478

[EEE INDIA ANNUAL CONFERENCE 2004, INDICON 2004

A Novel Approach for Computing Dynamic Slices
of Object-Oriented Programs with Conditional
_ Statements

Durga Prasad Mohapatra, Rajib Mall and Rajeev Kumar

Abstract— We propose a dynamic program slicing technique
for object-oriented programs, We introduce the notion of compact
dynamic dependence graph (CDDG) which is used as the inter-
mediate program representation. Qur dynamic slicing algorithm
is based on the CDDG. We show that our algorithm is more time
and space efficient than the existing ones. The worst case space
complexity of our algorithm is O(n), where # is the number of
statements of the program.

I. INTRODUCTION

The concept of a program slice was introduced by
Weiser [8]. A static backward program slice consists of those
parts of a program that affect the value of a variable v selected
at some program statement 5. The pair < s,v > is referred to
as a slicing criterion.

The program slices introduced by Wesier [8] are called static
slices because they are computed as the solution to a static
analysis problem that is computed independent of the program
input. A static slice accounts for all possible input values.
Therefore conservative assumptions are made, which often
lead to relatively large slices. To overcome this difficulty, Korel
and Laski introduced the concept of dynamic program slicing.
A dynamic program slice contains only those statements that
actually affect the value of v at a program statement s for a
given input.

Slicing object-oriented programming languages presents
new challenges which are not encountered in traditional pro-
gram slicing. To slice an object-oriented program, features
such as classes, dynamic binding, encapsulation, inheritance
and polymorphism need to be considered carefully. Larson
and Harrold were the first to consider these aspects in their
work {4]. They extended the system dependence graphs (SDG)
to represent object-oriented programs. After the SDG is con-
structed, the two phase algorithm of Horwitz et al. {3] is
used with minor medifications for computing slices. Larson

~and Harrold have reported only a static slicing technique for
object-oriented programs {4], and did not address dynamic
slicing aspects. : :

" Although several approaches about slicing object-oriented
programs have been developed there are several areas to be
improved. The intermediate representation can be constructed
in a2 more compact manner. So, the space requirement will be

The authors are with the Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur - 721302, India. E-mails: {durga,
rajib, rkumar} @cse.iitkgp.emnet.in

0-7803-8909-3/04/$20.00 ©2004 IEEE

reduced substantially. One of the major goai of any dynamic
slicing technique is efficiency since the results are normally
used during interactive applications such as program debug-
ging. The response time of an inefficient dynamic slicer would
be unacceptably large for OQOPs. With this motivation, in this
paper we propose a new dynamic slicing algorithm that is
more time and space efficient than the existing dynamic slicing
algorithms [9], {7]. In this paper, handling of conditional state-
ments in computing dynamic slices is of important concern,
s0 many object-oriented features have not been discussed.
However, representation of object-oriented features can be
incorporated into our technique from the work of Larson and
Harrold [4].

The rest of the paper is organized- as follows. In section
2, we review the related works, In section 3, we present
the proposed dynamic slicing algorithm. In section 4, we
compare our algorithm with related algorithms. Section 3
concludes the paper.

II. RELATED WORK

In this section we first briefly review some important
work concerning static slicing of object-oriented programs
and then discuss how these have been extended subsequently
by researchers to handle dynamic slicing of cbject-oriented
programs. Static slicing of object-oriented programs has drawn
considerable research interest [4], (5], [2]. Horwitz developed
the system dependence graph (SDG) as an intermediate pro-
gram representation and proposed a two-phase graph reach-
ability algorithm on the SDG to compute inter-procedural
slice. Larson and Harrold extended the SDG to represent
object-oriented programs (4]. Their extended SDG can be
used to repreésent many object-oriented features such as classes
and objects, inheritance, polymorphism and dynamic binding.
After constructing the SDG, they used a two-phase algorithm
to compute the static slice. Liang used a more comprehensive
intermediate graph representation by taking the parameter
object (when an object is used as a parameter) as a tree in
which the root of the tree represents the object itself and the
leaves represent the data members of the object.

All the work discussed above deal with static slicing of
object-oriented programs. But research results on dynamic
slicing of object-oriented programs have scarcely been re-
ported in the literature [9], [7]. For procedural programs,

INDIAN INSTTTUTE OF TECHNOLOGY, KHARAGPUR 721302, DECEMBER 20-22, 2004 479

Agrawal and Horgan were the first to present algorithms for
finding dynamic program slices using program dependence
graphs. They proposed a dynamic slicing method by marking
nodes on a static program dependence graph. The computed
slice may not be precise, because some dependencies might
not hold during-execution, They also proposed a precise slicing
method based on the dynamic dependence graph (DDG) [1).
A DDG has a vertex for each occurrence of a statement in
the execution history and contains only the executed edges.
This removes the imprecision of their previous algorithms.
However, the disadvantage of this approach is its space re-
quirement. Since a loop may execute an unbounded number of
times, there may be unbounded number of vertex occurrences.
To represent object-oriented programs, Zhao extended the
DDG of Agrawal and Horgan [1], to dynamic object-oriented
dependence graph (DODG) [9]. After constructing the DODG,
he used a two-phase algorithm to compute dynamic slices of
object-oriented programs. The disadvantage of this approach is
that the number of nodes in a DODG is equal to the number of
executed statements, which may be unbounded for programs
having loops.

Song proposed a method to compute forward slice of object-
oriented programs using dynamic object relationship diagram
(DORD} [7]. In this method, the dynamic slices for the
variables in each statement is computed immediately after the
statement is executed, When the last statement is executed,
the dynamic slices of all executed statements are obtained.
However, such run time slice computation is essential for only
some special statements in the loops. For other statements, this
approach incurs unnecessary run time overheads. So, compu-
tation of dynamic slices using this technique is unnecessarily
expensive.

IfI. OUR PROPOSED ALGORITHM

We use a dependence based graph named as Compact
Dynamic Dependence Graph (CDDG) as the intermediate rep-
resentation for dynamic slicing of object-oriented programs.
Based on the CDDG, we propose a new algorithm to compute
dynamic slices of object-oriented programs.

Object-oriented programs containing many conditional
statements require special techniques for computing dynamic
slices with respect to a variable at a particular point. For
applications where the program execution remains unspecified,
a more static approach is required. However, it is not always
helpful to make the criterion completely static. Often there
is a desire to put some constraints on the program’s possible
executions. These constraints are the conditions of slicing. This
slicing technique in which the slicing criterion contains some
conditions, is known as conditioned slicing. Condition slicing
removes the parts of the original program which can not affect
the variables at the point of interest, when the conditions are
satisfied. This produces a conditioned slice, which preserves
the behavior of the original program with respect to the slicing
criterion. Since, here the condition could simply be either true
or a conjunction of equalities which define the input, it is
possible for conditioned slicing to subsume both static and
dynamic forms of slice. B

For example, suppose the programmer wants to understand
the behavior of the original program when some condition
is satisfied. Here, condition slicing will remove parts of the
program which can not affect the slicing criterion, when the
condition is met. Another possibility is that the program has
some conditions already available in the form of subdomain
from partition analysis, from the specification, or from the
safety constraints, Also, in this case conditioned slicing can
be helpful by focusing attention on those parts of the original
program which are relevant to the conditions under considera-
tion. To illustrate, the difference between static, dynamic and
conditioned forms of slicing, consider the program fragment
given in the first column of Fig. 1. This fragment determines
the type of a triangle based upon the three side lengths p,
g, and r. The dynamic slice for the variable ¢ at the end the
program and for the input which sets p, ¢, and r to 1 is shown
in the second column of the figure. The static slice on the
final value of ! is the entire program as every line affects
the final value of ¢ in some way. Notice that, the dynamic
slice very specific. It only applies when the variables are all
set to one. This criterion can be implemented by conditioned
slicing, using the condition p = ¢ = r = 1, but a more general
condition would produce the same slice, namely p =g =r.

The conditioned slice for the final value of ¢ when the
condition is
p=4¢Vp=rVg¢=r
is shown in the third column of the figure.

It is observed that while computing the dynamic slice of
a program the main problem arises when loops containing
conditional statements in a program execute for a unbounded
number of times. Different iterations may execute different
statement sequences when conditional branching in the loop
influence the relevant variables at the point of interest. For
programs that are well structured, the number of different paths
in the control fiow graph that may be taken during different
iterations of the loop is bounded by a small number. We take
the advantage of this fact in reducing the space and execution
time overhead for computing dynamic slices. '

Before introducing our method, first, we explain it with the
help of an example. Fig. 2 represents the CFG of a program
fragment with a loop containing conditionals within the loop
body. In the rest of the paper we will abbreviate the CFG of
a loop containing conditionals as LCC. In Fig. 2, each square
block with a label represents a basic block of the program.
A basic block is a sequence of statements in which flow of
control enters at the beginning and leaves at the end without
any halt or branching except at the end. A basic block is
executed either in its entirety or not at all. In Fig. 2, the block -~
K contains a loop predicate. Blocks §, V, and W end with
conditionals. . .

The CFG for a simple loop containing many conditional
statements can be divided into several levels Ly, Lo, ..., Ly
Each level corresponds to an independent conditional siare-
ment. An independent conditional statement is not nested
within other conditional statements. Each level might contain
different independent paths, e.g., level L; consists of three
independent paths: $-A-W, S-B-W, and §-C-W. Level L, con-
sists of two independent paths. Let J¥; be the tota} number of

420

IEEE INDIA ANNUAL CONFERENCE 2004, INDICON 2004

. |f(p==q)
if(p=q)

if(p==n)
t = "equilateral”;

else t ="isosceles™;

t = "equilateral”;

if (p ==q)

if(p==q)
t = "equilateral”;

else t = “isosceles”;

clse else
if (p==1) ifp==r)
. L= "isosceles™; t = "isosceles";
else else
if{g==1) if(g==1)
t= “isosceles”; t = "isosceles";
else t="scalene";
Original Dynamic Slice for prg=r=1 Conditioned Slice for

Fig. 1. Comparing Static, Dynamic and Conditioned Slicing

>

| I

o S

"

I“":E'.“‘"'i

Fig. 2. CFG of a Loop Containing Conditional Statements

independent paths in level L;, So, the total number of different
paths that may be taken in different iterations of the loop is
given by the product N = Ny.Ny... N,, where g is the total
number of levels within the loop. It is an accepted sofiware
engineering principle to restrict the value of N to below 10 [6].
Even if, this value is large, it is always bounded (this bound
obviously equals the number of statements in the basic block)
and therefore our method will still work. In our approach, we
construct the dynamic dependence graph (DDG) at run-time.
However, during execution of an LCC we do not create a new
node every time a statement is executed. We only remember
the path taken for an iteration and the corresponding iteration
number. A path that is taken during the execution of an LCC is

associated with the corresponding iteration number of the loop.
If we find that the current path was already taken, we replace
this path’s iteration number by the current iteration number.
Each path can be identified by a unique sequence of basic
blocks (or statements) of length 4 and the number of such paths
is limited. Hence, the space requirement is bounded. The run-
time overhead is also much smaller compared to the Agarwal’s
method [1) and Zhao's method [9], since for any iteration we
need only to identify which path is taken. After execution of
the loop, the different paths taken during the loop execution are
ordered according to the associated -iteration numbers, Thus,
we know the exact node and the edge sequence which gets
executed during the loop iteration. Therefore, we can construct
the relevant nodes and edges in the DDG after termination of
the loop. This new DDG for the program will be compact
one and we name it as Compact Dynamic Dependence Graph
(CDDG). CDDG represents different paths that were taken

_during execution of a program with LCCs.

For computation of the CDDG, we first construct the
control dependence (cd) edges at compile time. Control
dependence does not change at run-time and therefore can be
computed statically, Data dependence (dd) edges are added
on-the-fly as the program execution proceeds. At compile
time all the LCCs are identified and corresponding CFGs for
the LCCs are constructed statically. The set of paths that may
be taken during execution for each of these LCCs is then
determined and stored in terms of the basic blocks and are
unmarked. During execution of the program, data dependence
edges that get executed during any iteration of the loop,
the path that is taken is marked with the corresponding
iteration number. After the loop terminates, the CDDG can
be constructed considering only those vertices and edges
that were marked and omitting the rest. The pseduo-code of
our proposed algorithm for constructing CDDG is given below.

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR 721302, DECEMBER 20-22, 2004 481

int i , I, X, ¥
1. cin>>n;’
2. y=4;
3. i=1;
4. while(i<n)} {
5. x=2; .
G . if(i mod 2 == 0) {
7. if{n mod 4 == 0)
8 x=4;
else
9. X=6;
}
10. v=Xx;
11. i=i+1;
}
12. cout<<y;
Fig. 3. An Example Program

Algorithm Generate CDDG
1) Run the program for the given input value
2) while (not termination) do
d) n = pode representing currently executed statement
b) if (n # Lentry) / Lentry and L,y are the entry
and exit points of an LCC
add all control dependence and data depen-
dence edges to n
¢} else /fan LCC is encountered
i) repeat
mark the path taken within the LCC with
the iteration number
i if the path is already taken update it-
eration number with the current iteration
number
until (n = L,z;)

ii) arrange the paths in increasing order of iteration .

numbers
iii) for each path from the lowest fo highest itera-
tion number do
A) create node for every statement executed
during the iteration represented by this path
B) add all control dependence and data depen-
dence edges to each of these nodes
It is necessary to maintain the Ordering of the different
paths taken, to correctly add the data dependence edges. For
example, there are three paths p;,pe,ps and variable z is
defined in two different statements in path pyandp; and is
used in a statement in path p3. Let the paths be executed in
the order gy, p3, P2, P2, p3 . At the termination of the loop, the

data dependence edge from the statement in path pp defining

the variable = to the statement in path p3 using z will be
relevant and added to the CDDG instead of the edge from
the statement in path p, defining the variable &, If the order

— O D i |,
» Dubgealp | N T

Fig. 4. Compact Dynamic Dependence Graph of the Example Program in
Fig. 2.

of execution is stored, CDDG construction is simple. Fig. 4
shows the CDDG of the example program given in Fig. 3 for
input n=6. The two paths (4, 5, 6, 10, 11) and (4, 5, 6, 7.
9, 10, 11) are repeated alternately starting from iteration 1 to
iteration 5 and finally the loop terminates when i=6. These
two sequences are marked with their latest iteration counts 4
and 5 respectively. All the vertices and edges that are executed
when taking these two paths are marked. For instance, Fig, 4
includes a data dependence edge from the right most vertex
10 to the vertex 12 instead of a data dependence edge from
the left most vertex 10. After construction of the CDDG, we
apply the reachability criteria as usual to compute the dynamic -
slice. The dynamic slice with respect to the out put statement
12 consists of all the statements from which this vertex is
reachable in the CDDG, namely, (1, 3, 4, 6, 7, 9, 10, 11, 12).
The shaded vertices in Fig. 4 are included in the slice.

IV. COMPARISON WITH RELATED WORK

In this section, we show that our method is efficient in terms
of space and time, than the related algorithms.

A. Space Requirement

Zhao [9] computed the dynamic slice of an object-oriented
program based on the dynamic object-oriented dependence
graph (DODG). But for program shaving loops, the size of
the DODG becomes unbounded. Also the worst case space
complexity of the DODG based algorithm is 02"}, where
is the number of statements in the program. .

In our method, it is necessary to' store the different paths
that are taken when an LCC is executed. Let the length of the
sequence which represents the paths be g, which is equal to
the number of levels as discussed earlier. Let p be the total
number of paths in an LCC and k be the total number of
LCCs. The space requirement to store all the paths for all

482 IEEE INDIA ANNUAL CONFERENCE 2004, INDICON 2004

LCCs is O(kpg). The space requirement to store the CDDG [Sj M. Weiser. Programmers use slices when debugging. Communi-

is O(n + mkp), where n is the number of statements in the cations of the ACM, 25(7):446-452, 1982, ,
program and m) is the number of statements in an LCC. The (9 J- Zh”"’]' ?ymm.'c slicing of °b§°t:°{‘°“}°? ngrﬁ';; ;r;;gmcal

. r, tion Processing Society of Japan, .
total space requirement is therefore O(n), since k.and p are report, “niormaton 6 Y

constants. So, our method is space efficient than Zhao's [9]
method.

B. Time Requirement

The dynamic slicing algorithm of Zhao [9] based on DODG,
finds the dynamic slice for each occurrence of the nodes. If the
dynamic slice corresponding to the present execution of the
node i is different from all the dynamic slices comresponding
to its previous executions, then it creates a new node for
this execution along with its required dependence edges and
stores the associated dynamic slice. When the number of
stored dynamic slices for a node u becomes very large,
the time required for performing comparison also increases
substantially. In the worst case, the time complexity becomes
exponential in the number of statements of the program.

But in our method, during any iteration of an LCC, only the
path taken is recorded. The overhead for this step is O(p.q?),
where p is the total number of paths in an LCC and 4 is the
length of sequence which represents the paths. Both p and ¢
are much less than . So, our method is time efficient than
that of Zhao [9]. ’ -

V. CONCLUSIONS

"We have proposed an efficient technique for computing
dynamic slices of object-oriented programs based on the
intérmediate representation CDDG. We have shown that our
algorithm is more time and space efficient than the existing
algorithms. Although we have presented our slicing technique
using C++ examples, the technique can easily be adapted to

- other object-oriented languages such as Java. We are now
extending this approach to compute the dynamic slice of
concurrent object-oriented programs.

REFERENCES

[1] H. Agrawal and J. Horgan. Dynamic program slicing. In
Proceedings of the ACM SIGPLAN'90 Conference on Program-
mimg Lanuages Design and Implementation, SIGPLAN Notices,
Analysis and Verificarion, volume 25, pages 246-256, White
Plains, NewYork, 1990. .)

[2] Z. Chen and B. Xu. Slicing object-criented java programs. ACM
SIGPLAN Notices, 36:33-40, 2001. .

{3] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming

* Languages and Systems, 12(1):26-61, 1990,

[4) L. D. Larson and M. J. Harrold. Slicing object-oriented software.
In Proceedings of the 18th International Conference on Sofiware
Engineering, German, March 1996,

[5] D.Liang and L. Larson. Slicing objects using system dependence

" graphs. In Proceedings of International Conference on Software
Maintenance, pages 358-367, November 1998. .

{6] R. Mall. Fundamentals of Software Engineering. Prentice Hall, "’
India, 2nd Edition, 2003.

{71 Y. Song and D. Huynh. Forward Dynamic Object-Oriented
Program Slicing, Application Specific Systems and Sofiware En-
gineering and Technology (ASSET’99). IEEE CS Press, 1999,

