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ABSTRACT: Laboratory model tests have been conducted on a strip foundation resting 
over multi-layered geogrid-reinforced dense and loose sand subjected to inclined load. 
Based on the laboratory model test results, a neural network model is developed to 
estimate the reduction factor for bearing capacity. The reduction factor obtained by ANN 
can be used to estimate the ultimate bearing capacity of an inclined loaded foundation 
from the ultimate bearing capacity of a vertically loaded foundation. A thorough 
sensitivity analysis was carried out to find out the important parameters affecting the 
reduction factor. Emphasis was given on the construction of neural interpretation 
diagram, based on the weights developed in the neural network model, to determine the 
direct or inverse effect of input parameters to the output. An ANN model equation is 
developed based on trained weights of the neural network model. The results from 
artificial neural network (ANN) were compared with the laboratory model test results 
and these results are in good agreement. 
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INTRODUCTION 
 
During the last thirty years, a number of laboratory model test results and few field test 
results have been published that are related to the ultimate bearing capacity of shallow 
foundation resting over geogrid reinforced sand and clay. Most of the experimental 
studies were related to centric loading condition. However, none of the published studies 
address the effect of load inclination on the ultimate bearing capacity of strip foundation 
resting over multi-layered geogrid reinforced sand. The purpose of this study is to 
develop a neural network model from the results of laboratory model tests conducted by 
Sahu et al. (2016) to estimate the reduction factor. This RF is the ratio of the ultimate 
bearing capacity of strip footing on reinforced sand subjected to an inclined load to the 
ultimate bearing capacity of footing subjected to a centric vertical load at the same depth 



of embedment. In the present study, a feed-forward back-propagation neural network is 
trained with Levenberg-Marquardt algorithm. A thorough sensitivity analysis is made to 
interpret the important input variables. Neural Interpretation diagram is constructed 
based on the weights of the developed neural network model, to determine whether the 
input parameters have direct or inverse effect on the output. A prediction model equation 
is developed based on the weights of the neural network model. The predicted reduction 
factor is compared with the empirical equation proposed by Sahu et al. (2016). 
 
DATABASE AND PREPROCESSING 
 
The extensive database of laboratory experimental data available in Sahu et al. (2016) 
has been employed in the present study. Load tests were carried out on model strip 
footings resting on geogrid reinforced sand subjected to inclined loads as shown in FIG. 
1. The details of the tests and the procedure have been described in Sahu et al. (2016). 
The database used in the present analysis is presented in Table 1. The database consist of 
parameters like load inclination α, embedment ratio Df /B, depth of reinforcement 
measured from the bottom of the foundation d, friction angle  and ultimate bearing 
capacity quR. Eighty laboratory model tests were conducted. α/ and df /B are used as the 
two dimensionless input parameters in the ANN model and the output is the reduction 
factor (RF). The reduction factor (RF) is given by  
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where  BduR f
q /,  is the ultimate bearing capacity with inclination ratio  / at an 

normalized depth of reinforcement layer ratio Bd f and  BduR f
q /,0 is the ultimate 

bearing capacity with centric vertical loading (i.e. α / = 0) at depth of reinforcement 
layer ratio Bd f . In the present study, out of 80 data points 64 points were used for 

training and remaining 16 were kept for testing. Each data point represents a complete 
laboratory model test on geogrid reinforced bed which was led to failure. All the inputs 
and output are normalized in the range of [-1, 1] before training. A feed-forward back-
propagation neural network is used with hyperbolic tangent sigmoid function and linear 
function as the transfer function. The network is trained with Levenberg-Marquardt 
(LM) algorithm as it is efficient in comparison to gradient descent back-propagation 
algorithm. The ANN has been implemented using MATLAB V 7.11.0(R2015b). 
 
 
 
 
 



RESULTS AND DISCUSSION 
 
Two inputs and one output parameters were considered in the ANN model. The 
maximum, minimum, average and standard deviation values of the two input and one 
output parameters used in the ANN model are presented in Table 2.  
The schematic diagram of ANN architecture is shown in FIG. 2. The number of neurons 
in hidden layer is varied and it was selected based on the mean square error (MSE) value 
which was 0.001. In this ANN model four neurons are evaluated in hidden layer as 
shown in FIG. 3. Therefore the final ANN architecture is retained as 2-4-1 [i.e. 2 (input) 
– 4 (hidden layer neuron) – 1 (output)]. Mean square error (MSE) is defined as  
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where, RFRFi , and pRF  are the experimental, average experimental, predicted RF 

values respectively; and n = number of training data. 
The coefficient of efficiency (R2) is found to be 0.9972 for training and 0.9952 for 
testing as shown in FIG. 4 and 5. All the data used in the training and testing have been 
obtained from laboratory model tests are from the same source and are of same nature. 
Probably, this may be one of the causes for better fitting in both training and testing 
phase as well. The weights and biases of the network are presented in Table 3. These 
weights and biases can be utilized for interpretation of relationship between the inputs 
and output, sensitivity analysis and framing an ANN model in the form of an equation. 
The residual analysis was carried out by calculating the residuals in between 
experimental reduction factor and predicted reduction factor for training data. Residuals 



can be defined as the difference between the experimental and predicted RF value and is 
given by 

pir RFRFe                 (6) 

The residuals are plotted with the experimental number as shown in FIG. 6. It is 
observed that the residuals are evenly distributed along the horizontal axis of the plot. 
Therefore it can be said that the network is well trained and can be used for prediction 
with reasonable accuracy. 
 
SENSITIVITY ANALYSIS 

Sensitivity analysis was carried out for selection of important input variables. Different 
approaches have been suggested to select the important input variables. Connection 
weight approach by Olden et al. (2004), Garson’s algorithm approach by (Garson 1991), 
Pearson correlation coefficient approach by Guion and Elisseff (2003) have been applied 
for sensitivity analysis. The Pearson correlation coefficient is one of them in selecting 
proper inputs for the ANN model. Goh (1994) and Sahin et al. (2002) have used 
Garson’s algorithm (Garson 1991) in which the input-hidden and hidden-output weights 
of trained ANN model are partitioned and the absolute values of weights are taken to 
select the important input variables. It does not provide information on the effect of input 
variables in terms of direct or inverse relation to the output. Olden et al. (2004) proposed 
a connection weights approach based on the NID, in which the actual values of input-
hidden and hidden-output weights are taken. Table 4 shows the cross-correlation of 
inputs with the reduction factor (RF) value. It can be seen that RF is highly correlated to 
α / with a cross correlation value of 0.928, followed by df /B. From analysis of Garson’s 
algorithm as presented in Table 5 it is seen that α / is found to be most Important input 
parameter with the relative importance value being 61.13% followed by 38.86% for df 
/B. Olden et al. (2004) proposed a connection weights approach based on the NID, in 
which the actual values of input-hidden and hidden-output weights are taken. It sums the 
products across all the hidden neurons, which is defined as Si. The most important input 
corresponds to highest Si value.  As per Connection weight approach analysis it is seen 
that α / is found to be most important input parameter (Si value = -11.34) followed by df 
/B (Si value = 10.44). The Si values being negative imply that α / is indirectly and df /B 
is directly related to RF values. From the sensitivity analysis it can be seen that α / is 
found to be the most important parameter in predicting RF. In other words, increasing α 
/ will lead to a reduction in the RF and hence leads to lower ultimate bearing capacity. 
Increasing df /B increases the RF, and hence, increases the bearing capacity. 
 
NEURAL INTERPRETATION DIAGRAM (NID) 
 
Ozesmi and Ozesmi (1999) proposed a neural interpretation diagram (NID) for visual 
interpretation of the connection weight among the neurons. For the present study with 
the weights as obtained and shown in Table 3, an NID is presented in FIG. 7. The lines 



joining the input-hidden and hidden-output neurons represent the weights. The positive 
weights are represented by solid lines and negative weights by dashed lines and the 
thickness of the lines is proportional to their magnitude. The input directly related to the 
output is represented with a grey circle and that having inverse effect with blank circle. It 
can be seen from Table 5 (4th column) that Si value for parameter α / is negative 
indicating that the parameters α / is inversely related to RF values, whereas Si value for 
parameter df /B being positive is directly related to RF values. The same has been shown 
in FIG. 7. Thus it is inferred that RF value decreases with increase in α / value and 
increases with increase in df /B value. 
 
ANN MODEL EQUATION FOR THE REDUCTION FACTOR BASED ON 
TRAINED NEURAL NETWORK 
 
In the present study, with only two parameters (df /B and α /) a model equation is 
developed using the weights obtained from trained neural network model (Goh et al. 
2005). The mathematical equation relating the input variables and the output can be 
written as,  
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where, RFn = normalized value of RF in the range [-1, 1] 
           fn = transfer function 
          h = number of neurons in the hidden layer 
Xi = normalized value of inputs in the range [-1, 1] 
m = no. of input variables 
wik = connection weight between ith layer of input and kth neuron of hidden layer 
wk = connection weight between kth neuron of hidden layer and single output neuron 
bhk = bias at the kth neuron of hidden layer 
bo = bias at the output layer. 
Using the values of trained weights and biases in Table 3, a step by step procedure is 
written down to form a relationship in the form of a equation between the input 
parameters (df /B and  
α /) and the output (RF).  
Step – 1 
The input parameters were normalized in the range [-1, 1] by the following expression 
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where, Xn = Normalized value of input parameter 
Xmax = maximum values of the input parameter 
Xmin = Minimum values of the input parameter 



X1 = is the data set. 
 
Step – 2 
Calculate the normalized value of reduction factor (RFn) using the following expression 
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Step – 3 
Denormalize the RFn value obtained from Eq. 18 to actual RF as 

   minminmax15.0 RFRFRFRFRF n            (19) 

 
   112.0112.0115.0  nRFRF            (20) 

where, RFmax = maximum value of RF in the database and RFmin = minimum value of RF 
in the database. 



 
 
COMPARISON WITH EMPIRICAL EQUATION BY SAHU ET AL. (2016) 
 
Sahu et al. (2016) proposed an empirical equation based on laboratory model tests data 
for prediction of RF, which can be expressed as 

 

  





























































































B

D

B

D

ff

Bdu

Bdu

ff

f

f

B

d

B

D

q

q
RF

29.077.025.008.0

,0

,
45.036.1







     (21) 

where,  BdBeuR f
q /, = Ultimate bearing capacity of geogrid reinforced sand due to inclined 

loading for a particular df /B;  BduR f
q ,0  = Ultimate bearing capacity of geogrid 

reinforced sand for  /  = 0 at the same df /B; and RF = Reduction factor. 
As seen in FIG. 8 and Table 1, the comparison appears to be reasonably good. Hence, 
artificial neural network can be effectively used for the prediction of ultimate bearing 
capacity of strip footing in geogrid reinforced soil under inclined load. 

 

CONCLUSIONS 
 
The following conclusions can be drawn from the above studies: 

1. As per residual analysis, the errors are distributed evenly along the centerline. It 
can be concluded that the network is well trained and can predict the result with 
reasonable accuracy. 

2. The developed ANN model could explain the physical effect of inputs on the 
output, as depicted in NID. It was observed that α / were inversely related to RF 
values, whereas, df /B was directly related to RF. 

3. Based on sensitivity analyses; Pearson correlation coefficient, Garson’s algorithm 
and connection weight approaches, it was observed that α / is the most 
important parameter. 

4. An equation is presented based on the trained weights of the ANN. 
5. The predictability of ANN models are found to be slightly better than the 

empirical equation developed by Sahu et al. (2016). 
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Table 1. Database used for ANN model and comparison with Sahu et al. (2016) 
 

Data type 
(1)  

Expt. 
No. 
(2) 

df /B 
(3) 

( /) 
(4) 

Experiment
al qu 

(kN/m2) 
(5) 

RF(expt) 
(6) 

RF(ANN) 
(7) 

RF(Pred) 
(8) 

Training 1 0.350 0.122 208 0.754 0.754 0.752 
2 0.350 0.244 159 0.576 0.595 0.578 
3 0.350 0.367 116 0.420 0.415 0.423 
4 0.350 0.489 74 0.268 0.258 0.279 
5 0.600 0.000 370 1.000 1.000 1.000 
6 0.600 0.122 272 0.735 0.719 0.741 
7 0.600 0.244 208 0.562 0.565 0.559 



8 0.600 0.367 145 0.392 0.401 0.397 
9 0.850 0.000 550 1.000 0.999 1.000 
10 0.850 0.122 400 0.727 0.708 0.734 
11 0.850 0.244 300 0.545 0.537 0.546 
12 0.850 0.489 123 0.224 0.233 0.226 
13 1.100 0.000 640 1.000 1 1.000 
14 1.100 0.122 456 0.713 0.716 0.728 
15 1.100 0.367 230 0.359 0.374 0.367 
16 1.100 0.489 134 0.209 0.221 0.210 
17 1.35 0.00 500 1.000 1.013 1.000 
18 1.35 0.24 385 0.770 0.774 0.764 
19 1.35 0.37 317 0.634 0.63 0.653 
20 1.35 0.49 250 0.500 0.481 0.529 
21 1.6 0.122 625 0.887 0.918 0.885 
22 1.6 0.244 528 0.749 0.755 0.761 
23 1.6 0.367 430 0.610 0.620 0.633 
24 1.6 0.489 333 0.472 0.471 0.502 
25 1.85 0.000 820 1.000 1.005 1.000 
26 1.85 0.122 725 0.884 0.889 0.880 
27 1.85 0.244 608 0.741 0.743 0.750 
28 1.85 0.367 490 0.598 0.607 0.615 
29 2.1 0.000 930 1.000 0.998 1.000 
30 2.1 0.122 810 0.871 0.860 0.875 
31 2.1 0.244 675 0.726 0.732 0.739 
32 2.1 0.489 382 0.411 0.451 0.455 
33 0.35 0.000 85 1.000 1.000 1.000 
34 0.35 0.147 63 0.741 0.714 0.714 
35 0.35 0.441 28 0.329 0.320 0.334 
36 0.35 0.588 13 0.153 0.155 0.169 
37 0.6 0.000 115 1.000 1.000 1.000 
38 0.60 0.29 58 0.504 0.495 0.491 
39 0.60 0.44 35 0.304 0.308 0.305 
40 0.60 0.59 16 0.139 0.146 0.133 
41 0.85 0.15 101 0.697 0.682 0.693 
42 0.85 0.29 70 0.483 0.477 0.477 
43 0.85 0.44 41 0.283 0.294 0.285 
44 0.85 0.59 19 0.131 0.138 0.108 
45 1.10 0.00 178 1.000 1 1.000 



46 1.10 0.15 121 0.680 0.673 0.687 
47 1.10 0.29 82 0.461 0.463 0.466 
48 1.10 0.44 47 0.264 0.281 0.270 
49 1.35 0.00 118 1.000 1.013 1.000 
50 1.35 0.15 106 0.898 0.903 0.868 
51 1.35 0.29 87 0.737 0.721 0.725 
52 1.35 0.59 52 0.441 0.397 0.427 
53 1.60 0.00 175 1.000 1.01 1.000 
54 1.60 0.15 154 0.880 0.874 0.861 
55 1.60 0.44 98 0.560 0.527 0.554 
56 1.60 0.59 70 0.400 0.392 0.394 
57 1.85 0.00 235 1.000 1.005 1.000 
58 1.85 0.29 165 0.702 0.698 0.695 
59 1.85 0.44 127 0.540 0.515 0.532 
60 1.85 0.59 89 0.379 0.386 0.365 
61 2.10 0.15 240 0.842 0.823 0.848 
62 2.10 0.29 194 0.681 0.686 0.683 
63 2.10 0.44 148 0.519 0.502 0.512 
64 2.10 0.59 103 0.361 0.381 0.338 

Testing 65 0.350 0.000 276 1.000 1.000 1.000 
66 0.600 0.489 90 0.243 0.245 0.247 
67 0.850 0.367 210 0.382 0.387 0.380 
68 1.100 0.244 340 0.531 0.518 0.537 
69 1.35 0.12 450 0.900 0.946 0.892 
70 1.60 0.00 705 1.000 1.01 1.000 
71 1.85 0.489 370 0.451 0.461 0.478 
72 2.1 0.367 545 0.586 0.594 0.599 
73 0.35 0.294 44 0.518 0.511 0.513 
74 0.60 0.15 83 0.722 0.700 0.702 
75 0.85 0.00 145 1.000 0.999 1.000 
76 1.10 0.59 20 0.112 0.131 0.089 
77 1.35 0.44 69 0.585 0.540 0.578 
78 1.60 0.29 126 0.720 0.709 0.710 
79 1.85 0.15 202 0.860 0.846 0.854 
80 2.10 0.00 285 1.000 0.998 1.000 

 
 
 



 
Table 2. Statistical values of parameters 
 

Parameter Maximum 

value 

Minimum 

value 

Average value Standard 

deviation 

df /B  2.1 0.35 1.225 0.572 

α/ 0.588 0 0.269 0.192 

RF 1 0.112 0.638 0.264 

 
Table 3. Connection weights and biases 
 
 

Neuron 

weight Bias 

wik wk  

bhk 

 

b0 (df /B) (α /) RF 

Hidden neuron 
1(k=1) 

-0.1886 -1.5416 0.5663 0.6264  

 

0.2388 

Hidden neuron 
2(k=2) 

0.9381 3.8625 -0.2274 1.6575 

Hidden neuron 
3(k=3) 

13.1304 29.6581 -0.2938 31.5729 

Hidden neuron 
4(k=4) 

46.6441 -2.8076 0.3134 3.8462 

 
 
 
 
 
 
 
 
 



 
Table 4. Cross-correlation of the input and output for the reduction factor 

 
Parameters df /B α /  RFexpt 

df /B 1 0 0.247 

α /   1 -0.928 

RFexpt   1 

 
Table 5. Relative importance of different inputs as per Garson’s algorithm and 
Connection weight approach 
 

Parameters Garson’s algorithm Connection weight approach 

 

 

 

(1) 

Relative 

importance (%) 

 

(2) 

Ranking of 

inputs as per 

relative 

importance 

(3) 

Si values as per 

connection 

weight 

approach 

(4) 

Ranking of 

inputs as per 

relative 

importance 

(5) 

df /B 38.86 2 10.44 2 

α /  61.13 1 -11.34 1 

 



 

FIG. 1. Strip foundation over geogrid-reinforced soil subjected to inclined ultimate 
load 

 
 

FIG. 2. Structure of ANN 
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FIG. 3. Variation of hidden layer neuron with mean square error (mse) 
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FIG. 4. Correlation between predicted reduction factor with experimental 
reduction factor for training data 
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FIG.  5. Correlation between predicted reduction factor with experimental 
reduction factor for testing data 
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FIG. 6. Residual distribution of training data 
 



 

FIG. 7. Neural interpretation diagram showing lines representing connection 
weights and effects of inputs on reduction factor (RF) 
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FIG. 8. Comparison of reduction factor of present analysis with empirical equation 
by Sahu et al. (2016) 

 

 

 


