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Abstract. In this article, we investigate the thermomechanical deflection characteristics of the debonded composite plate structure using an i1soparametric type of higher-order finite
element model. The present mid-plane kinematic model mainly obsoletes the use of shear correction factor as in the other lower-order theories. The separation between the adjacent
layers 1s modeled via the sub-laminate technique and the intermittent continuity conditions imposed to avoid the mathematical 1ll conditions. The governing equation of equilibrium of
the damaged plate structure under the combined state of loading are obtained using the variational principle and solved numerically to compute the deflection values.
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The higher-order displacement kinematics (nine degrees of freedom)

as presented in Reddy and Liu [1] is used for the current modeling The integral form of the elemental stiffness matrix:
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the tetmsy,,,.6, and #,are the higher-order term of Taylor series
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