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Abstract—Amplitude death (AD) is a coupling induced stabi-
lization of the fixed point (FP) of a dynamical system. This paper
applies AD concept, induced by dynamic coupling in order to
solve the stabilizing issues in presence of constant power load
(CPL) for avoiding the use of separate delay circuitry. This AD
method has been demonstrated by numerical simulations as well
as the bifurcation analysis.

I. INTRODUCTION

When flexibility comes into the picture, one can say that
DC micro-grids (MGs) are better choices than that of the AC
MGs. This is because they are more suitable for energy storage
and renewable sources as almost all of the loads nowadays
are inherently DC [1]. This increased reliability and flexibility
of DC MGs have helped engineers to select them in major
applications such as telecommunication industries [2], low-
power consumer electronics, vehicular technologies [3], indus-
trial power systems [4], naval ships [5], residential homes [6],
commercial buildings [7], and so on. Though DC MGs are
more stable than AC MGs [8]; but there are some serious
stability issues because of the interfacing power electronics
for achieving different levels of voltages during the integration
of sources, loads, and energy storage devices. In cascaded
architecture, point-of-load (POL) converters with a resistive
load behaves as an instantaneous CPL [9]. The negative
incremental resistance caused by CPL brings the nonlinearity
to the systems and results in a limit cycle behavior. This leads
to the undesired oscillations [10] in the systems, therefore the
state variables can’t converge to the fixed values.

It is well accepted that the destabilizing problem of DC
power-grid networks needs to be solved for future practical
use. Several strategies for enhancing the stability of an op-
erating point have been demonstrated that the use of passive
damping [11], the application of a bi-directional DC-DC con-
verter, use of a virtual capacitor [12], feedback controller [9],
and control for multiple power sources and loads [13]. These
studies have been tackled the destabilization problem from the
power electronics viewpoint and mostly follows the small sig-
nal linear stability analysis [14]. However, stabilizing problem
of such system can not be analyzed by linear system dynamics.
It is, therefore, necessary to apply the concept of nonlinear
analysis.

AD is a mathematical phenomenon of a nonlinear system by
which the FP is stabilized due to the coupling [15]. There are
mainly two reasons that can cause AD — strong coupling and
sufficiently different natural frequencies of interaction [16].
Recently, the model of coupled systems is reported by Huddy
and Skufca [17] where the topology allows application of
AD solution to this problem in a pair of DC bus systems.
Their work reported the applications of the nonlinear science
to the destabilizing problem. In contrast, the present paper
proposes the different stabilizing scheme called as dynamic
coupling [18], that has its own dynamics and deals with a
more fundamental parameter inbuilt in the system, i.e., the
shunt capacitor.

The motivations behind this dynamic coupling scheme are
that, the dynamic coupling is a rough approximation of the
time-delayed coupling for the oscillators with low frequencies
and/or short-time delay; RC-ladder coupling [19], which can
be approximated by RC wire delay connections in VLSI
chips [20]. Hence from the practical viewpoint, the dynamic
coupling is reasonable as it can be used for identical as well
as non-identical oscillating systems.

II. DC MICROGRID AND CPL

There is continuous growth in the applications of alternative
energy sources such as photovoltaic panels, fuels cells, wind
turbines and microturbines. As the output of photovoltaic and
fuel cells is DC by nature, it is easier and more efficient to
connect them directly to a DC distribution system, or through
a controlled DC/DC converter. For example, in traction power
systems, DC series motors are employed because of its high
starting torque and better voltage regulation characteristics.
Another example of DC distribution is the data centers, where
the sensitive loads connected to it require uninterrupted power
supply even if the main power source is lost. Similarly, in
a variety of power system applications based on advanced
power-electronics technique such as international space sta-
tion, spacecraft, electric and hybrid electric cars, telecommuni-
cations, terrestrial computer systems, and medical electronics
etc., the supplies are mostly of the DC type.

Consider a multi-converter DC bus system as shown in
Fig. 1. Note that it could include many LRCs that regulate
the main bus voltage, such as the one located between the
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Fig. 1. Conceptual diagram of a DC Bus system (PV: photovoltaic cell, UG:
utility grid, WT: wind turbine, FC: fuel cells).

main bus and the local microgrid source converters, which
are loaded by other converters. The loads in such systems
are the combination of tightly controlled POL converter and
a fixed output resistor Ro [21]. Since efficiencies of POL
converters are usually very high, this pair can be characterized
as an instantaneous CPL, which exhibits negative incremental
resistance property. Due to this negative impedance instability,
there is a decrease in the voltage stability margin which causes
significant oscillations. Since DC microgrids consist many
sources and many loads, the entire system is complex, non-
linear and coupled. However, DC microgrid stability analysis
is constantly improving. Various techniques have been already
developed like load shedding, direct connection of energy
storage to the main bus, filtering, and control approaches [9]
are among the well-known methods. Most studies on CPLs
rely on small signal analysis [22]; there is a conclusion is
that in constant power loaded dc systems, the equilibrium
point/fixed point (FP) of an LRC is unstable. Some other
previous studies have large signal analysis [23] method to
study the CPL effects on system stability.

An instantaneous CPL can be represented by

i =
PL

v
∀ v ≥ ε (1)

where i is the input current, PL is the CPL power, v is the
input voltage of the main bus feeding the CPL, ε is an arbitrary
small positive value. The switch model dynamics for the ideal
buck LRC case (r = 0, Ro =∞) with a CPL as the only load
as given in Fig. 2 is given by

di

dt
=
qE

L
−
v

L
;

dv

dt
=

i

C
−
PL

Cv
; i ≥ 0, v ≥ ε (2)

where i and v are the inductor current and capacitor voltage
respectively of the buck LRC. The switching function which
controls the MOSFET is given by q and its fast average is
given by the instantaneous duty cycle d.

During the transient, it’s possible that the trajectories of the
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Fig. 2. A simplified buck-based distributed power architecture.

system can cross the boundary (i = 0). But the converter
topology only allows unidirectional current through the in-
ductor (i ≥ 0). So it’s important to include the discontinuous
conduction mode (DCM) operation of the converters [24] for
low currents. Hence the average state equations no longer
describe the mathematical modeling of the converters and their
behavior. A full order model of the converter is represented
by,

di

dt
=
qE

L
− 2ivfs
q(E − v)

;
dv

dt
=

i

C
− PL

Cv
; i < 0 (3)

where fs is the switching frequency of the converter.
The simulations have been carried out using MATLAB for

the system shown in Fig. 2. Fig. 3 shows the voltage oscilla-
tions. The experimental validation of the sustained oscillations
in voltage waveform is given in Fig. 4.
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Fig. 3. Simulation result of output voltage of LRC converter.

It is a difficult task to calculate eigenvalues for the system
as shown in Fig. 2 described by Eqs. (2) and (3) as it
involves different conduction modes of the converters for
different conditions. Therefore numerical computation method
using XPPAUT [25] is used to determine the eigenvalues and
stability of the system. It is observed from the numerical
results that the FP0 is unstable because of the eigenvalues have
positive real parts 1. The phase portrait is shown in Fig. 5. For
detailed analysis, readers can refer to [17], [21].

0Given by the intersection of x-nullcline (orange) and y-nullcline (green)
1λ1 = 159.84 + j2230.35, λ2 = 159.84− j2230.35
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Fig. 4. Oscilloscope traces of sustained oscillations in a buck LRC with
CPL. Y- channel: 1 division = 1 V.
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Fig. 5. Stable limit cycle behavior of the destabilised system due to
CPL. Numerical results for the ideal buck LRC, with the parameters PL =
0.4 W, E = 10 V, L = 4 mH, C = 50 µF, q = 0.5, fs = 20 KHz.

III. AD SOLUTIONS METHOD BY DYNAMIC COUPLING

The dynamic coupling can be applied to two identical
systems as shown in Fig. 6, where coupling link consists of
a resistor Rk and a capacitor Ck. Here the coupling link has
its own set of dynamical equations which bring phase shift
between two identical oscillators pulling each other off its limit
cycle resulting AD in both the systems. The model dynamics
are given by

dv1

dt
=

i1

C1
−

P1

C1v1
+

(vk − v1)

RkC1
(4)

di1

dt
=


qE − v1
L1

if i1 ≥ 0

qE

L1
−

2i1v1fs

q(E − v1)
if i1 < 0

dv2

dt
=

i2

C2
−

P2

C2v2
+

(vk − v2)

RkC2
(5)

di2

dt
=


qE − v2
L2

if i2 ≥ 0

qE

L2
−

2i2v2fs

q(E − v2)
if i2 < 0

dvk
dt

=
v1 + v2 − 2vk

RkCk
(6)

where vk is the voltage across the capacitor Ck.
Dynamic coupling brings both the systems to steady state by

AD phenomena which is illustrated as shown in Fig. 7 and the
corresponding experimental result is given in Fig. 8. Numerical
analysis indicates that the FP is stable as the eigenvalues have
negative real parts 2. Here all the trajectories converge to the
FP which is clear from the phase portrait as shown in Fig.9.
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Fig. 6. Block diagram of coupled homogenous LRC systems for dynamic
coupling with Rk and dynamic element Ck as coupling link.
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Fig. 7. Simulation results showing sustained oscillations before coupling and
AD after coupling using the parameters PL = 0.4 KW, E = 10 V, L1 =
L2 = 4 mH, C1 = C2 = 50 µF, q = 0.5, fs = 20 KHz, Rk =
35 Ω, Ck = 50 µF.
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Fig. 8. Oscilloscope traces of dynamically coupled two homogeneous
systems. Y- channel: 1 division = 1 V.

2λ1 = −1274.92, λ2 = −59.84 + j2116.24, λ3 = −59.84 −
j2116.24, λ4 = −125.874 + j2232.52, λ5 = −125.874− j2232.52
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Fig. 9. Phase portrait for dynamically coupled homogeneous systems
showing a stable focus.

IV. BIFURCATION ANALYSIS

As it’s difficult to derive the range of parameters for the
AD region, numerical analysis helps us to estimate this range.
There are some useful tools for exploring how a dynamical
system changes with respect to the variation of parameters.
One of such methods is the Maximal Lyapunov exponent
(MLE) analysis because it determines a notion of predictability
for a dynamical system. The system is chaotic if MLE is
positive and is stable if MLE is negative. The most widely
observed route to AD is through Hopf bifurcation, where
coupling induces stability of the FP of the uncoupled systems.
To study this bifurcation a straightforward technique is called
continuation bifurcation in which a particular solution (such
as FP or limit cycle) is followed as the parameter changes.
AUTO provides a number of tools for the automatic detection
of bifurcations of FPs and limit cycles.
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Fig. 10. Maximum Lyapunov exponent as a function of Rk ∈ (0, 70) Ω for
Ck = 50 µF. Inset figure: transient trajectories of v1 and v2 , as a function
of time.

In Fig. 10, the plot gives the MLE for the coupled systems as
a function of Rk keeping Ck constant. The area denoted by the
arrow shows the AD region or the stability region where the
MLE is a negative quantity. The stability analysis shows that
AD occurs for the range 8.5 Ω < Rk < 56.5 Ω. The same has
been verified using continuation bifurcation diagram as shown
in Fig. 11, where Rk is taken as the bifurcation parameter. The
red line represents stable FPs and the black thin line represents
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Fig. 11. Bifurcation diagram using Rk ∈ (0, 70) Ω as the bifurcation
parameter for Ck = 50 µF.
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Fig. 12. Maximum Lyapunov exponent as a function of Ck ∈ (0, 500) µF
for Rk = 35 Ω.

the unstable FPs. Here the two Hopf bifurcation points are at
Rk = 8.484 Ω and Rk = 56.5 Ω giving unstable periodic
orbits implied by empty blue circles which are denoted by
HB1 and HB2 respectively. Stability region exists between
these two points HB1 and HB2. In Fig. 12, the plot shows that
AD happens in the range Ck > 50 µF . The two parameters
bifurcation diagram is given by Fig. 13 where death island is
given by the shaded area of Ck vs Rk plot.
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Fig. 13. Two parameters bifurcation diagram using Rk ∈ (0, 70) Ω and
Ck ∈ (0, 500) µF as the bifurcation parameters.



V. CONCLUSION

The stability issues of DC MGs can be overcome by various
feedback control methods. But AD solution method has its
uniqueness as it is free from any external controller circuits
which increase cost as well as the complexity of the system.
Moreover, the dynamic coupling is a replacement of delay
coupling scheme where the DC bus need not to be connected
with an additional delay circuitry. This coupling scheme can
be useful for both homogeneous and heterogeneous systems.
Dynamics of the coupling link necessarily helps to cease the
oscillations in the constant power loaded converters system
and gives the steady DC output voltages. The numerical
results based on bifurcation analysis have been done here to
highlight the stability region or death island under different
parameters values. However, this work can be extended to
multiple oscillating systems in a network of DC MGs.
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