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ABSTRACT: Thin plated structures of different geometries are widely used in the field of civil, 

mechanical, aerospace and naval engineering. The structures can be subjected to any time 

varying loading like blast or impact loads. This paper thus presents nonlinear transient vibration 

analysis of arbitrary thin plates using a superparametric element. The geometry of the plate is 

represented by cubic serendipity shape function and the displacement field is defined by an ACM 

plate bending element along with in-plane displacements. The element is capable of 

accommodating different arbitrary shapes but devoid of shearlocking problems or spurious 

mechanisms as seen in isoparametric elements. Different numerical examples are considered for 

the response analysis to prove the versatility of the formulations. 

 

INTRODUCTION 

 

Thin plates are widely used for different engineering purposes. These are often subjected to 

dynamic loads having dynamic variations. When the magnitude of load is high, these plated 

structures may undergo large deformation giving additional stiffness. Thus nonlinear transient 

analysis is presented in this paper to study the response of these structures using superparametric 

element where the shape function used to define the geometry is different than the one for the  

displacement field. The geometry of the plate is described by cubic serendipity function and the 

displacement field adopts an ACM plate bending element along with in-plane displacements. 

The authors have presented the same formulation for large deformation analysis of arbitrary 

shaped plates (Panda and Barik, 2015, 2017). 

PROPOSED ANALYSIS 

Mapping of the Plate 

The mapping (Panda and Barik, 2017) of an arbitrary geometry of the plate is performed in two 

steps using cubic serendipity shape function (Zienkiewich and Taylor, 1989).  First the arbitrary 

shape is approximately mapped into a [−1, +1] region in the s − t plane. Then the mapped square 

plate is discretized into a number of elements and each element is mapped to [−1, +1] natural 

coordinate system in the ξ − η plane.  
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From the mapping we have,  
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Displacement interpolation function 

 

The ACM plate bending element with in-plane displacements i.e. five degrees of freedom 
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 at each node is considered for defining the displacement field.  The shape functions 

used are presented in detail in Barik and Mukhopadhyay (2002). 

 

Nonlinear Stiffness matrix of the Plate 

 

The geometrically nonlinear stiffness matrix (Mukhopadhyay and Sheikh, 2004) is obtained in the 

[N]-notation and the displacements is referred to the original configuration following the 

Lagrangian method. 

 

Solution Procedure 

 

The nonlinear dynamic equilibrium equation is expressed as 

 

                                           [𝑀]{𝛿̈} +  ([𝐾 L ] + [𝐾𝑁𝐿]) {𝛿} = {𝐹}                                                  (5) 

 

 

where [M] = global mass matrix of the plate, [KL] and [KNL] are the global linear and nonlinear 

stiffness matrix, {𝛿̈} is the acceleration vector, {𝛿} is the displacement vector and {𝐹} is the applied 

time varying load vector. 

 

The structural damping is neglected in the analysis. The solution of Eqn. (5) is solved using 



average acceleration method of Newmark’s scheme (Reddy, 2004). The nonlinear governing 

equation at (i+1)th time step, solved using Newton-Raphson method is given by  

 

    [𝐾̂({𝛿}𝑖+1 )] {𝛿}𝑖+1 = {𝐹}                      (6) 

 

 

RESULTS AND DISCUSSION 

 

Different shapes of thin plates are analyzed under suddenly applied load. In Figure 1 and 2, the 

nonlinear response of clamped and simply supported square plate are validated with the 

published results. Clamped circular plate is analyzed and the results in non-dimensional form are 

compared with Sheikh and Mukhopadhyay (2002) in Figure 3. It is observed that the results are 

in good agreement. 

 

New results are presented for a diamond shaped plate under suddenly applied load of 1 N/cm2. A 

typical 8×8 mesh of the plate is shown in Figure 4 and the time history response is described for 

a time step of 5 secs in Figure 5 and 6 for clamped and simply supported boundary conditions 

respectively. The material properties considered are Young’s modulus (E) =100 N/cmm2, 

thickness (h) = 10, Poisson’s ratio=0.3, Density (ρ) = 10 Ns/cm4. The radius of arc of the plate is 

100cm. 

 

 

CONCLUSIONS 

The nonlinear transient analysis of arbitrary shaped thin plates is presented using 

superparametric element. The element is capable of accommodating different shapes like 

isoparametric element but without any shear locking problems. The formulation is generalized 

using mapping technique to perform the analysis in a square domain. Newmark’s method is used 

for the time integration and Newton Raphson iteration method is applied to solve the governing 

equation.  

REFERENCES 

A.H. Sheikh and M. Mukhopadhyay (2002). Linear and nonlinear transient vibration analysis of 

stiffened plates structures, Finite Elements in Analysis and Design, 38, 477–502, doi: 

10.1016/B978-008043948-8/50069-2. 

D.J. Bayles, R.L. Lowery and D.E. Boyd (1973).  Nonlinear vibrations of rectangular plates, 

Proc. ASCE J. Struct. Div. 99, 853–864. 

J.N.Reddy (2004). An Introduction to Nonlinear Finite Element Analysis, 8th Ed., Oxford 

University Press, New Delhi. 

M. Barik and M. Mukhopadhyay (2002). A new stiffened plate element for the analysis of 

arbitrary plates, Thin-Walled Structures, 40, 625–639, doi: 10.1016/B978-008043948-

8/50069-2. 

 

http://dx.doi.org/10.1016/B978-008043948-8/50069-2
http://dx.doi.org/10.1016/B978-008043948-8/50069-2
http://dx.doi.org/10.1016/B978-008043948-8/50069-2


M. Mukhopadhyay and  A. H. Sheikh (2004). Matrix and Finite Element Analysis of Structures, 

Ane Books Pvt. Ltd., first edition. 

N. Yamaki (1961). Influence of large amplitudes on flexural vibrations of elastic plates, Z. 

Angew. Math. Mech, 41, 501–510. 

O.C. Zienkiewich and R.L.Taylor (1989). The Finite Element Method, 4th Ed., McGraw-Hill, 

London.  

S. Panda and M. Barik (2015). Geometrically nonlinear finite element analysis of arbitrary thin  

plates, Implementing Innovative Ideas in Structural Engineering and Project Management, 

Proceedings of ISEC-8, Sydney, Australia, 23rd  – 28th Nov 2015, pp. 469–474, 

doi: 10.14455/ISEC.res.2015.116. 

S. Panda and M. Barik (2015). Large deflection of arbitrary thin plates using superparametric 

finite element,  Asian Journal of Civil Engineering (bhrc) vol. 18, no. 2(2017) pp 207-234.  

 

FIGURES 
 

 

 

FIG. 1. Time history of deflection at the center of a clamped square plate 

    



 

 
 

FIG. 2. Time history of deflection at the center of a simply supported square plate 

 



 
 

FIG. 3. Time history of deflection at the center of a clamped circular plate 

 

 



 
FIG. 4. A 8×8 mesh discretization with boundary nodes of diamond shaped plate 

 

 
 

FIG. 5. Time history of deflection at the center of a clamped diamond shaped plate 

 



 
 

FIG. 6. Time history of deflection at the center of a simply supported diamond shaped plate 

 

 


