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ABSTRACT: Extensive laboratory model tests were conducted on a rectangular 
embedded foundation resting over homogeneous sand bed and subjected to an eccentric 
load to determine the ultimate bearing capacity. The depth of embedment varies from 0 
to 1B with an increment of 0.5B; where B is the width of foundation and the eccentricity 
ratio (e/B) varies from 0 to 0.15 with an increment of 0.05. Based on the laboratory 
model test results, a neural network model is developed to estimate the reduction factor 
(RF). The reduction factor can be used to estimate the ultimate bearing capacity of an 
eccentrically loaded foundation from the ultimate bearing capacity of a centrally loaded 
foundation. A thorough sensitivity analysis was carried out to determine the important 
parameters affecting the reduction factor. Importance was given on the construction of 
neural interpretation diagram, and based on this diagram, whether direct or inverse 
relationships exist between the input and output parameters was determined. The results 
from artificial neural network (ANN) were compared with the laboratory model test 
results and these results are well matched. 
 
Keywords: Eccentric load, rectangular foundation, depth of embedment, sand, neural 
network, reduction factor. 

INTRODUCTION 

During the last thirty years, a number of laboratory model test results and few field test 
results have been published that are related to the ultimate bearing capacity of shallow 
foundation resting over homogeneous sand bed and clay. Most of the experimental 
studies were related to centric loading and embedded foundation condition. However, 
none of the published studies address the effect of load eccentricity on the ultimate 
bearing capacity of rectangular foundation using ANN. The purpose of this study is to 
develop a neural network model from the results of laboratory model tests to estimate the 
reduction factor. Artificial neural network (ANN) is an artificial intelligence system 
inspired by the behavior of human brain and nervous system. In the present study a feed 



forward back propagation neural network model has been used to predict the reduction 
factor of eccentrically loaded rectangular foundation. Backpropagation neural network is 
most suitable for prediction problems and Levenberg-Marquadrt algorithm is adopted as 
it is efficient in comparison to gradient descent backpropagation algorithm (Goh et al. 
2005; Hornik et al. 1989). By drawing a neural interpretation diagram relationship in 
between input and output are found out. A prediction model is developed based on the 
weights of the ANN model. The developed reduction factor is compared with the 
experimental reduction factor. 

ANALYSIS AND DATA 

All the laboratory model tests were conducted using a poorly graded sand with effective 
grain size D10 = 0.325 mm, uniformity coefficient Cu = 1.45, and coefficient of gradation 
Cc = 1.15. Model foundations used for the tests had dimensions of 100 mm × 100 mm 
(B/L = 1), 100 mm × 200 mm (B/L = 0.5), 100 mm × 300 mm (B/L = 0.33) and 100 mm 
× 500 mm (B/L  0). Mild steel plates 30-mm thick were used to make the model 
foundations. The bottom of the foundation was made rough by applying glue and rolling 
the steel plate over sand. 

Forty eight laboratory model tests were conducted. Three parameters e/B, B/L and Df /B 
are used as inputs in the ANN model, and the output is the reduction factor RF given by 
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where )/,/,/( BeBDLBu f
q is the ultimate bearing capacity with eccentricity ratio e/B and B/L ratio 

and at an embedment ratio Df /B and )0/,/,/( BeBDLBu f
q is the ultimate bearing capacity with 

centric vertical loading (e/B = 0) with B/L ratio and at an embedment ratio Df /B. 

Out of 48 tests, 36 tests are considered for training and the remaining 12 are considered 
for testing. All the inputs and output are normalized in the range of [-1, 1] before 
training. A feed-forward back-propagation neural network is used with hyperbolic 
tangent sigmoid function and linear function as the transfer function. The network is 
trained with Levenberg-Marquardt (LM) algorithm as it is efficient in comparison to 
gradient descent back-propagation algorithm. The ANN has been implemented using 
MATLAB V 7.11.0(R2015b). 

RESULTS AND DISCUSSION 

Three inputs and one output parameters were considered in the ANN model. The 
schematic diagram of the ANN architecture is shown in FIG. 1. which was computed 
from the database. The number of neurons in hidden layer is varied and the optimum 
number was taken based on mean square error (mse) value which was maintained at 
0.001. In this ANN model there were six neurons evaluated in hidden layer as shown in 



FIG. 2. Therefore the final ANN architecture as 3-6-1[i.e. 3 (input) – 6 (hidden layer 
neuron) – 1 (output)].  

Mean square error (MSE) is defined as  
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Coefficient of efficiency, R2 is defined as 
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where, RFRFi , and pRF  are the experimental, average experimental, predicted RF 

values respectively; and n = number of training data. 

The coefficient of efficiency (R2) is found to be 0.995 for training and 0.902 for testing 
as shown in FIGS. 3. and 4. The weights and biases of the network are presented in 
Table 3. These weights and biases can be utilized for interpretation of relationship in 
between the inputs and output, sensitivity analysis and framing an ANN model in the 
form of an equation. The residual analysis was carried out by calculating the residuals in 
between experimental reduction factor and predicted reduction factor for training data. 
Residuals can be defined as the difference between the experimental and predicted RF 
value and is given by 

pir RFRFe                 (6) 

The residuals are plotted with the experimental number as shown in FIG. 5. It is 
observed that the residuals are evenly distributed along the horizontal axis of the plot. 
Therefore it can be said that the network is well trained and can be used for prediction 
with reasonable accuracy. 

 



SENSITIVITY ANALYSIS 

Sensitivity analysis was carried out for selection of important input variables. Different 
approaches have been suggested to select the important input variables. The Pearson 
correlation coefficient is one of them in selecting proper inputs for the ANN model. It 
was approached by Guyon and Elisseff (2003) and Wilby et al. (2003). Goh (1994) and 
Sahin et al. (2002) Behera, et.al. (2013) have used Garson’s algorithm (Garson 1991) in 
which the input-hidden and hidden-output weights of trained ANN model are partitioned 
and the absolute values of weights are taken to select the important input variables. It 
does not provide information on the effect of input variables in terms of direct or inverse 
relation to the output. Olden et al. (2004) proposed a connection weights approach based 
on the neural interpretation diagram (NID), in which the actual values of input-hidden 
and hidden-output weights are taken. Table 4 shows the cross-correlation of the three 
input parameters with the reduction factor (RF) value. From the table it can be seen that 
RF is highly correlated to e/B with a values of 0.975 followed by Df/B and B/L. The 
relative importance, quantified through the parameter Si of three input parameters as per 
Garson’s algorithm is presented in Table 5. The e/B is found to be the most important 
input parameters with relative importance value being 45.08% followed by 36.41% for 
B/L and 18.51% for Df/B. As per the connection weight approach (Olden et al. 2004) the 
relative importance of the present input variables is also presented in Table 5. B/L is the 
most important input parameter (Si = 8.6) followed by Df /B (Si = 1.38) and e/B (Si = -
1.06). The Si values being positive imply that both B/L and Df/B are directly related and 
e/B is indirectly related to RF. In other words increase in B/L or Df /B leads to increase in 
RF and leads to increase in ultimate bearing capacity. Increasing e/B decreases the RF, 
and hence decreases the ultimate bearing capacity. 

NEURAL INTERPRETATION DIAGRAM (NID) 

Ozesmi and Ozesmi (1999) proposed neural interpretation diagram for visual 
interpretation of the connection weight among the neurons. For the present study with 
the weights as obtained and shown in Table 3, an NID is presented in FIG. 7. The lines 
joining the input-hidden and hidden output neurons represent the weights. The positive 
weights are represented by solid lines and negative weights by dashed lines and the 
thickness of the line is proportional to its magnitude. 
It is seen from Table 5 that Si values for parameters B/L and Df/B are positive indicating 
that both the parameters are directly related to RF values, whereas Si values for 
parameter e/B being negative is indirectly related to RF values. This is shown in FIG. 7. 
Therefore, the developed ANN model is not a black box and could explain the physical 
effect of input parameters on the output. 
 
 
 
 



ANN MODEL EQUATION FOR REDUCTION FACTOR BASED ON TRAINED 
NEURAL NETWORK 
  
A model equation is developed using the weights obtained from trained neural network 
model (Goh et al. 2005). The mathematical equation relating input parameters (B/L, e/B 
and Df/B) to output given by 





















 


 iik

m

i
hknk

h

k
nn XwbfwbfRF

11
0           (7) 

where RFn is the normalized value of RF in the range [-1, 1], nf  is the transfer function, 

h is the number of neurons in the hidden layer, Xi is the normalized value of inputs in the 
range [-1, 1], m is the number of input variables,  ikw is the connection weight between 

the ith layer of input and kth neuron of hidden layer, kw is the connection weight between 

the kth neuron of hidden layer and single output neuron, hkb is the bias at the kth neuron of 

hidden layer and 0b  is the bias at the output layer.  

The model equation of RF of shallow rectangular foundations subjected to eccentrically 
inclined load was formulated using the values of the weights and biases shown in Table 
3 as per the following steps. 

Step 1 

The input parameters were normalized in the range [-1, 1] by the following expressions  
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Step 2 

Calculate the normalized value of reduction factor (RFn) using the following expressions 
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Step 3 

Denormalize the RFn value obtained from Eq. 22 to actual RF as  

  minminmax)1(5.0 RFRFRFRFRF n            (23) 

  52.052.01)1(5.0  nRFRF            (24) 

FIG. 6. Shows the comparison of reduction factor obtained from Eq. 23 and Eq. 1. It can 
be seen that the ANN results are closer to the experimental value. The deviation between 



the experimental and predicted RF is within ± 10% except two values as shown in Table 
1. The proposed ANN model can be used as an effective tool in predicting the RF and 
hence, the ultimate bearing capacity of an eccentrically loaded rectangular footing. 

CONCLUSION 

Based on developed neural network model, the following conclusions may be drawn. 

1. The errors are distributed evenly along the centerline as per residual analysis. It 
can be concluded that the network was well trained and can predict the reduction 
factor RF with reasonable accuracy. 

2. Based on Pearson correlation coefficient, it was observed that e/B is the most 
important input parameter followed by B/L and Df /B and as per the Garson’s 
algorithm e/B is the most important input parameter followed by B/L and Df /B. 

3. The developed ANN model could explain the physical effect of inputs on the 
output, as described in NID. It has been observed that e/B is inversely related to 
RF, whereas B/L and Df /B are directly related to RF. 

4. A model equation is developed based on the trained weights of ANN 
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Table 1. Database used for ANN model and compared with experimental results 

Data 
Type 

Expt. 
No. B/L e/B Df /B 

Experimental 
qu (kN/m2) 

 
RFexpt. 

 
RFANN 

Deviation 
(%) 

Training  1 0 0 0 166.67 1.00 1.00 0.00 
2 0 0.1 0 109.87 0.66 0.66 -0.04 
3 0 0.15 0 86.33 0.52 0.52 -0.49 
4 0 0.05 0.5 226.61 0.86 0.85 0.66 
5 0 0.1 0.5 195.22 0.74 0.74 -0.04 
6 0 0.15 0.5 164.81 0.62 0.63 -0.53 
7 0 0 1 353.16 1.00 1.01 -0.68 
8 0 0.05 1 313.92 0.89 0.89 0.31 
9 0 0.1 1 278.6 0.79 0.80 -1.78 
10 0.33 0 0 131 1.00 1.02 -2.30 
11 0.33 0.05 0 109 0.83 0.83 0.58 
12 0.33 0.15 0 71 0.54 0.54 0.16 
13 0.33 0 0.5 224 1.00 1.00 -0.02 
14 0.33 0.1 0.5 181 0.81 0.81 -0.09 
15 0.33 0.15 0.5 161 0.72 0.71 0.63 
16 0.33 0.05 1 289 0.86 0.87 -1.11 
17 0.33 0.1 1 265 0.79 0.76 3.31 
18 0.33 0.15 1 239 0.71 0.71 0.42 
19 0.5 0 0 128 1.00 0.98 1.78 
20 0.5 0.05 0 102 0.80 0.80 -0.37 
21 0.5 0.1 0 86 0.67 0.66 2.32 
22 0.5 0 0.5 212 1.00 1.01 -0.98 
23 0.5 0.05 0.5 175 0.83 0.83 -0.94 
24 0.5 0.15 0.5 134 0.63 0.63 -0.42 
25 0.5 0 1 327 1.00 0.99 0.79 
26 0.5 0.1 1 230 0.70 0.72 -2.32 
27 0.5 0.15 1 200 0.61 0.62 -1.30 
28 1 0.05 0 102 0.84 0.84 0.59 
29 1 0.1 0 78 0.64 0.65 -0.82 
30 1 0.15 0 67 0.55 0.55 1.09 
31 1 0 0.5 238 1.00 1.00 -0.04 
32 1 0.05 0.5 198 0.83 0.85 -2.06 
33 1 0.1 0.5 176 0.74 0.74 -0.69 
34 1 0 1 339 1.00 1.00 0.29 



35 1 0.05 1 294 0.87 0.85 1.62 
36 1 0.15 1 227 0.67 0.66 1.50 

Testing 37 0 0.05 0 133.42 0.80 0.80 0.24 
38 0 0 0.5 264.87 1.00 1.01 -0.52 
39 0 0.15 1 245.25 0.69 0.82 -17.82 
40 0.33 0.1 0 94 0.72 0.69 4.06 
41 0.33 0.05 0.5 195 0.87 0.85 2.29 
42 0.33 0 1 336 1.00 0.97 3.31 
43 0.5 0.15 0 68 0.53 0.57 -6.50 
44 0.5 0.1 0.5 152 0.72 0.80 -11.80 
45 0.5 0.05 1 265 0.81 0.81 -0.51 
46 1 0 0 121 1.00 0.98 1.70 
47 1 0.15 0.5 143 0.60 0.58 4.07 
48 1 0.1 1 258 0.76 0.79 -3.99 

 

Table 2. Statistical values of the parameters 

Parameters 
Maximum 

value 
Minimum 

value 
Average 

Value 
Standard 
deviation 

e/B 0.15 0 0.075 0.056 

B/L 1 0 0.46 0.36 

Df /B 1 0 0.5 0.41 

RF 1 0.52 0.8 0.15 
 

Table 3. Values of connection weights and biases 

Neuron 

Weight  

wik wk Bias 

B/L e/B Df /B RF bhk b0 

Hidden neuron 1(k=1) -0.0679 0.9077 0.0742 -4.3646 2.1037 4.2743 
Hidden neuron 2(k=2) 11.4264 -18.1075 -0.9497 -0.1099 20.8869 
Hidden neuron 3(k=3) 24.9425 15.2804 13.5236 0.1446 38838 
Hidden neuron 4(k=4) 26.6906 1.1618 -14.609 0.2608 10.2778 
Hidden neuron 5(k=5) 0.5598 2.1791 -0.8329 -0.5202 -1.8638 
Hidden neuron 6(k=6) 1.131 0.7402 -0.4105 -0.6329 0.9429 



 

Table 4. Cross-correlation of input and output for reduction factor 

B/L e/B Df /B RFexpt 

(B/L) 1 -0.1 0 0.012 

(e/B) 1 0 0.975 

(Df /B) 1 0.167 

RFexpt 1 

 

Table 5. Relative importance of different inputs as per Garson’s algorithm and 

connection weight approach 

Parameters Garson’s algorithm Connection weight approach 

Relative 
importance 

Ranking of 
input as per 

relative 
importance 

Si values as 
per connection 

weight 
approach 

Ranking of 
input as per 

relative 
importance 

B/L 36.41 2 8.6 1 

e/B 45.08 1 -1.06 3 

Df /B 18.51 3 1.38 2 
 

 

FIG.1. ANN architecture 
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FIG. 2. Variation of hidden layer neuron with mean square error (mse) 
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FIG. 3. Correlation between prediction reduction factors with experimental 

reduction factor for training data  
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FIG. 4. Correlation between prediction reduction factors with experimental 

reduction factor for testing data  
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FIG. 5. Residual distribution of training data 
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FIG. 6. Comparison of ANN results with experimental RF  

 

FIG. 7. Neural interpretation diagram (NID) showing lines representing connection 
weights and effects of inputs on reduction factor (RF) 


