where the parameter estimate will diverge despite of
the bounded input conditions[5][8]. The leaky LMS (LLMS)
is a modified version of conventional LMS algorithm and
it overcomes the drift problem by bounding the parameter
estimate using the leakage factor in the weight update equation.
LLMS also solves the problems like stalling and improves
stability, tracking capability[6]. The main drawback of LLMs
is its convergence speed. Though LLMS solves the drift
problem, the convergence speed and MSE performance is
almost same as that of LMS algorithm. A novel algorithm is
proposed in the literature to improve the convergence speed
based on the Least Sum of Exponentials algorithm (LSE)
[11]. LMS uses the second order error function, such Second
Order Statistic (SOS) algorithms are very easy to implement
and have less computational complexity. Higher order error
power algorithms like Least Mean Fourth (LMF) algorithm
comes under Higher Order Statistic (HOS) algorithms, which
have high computational complexity, faster convergence rate
and instability issues. To make use of both the advantages
of SOS and HOS, mixed norm gradient descent algorithms
have been developed [11]. LSE is one of such mixed norm
gradient descent algorithm, which considers infinite number
of error powers in the cost function. LSE algorithm employs
sum of exponentials of errors in the cost function, which
is the generalization of the mixed norm stochastic gradient
algorithms. The cost function of the Modified Leaky LMS
(MLLMS) algorithm is defined as below:

J (k) = (exp (e (k)) + exp (−e (k)))2+γwT (k)w (k) (1)

So the error surface of the cost function defined in eq.1 is
smooth and convex, which improves the convergence speed.
MLLMS is the modification of LSE[12]. The error surface
will be steeper and so the convergence speed is faster than
the LLMS algorithm[11] Where e (k) is the error defined as
below:

e(k) = d(k)− uT (k)w(k − 1) (2)

Differentiating above equation with respect to w (k) , we
get

δJ (k)

δw (k)
= 2 (−u (k) exp (e (k)) + u (k) exp (−e (k)))

+ 2γw (k) (3)

Now the weight update equation is given as:

w (k) = w (k − 1)− µ

2

δJ (k)

δw (k)
(4)

Substituting eq.3 in eq.4, the resulting weight update equa-
tion for Modified leaky LMS is as below:

Fig. 1. Data Flow and updation in Incremental modified leaky LMS

w (k + 1) = (1− µγ)w (k) + 2µu (k) sinh (e (k)) (5)

II. PROBLEM FORMULATION

Consider a distributed network with N nodes as shown
in Fig 1. Each and every node k has access to local noisy
data realizations {dk(i), uk,i} of the zero mean spatial data
{dk, uk} for k = 1, 2, ..., N where dk is the desired scalar
and uk is a regression input vector of size 1 ×M . The main
intention is to estimate the vector w of size 1 ×M by using
the above data collected from all N nodes and it should solve

min
w
J (w)

Where J (w) indicates the cost function which signifies the
MSE, given as bellow:

J (w) = E‖d− uw‖2

The solution to the above optimization problem is solved
using many approaches in the literature, Steepest Descent
Solution, Incremental LMS, Incremental Leaky LMS and so
on[3][6][12][13].

III. INCREMENTAL MODIFIED LEAKY LMS

Incremental Modified Leaky LMS algorithm is proposed to
improve the performance of ILLMS. The proposed IMLLMS
will overcome drift problem with improved performance com-
pared to ILMS.

A. Data Model and Assumptions

The data model and the assumptions followed for the
IMLLMS algorithm are listed below:

• The desired unknown vector w0 relates {dk(i), uk,i} as
dk(i) = uk,iw

0 + vk(i) Where vk(i) is white
noise sequence with variance σ2

v,k and independent of
{dl(j), ul,j} for all l, j

• uk,i is independent of ul,i for k 6= l (Spatial indepen-
dence).

• uk,i is independent of uk,j for i 6= j (Time indepen-
dence).



Fig. 2. Data Flow and updation in Incremental modified leaky LMS

Fig.2. shows the data flow and the weight updation in IM-
LLMS strategy in a distributed adaptive sensor network with N
nodes. Incremental Modified LLMS algorithm can be depicted
as in Table.1:

Table1.Algorithm for Incremental Modified
LLMS Solution

Let ψ(i)
k denote a local estimate of w0 at node k

at time i
Start with w−1 = 0

Let ψ(i)
0 = wi−1

For nodes to k = 1 , 2, .., N , repeat :
Receive ψ(i)

k−1 from previous node
ψ
(i)
k = (1− µkα)ψ(i)

k−1+

2µku
∗
k,i sinh

(
dk (i)− uk,iψ(i)

k−1

)
,

k = 1 , 2, .., N
End

wi = ψ
(i)
N

Send wi to node 1
End

IV. SIMULATION RESULTS AND DISCUSSION

The computer simulations are provided by performing 300
independent experiments and averaging. ILLMS and IMLLMS
are implemented and then compared in terms of convergence
speed, MSE, MSD and EMSE. The input at each node is
considered as shift structure in order to cope up with the
realistic scenarios like correlated data. The regression vectors
are filled up as below:
uk,i = col {uk(i), uk(i− 1), ........uk(i−M + 1)}

Fig. 3. MSE at node 1 for Incremental LLMS and Incremental MLLMS

The measured data d(i)k are generated at each node by using
the regular data model as mentioned before and the desired
MX1 vector to be estimated is set as

w0 = col {1, 1, ......, 1}
/√

M

where M is the tap size and taken as M=5. The quantities
of interest are defined as below:

• EMSE (Excess Means quare error) =
∣∣∣uk,i (ψ(i)

k − w0
)∣∣∣2

• MSE (Mean square error) =
∣∣∣dk(i)− uk,iψ(i)

k−1

∣∣∣2
• MSD (Mean square deviation) =

∣∣∣(ψ(i)
k − w0

)∣∣∣2
A network of 20 nodes is considered in this experiment i.e.
N=20 with each input regressor of size (1× 5) . The input is
created by a first order auto regressive model given as below:

uk(i) = 0.2uk(i− 1) + η0k(i)

Where η0k is a WGN with mean zero and variance σ2
η0 = 0.36.

The input signal is assumed to be corrupt with white Gaussian
noise with zero mean and variance σ2

v0 = 0.0001. Step size
taken as µ = 0.003 and leakage factor considered as α = 0.01.
The learning curves for MSE, EMSE, MSD for IMLLMS and
ILLMS at node 1 are shown in Fig.3, Fig.4, Fig.5.

V. CONCLUSION

A new algorithm has been proposed which improves the
performance of ILLMS by implementing MLLMS in place
of LLMS, which is obtained by slight modification of cost
function of LLMS according to the LSE algorithm. Simulation
results show that the IMLLMS algorithm outperforms the
ILLMS in terms of convergence rate and the steady state
performance in the presence of white Gaussian noise with a
penalty of slight increase in computational complexity. The
algorithms implemented in this paper can be implemented in



Fig. 4. EMSE at node 1 for Incremental LLMS and Incremental MLLMS

Fig. 5. MSD at node 1 for Incremental LLMS and Incremental MLLMS

other modes of cooperation like diffusion mode which could
be the future work.
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