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Abstract

We propose a new dynamic slicing technique for
object-oriented programs that is more efficient than the
related algorithms. We use an extended system depen-
dence graph (ESDG) as the intermediate program rep-
resentation. Our dynamic slicing algorithm is based
on marking and unmarking the edges in the ESDG as
and when dependencies arise and cease during run-
time.

1 Introduction

The concept of a program slice was introduced by
Weiser [6]. A static program slice consists of those
parts of a program that affect the value of a variable
v selected at some program statement s. The pair
< s,v > is referred to as a slicing criterion. A dy-
namic program slice contains only those statements
that actually affect the value of v at a program state-
ment s for a given input.

Slicing object-oriented programs, presents new
challenges which are not encountered in traditional
program slicing. To slice an object-oriented program,
features such as classes, dynamic binding, encapsula-
tion, inheritance and polymorphism need to be con-
sidered carefully. Larson and Harrold were the first to
consider these aspects in their work [3].

Efficiency is an especially important concern in slic-
ing object-oriented programs, since the size of object-
oriented programs is often very large. With this mo-
tivation, in this paper we propose a new dynamic slic-
ing algorithm that is more time and space efficient
than the existing dynamic slicing algorithms [5, 7]. We
have named our algorithm edge-marking dynamic slic-
ing (EMDS) algorithm for object-oriented programs.

The rest of the paper is organized as follows. In sec-
tion 2, we review the related works. In section 3, we

present the edge-marking dynamic slicing algorithm.
In section 4, we compare our algorithm with related
algorithms. Section 5 concludes the paper.

2 Related Work

Horwitz developed the system dependence graph
(SDQG) as an intermediate program representation and
proposed a two-phase graph reachability algorithm on
the SDG to compute inter-procedural slice [2]. Larson
and Harrold extended the SDG to represent object-
oriented programs [3]. Their extended SDG can be
used to represent many object-oriented features such
as classes and objects, inheritance and polymorphism.
After constructing the SDG, they used the two-phase
algorithm to compute the static slice. Liang used a
more comprehensive intermediate representation by
taking the parameter object as a tree in which the root
of the tree represents the object itself and the leaves
represent the data members of the object [4].

All the work discussed above deal with static slic-
ing of object-oriented programs. But research results
on dynamic slicing of object-oriented programs have
scarcely been reported in the literature [5, 7]. To rep-
resent object-oriented programs, Zhao extended the
DDG of Agrawal and Horgan [1], to dynamic object-
oriented dependence graph (DODG) [7]. After con-
structing the DODG, he used a two-phase algorithm
to compute the dynamic slices. A disadvantage of this
approach is that the number of nodes in a DODG is
equal to the number of executed statements, which
may be unbounded for programs having loops.

Song proposed a method to compute forward slices
of object-oriented programs using dynamic object rela-
tionship diagram (DORD) [5]. In this method, the dy-
namic slices for the variables in each statement is com-
puted immediately after the statement is executed.
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1: class Elevator{
public:

2 Elevator(int 1_top_floor)  /* initialization for Elevator */
3 { current_floor = 1;
a: current_direction = UP;
5: top_floor = 1_top_floor: } /* end of Elevator */
6 virtual ~Elevator() {}
7 void up()
8: { current_direction = UP: }
9: void down()
10: { current_direction = DOWN; }
11: int which_floor()
12: { return current_floor; }
13: Direction direction()
14: { return current_direction; }
15: virtual void go(int floor) /* declaration for method go() */
16: {if (current_direction = UP)
17: { while (current_floor != floor)
&& (current_floor <= top_floor)
18: add(current_floor, 1); }
else
19: { while (current_floor != floor)
&& (current_floor > 0)
20: add(current_floor, —=1); } /* end if */
k
private:
21: add(int &a, const int &b)/* This method computes value of current_floor */
22: { a=a+b:};
protected:
int current_floor;
Direction current_direction;
int top_floor;
k
23: class AlarmElevator: public Elevator { /* AlarmElevator is derived from Elevatc
public:
24: AlarmElevator(int top_floor);
25: Elevator(top_floor)
26: {alarm_on = 0; }
27: void set_alarm()
28: {alarm_on = 1; }
29: void reset_alarm()
30: {alarm_on = 0; }
31: void go(int floor)
32: {if (! alarm_on)
33: Elevator :: go(floor):
k
protected:
int alarm_on;
k
34: main(int arge, char **argv) {
Elevator *e_ptr;
35: if (argv([1])
36: e_ptr = new Elevator(10);
else
37: e_ptr = new AlarmElevator(10);
38: e_ptr —> go(3);  /* polymorphic method call */

39: cout << "\n currently on floor:"
<< e_ptr —> which_floor():

} /* end of main */

Figure 1: An Example Program

When the last statement is executed, the dynamic
slices of all executed statements are obtained. How-
ever, such run time slice computation is essential for
only some special statements in the loops. For other
statements, this approach incurs unnecessary run time
overheads. So, computation of dynamic slices using
this technique is unnecessarily expensive.

3 EMDS Algorithm

Before presenting our algorithm, we first introduce
a few definitions that would be used in the algorithm.
In the following definitions and throughout the rest
of the paper, we use the terms statement, node and
vertex interchangeably.

Definition 1. Precise Dynamic Slice. A dynamic
slice is said to be precise if it includes only those state-
ments that actually affect the value of v at s for the

given execution.

Definition 2. Def(var). Let var be a variable in a
class in the program P. A node u of the ESDG of P is
said to be a Def(var) node if u represents a definition
(assignment) statement that defines the variable var.

In the ESDG of Fig. 2, nodes 3 and 22 are the
Def(current_floor) nodes.

Definition 3. RecentDef(var). For each variable var
in a class, RecentDef(var) represents the node (the la-
bel number of the statement) corresponding to the
most recent definition of var with respect to some
point s in an execution.

In Fig. 1, RecentDef(current_floor) at statement 17
during the first iteration of the while loop represents
the statement 3, where the variable current_floor is
initialized while during the second iteration it repre-
sents statement 22.

3.1 Extended System
Graph(ESDG)

Dependence

First, we construct the extended system depen-
dence graph (ESDG) of the object-oriented program
statically as in [3]. The extended system dependence
graph (ESDG) is an extension of the SDG proposed
by Horowitz [2]. In addition, the ESDG can model
the object-oriented features like inheritance, polymor-
phism etc. We discuss ESDG in the context of C++
programs. But the ESDG can be easily modified to
handle other object-oriented languages such as Java.
ESDG models the main program together with all
non-nested methods. Each class in a given program is
represented by a class dependence graph. Each method
in a class dependence graph is represented by a proce-
dure dependence graph as in [2]. Each method has a
method entry node that represents the entry into the
method. The class dependence graph contains a class
entry vertexr that is connected to the method entry
node for each method in the class by a special edge
known as class member edge. To model parameter
passing, the class dependence graph associates each
method entry node with formal-in and formal-out ver-
tices. A formal-in vertex is added corresponding to
each formal-parameter in the method, and a formal-
out vertex is added corresponding to each formal ref-
erence parameter that is modified by the method. The
class dependence graph uses a call vertez to represent
method call. At each call vertex, there are actual-
in and actual-out vertices to match the formal-in and
formal-out vertices present at the entry to the called



method. For example, in Fig. 2 , vertex 18 and vertex
20 represent calls to method add().

To represent inheritance, we construct representa-
tions for each method defined by the derived class,
and reuse the representations of all methods that are
inherited from the base class [3]. In Fig. 1, the con-
structor for AlarmFElevator calls the constructor for
Elevator. Thus in Fig. 2, the ESDG connects call ver-
tex 25 in AlarmFElevator to entry vertex 2 in Elevator
by call edge (25, 2). Virtual method go() of Eleva-
tor is not directly called in AlarmElevator; it is rede-
fined in AlarmElevator and calls Elevator::go(). Thus,
our ESDG connects the call vertex 33 in AlarmFEleva-
tor::go() to entry vertex 15 in Elevator::go(). For call
sites 25 and 33, parameter-in and parameter-out edges
are added to the ESDG.

A polymorphic method call using dynamic binding
occurs when the address of the method to be bound
during a method call is unknown at compile time.
To represent the polymorphic method call, the ESDG
uses a polymorphic choice vertex [3]. This polymorphic
choice vertex represents the dynamic choice among the
possible destinations. A call vertex corresponding to a
polymorphic call has a call edge incident on a polymor-
phic choice vertexr. A polymorphic choice verter has
call edges incident on subgraphs that represent calls
to each possible method to be bound. In Fig. 2 the
vertex P1 is a polymorphic choice vertex that repre-
sents a dynamic choice between calls to Elevator::go
and AlarmkElevator::go.

3.1.1 Construction of ESDG

ESDG of a complete program is constructed by first
creating a partial system dependence graph for the
function main and then connecting the calls in the
partial system dependence graph to methods in the
class dependence graph for each class. To do this, we
need to connect call vertices to method entry nodes by
call edges , actual-in vertices to formal-in vertices by
parameter-in edges and formal-out vertices to actual-
out vertices by parameter-out edges. The summary
edges are added between the actual-in and actual-out
vertices at call sites. Fig. 2 shows the ESDG for the
example program given in Fig. 1. The ESDG clearly
represents the derived class AlarmFElevator which is in-
herited from the base class Elevator. Also, the ESDG
represents the polymorphic method call go() at state-
ment 38 in Fig. 1.

3.2 Overview of EMDS Algorithm

Before execution of an object-oriented program P,
its extended system dependence graph (ESDG) is con-
structed statically. During execution of program P,
the algorithm marks an edge of the ESDG when its
associated dependence exists, and unmarks an edge
when its associated dependence ceases to exist. To
handle method calls, when a statement invokes a
method, the algorithm marks the corresponding call
edge between the call vertex and the method entry
node. Simultaneously, the algorithm marks the corre-
sponding parameter edges between the actual param-
eter vertices and the formal parameter vertices. Then,
the summary edges are marked if the value associated
with the actual-in vertex affects the value associated
with the actual-out vertex. After the method call is
completed and the dynamic slice is recorded at the in-
voking node, all the marked edges associated with the
method entry node are unmarked.

Let dslice(u) denote the dynamic slice with respect
to the most recent execution of the node u. Let
(z1,u),...,(zk,u) be all the marked incoming edges
of u in the ESDG after an execution of the statement
corresponding to node u. Then, it is clear that the
dynamic slice with respect to the present execution of
the node v is given by:

dslice(u) ={z1,22,.. .,z } Udslice(z1) Udslice(zs) U
... Udslice(zyg).

Once a slicing criterion is specified, the EMDS algo-
rithm computes the dynamic slice with respect to any
given slicing criterion by looking up the correspond-
ing dslice computed during run time. We now present
our EMDS algorithm for object-oriented programs in
pseudocode form.

Edge-Marking Dynamic Slicing (EMDS) Algo-
rithm.

1. ESDG Construction: Construct the extended SDG
of the object-oriented program P before execution
starts.

2. Initialization: Do the following before execution of
the program P
(a) unmark all the edges.
(b) Set dslice(u) = ¢ for every node w.

(c) Set RecentDef(var) = NULL for every variable
var of the program P.
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Figure 2: The updated ESDG of Fig. 1.



3. Runtime Updations: At run-time, until the pro-

gram ends or a slicing command is given, carry out
the following after each statement s of the program
P is executed. Let the node » in ESDG correspond
to the statement s.

(a) For every variable var used at node u do the
following:

i. Unmark the marked dependence edges,
if any, associated with the variable wvar,
which may have been marked by the pre-
vious execution of the node u.

ii. Mark the dependence edge (x, u) where x
= RecentDef(var).

(b) Update dslice(u) to
dslice(u) ={x1,22,...,2k} U dslice(z1) U
dslice(z2) U. .. Udslice(zy)

(¢) If wis a Def(var) node, then update Recent-
Def(var) = u.

(d) If uis a method entry node, then do:

i. unmark all the marked edges including
call edge, parameter edges and summary
edges, corresponding to the previous exe-
cution of the node w.

ii. mark the call edge between the method
entry node and the call vertex correspond-
ing to the present execution of the node
.

iii. mark the corresponding parameter edges
between the actual parameter vertices and
the formal parameter vertices.

iv. mark the corresponding summary edges
between the actual-in and actual-out ver-
tices.

(e) If u is a node representing the operator new,
then do:

i. unmark the marked call edge between u
and the method entry node of it's con-
structor method, as well as the associated
parameter edges and summary edges, cor-
responding to the previous execution of
the node u.

ii. mark the call edge between u and the
method entry node of it's constructor
method corresponding to the present exe-
cution of the node w.

iii. mark the associated parameter edges be-
tween the actual parameter vertices and
the formal parameter vertices.

1: class Elevator{

public:

Elevator(int 1_top_floor) _| /* initialization for Elevator */

{ current_floor = 1; |

: virtual void go(int floor)

current_direction = UP;
/* end of Elevator */

top_floor = 1_top_floor; }

virtual ~Elevator() {}

void up()
{ current_direction = UP; }
void down()
{ current_direction = DOWN; }

H int which_floor()

{ return current_floor; }

Direction direction()
{ return current_direction; }
/* declaration for method go() */

[ Tif (current_direction = UP J
[ { while (current_floor 1= floor) |

[ && (current_floor <= top_floor)

[ add(current_floor, 1); | |

clse

{ while (current_floor != floor)

&& (current_floor > 0)
add(current_floor, —1); } /* end if*/
k
private:

[ add(int &a, const int &b)

[ (a=a+bi];:

protected:

\ /* This method computes value of current_floor */

int current_floor;
Direction current_direction;
int top_floor;
k
class AlarmElevator: public Elevator
public:
AlarmElevator(int top_floor);

/* AlarmElevator is derived from Elevator */

Elevator(top_floor)
{alarm_on = 0; }
void set_alarm()
{alarm_on = 1; }
void reset_alarm()
{alarm_on =0 }
void go(int floor)
{if (! alarm_on)
Elevator :: go(floor)
k
protected:
int alarm_on;

¥

34{ main(int arge, char **argv) (|

35:
36:

37:
38:
39:

Elevator *e_ptr;
if (argv(1])
[ e_ptr = new Elevator(10); |
clse

e_ptr = new AlarmElevator(10):

e_ptr —> go(3): /* polymorphic method call */

[ cout <<"\n currently on floor:'<< e_ptr > which_floor(): |

)

/* end of main */

Figure 3: The dynamic slice of example program of
Fig. 1 on slicing criterion (39, current_floor)

iv. mark the associated summary edges be-
tween the actual-in and actual-out ver-
tices of w.

4. Slice Look Up:

(a) If a slicing command < s,V > is given, carry
out the following:
i. Look up dslice(u) for variable V for the
content of the slice. // node u corre-
sponds to statement s.
ii. Display the resulting slice.

(b) If the program has not terminated, go to step
3.

Working of the EMDS Algorithm. We illustrate
the working of the algorithm with the help of an exam-
ple. Consider the C++ program of Fig. 1. Its ESDG is



shown in Fig. 2. During the initialization step, EMDS
algorithm first unmarks all the edges of the ESDG and
sets dslice(u) =¢ for every node u of the ESDG. Now
for the input data argv[1]=3, the program will execute
the statements 34, 35, 36, 2, 3, 4, 5, 38, 15, 16, 17, 18,
21, 22, 17, 18, 21, 22, 17, 39, 11, 12 in order. So,
EMDS algorithm marks the edges (34, 35), (35, 36),
(36, 2), (2, 3), (2, 4), (2, 5), (34, 38), (38, 15), (15,
16), (16, 17), (17, 18), (18, 21), (21, 22), (34, 39), (39,
11), (11,12). EMDS algorithm also marks the corre-
sponding parameter-in edges and parameter-out edges
associated with the actual parameter vertices and for-
mal parameter vertices. All the marked edges in Fig.
2 are shown in bold lines.

Let us assume that a slicing command <
39, current_floor > is given at statement 39. This com-
mand requires us to find the backward dynamic slice
for the variable current_floor with respect to call to
which_floor() at statement 39. According to EMDS
algorithm, the dynamic slice at statement 39 after
the second iteration of the while loop, is given by
the expression dslice(39) = {39—A4.in, 12, 34} U
dslice(39—A4.in) U dslice(12) U dslice(34). During
run-time, the slice for each statement is computed im-
mediately after the execution of the statement. So,
we are able to get the final dynamic slice at statement
39 by performing a table look up on dslice(u). The
statements included in the dynamic slice are shown as
shaded vertices in Fig. 2. The dynamic slice is the
statements in rectangular boxes in Fig. 3.

3.3 Complexity Analysis

Space complexity. The worst case space complex-
ity of the EMDS algorithm is O(N?), where N is the
number of nodes in the ESDG.

Time complexity. The worst case time complexity
of the EMDS algorithm is O(mN) where m is an upper
bound on the number of variables used at any state-
ment.

4 Comparison with Related Work

Larson and Harrold have computed the static slice
of an object-oriented program based on the SDG, us-
ing a two-pass algorithm [3]. They have not consid-
ered dynamic slicing. Zhao [7] computed the dynamic
slice of an object-oriented program based on the dy-
namic object-oriented dependence graph (DODG) [7].
But for programs having loops, the size of the DODG
becomes unbounded. Also the worst case space com-
plexity of this algorithm is O(2™). But the worst case

space complexity of our EMDS algorithm is O(N?),
where N is the number of nodes in the ESDG.

The dynamic slicing algorithm of Zhao [7] finds
dslice(u) for each occurrence of node u. So, the
time complexity becomes exponential in the number
of statements for programs having loops. But the
worst case time complexity of our EMDS algorithm
is O(mN), where m is an upper bound on the number
of variables used at any statement. Thus, it is clear
that our EMDS algorithm is more space and time ef-
ficient than the existing algorithms.

5 Conclusions

Our EMDS algorithm does not require any new
nodes to be created and added to the ESDG at run-
time nor does it require to maintain any execution
trace in a trace file. Besides run-time efficiency of
the algorithm, since costly file operations are elimi-
nated, substantial improvement in response time is ob-
tained. Although we have presented our slicing tech-
nique using C++ examples, the technique can easily
be adapted to other object-oriented languages such as
Java. We are now extending this approach to com-
pute the dynamic slice of concurrent object-oriented
programs.
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