A Resource Aware VM Placement Strategy in Cloud
Data Centers Based on Crow Search Algorithm

Anurag Satpathy*, Sourav Kanti Addya, Ashok Kumar Turuk’, Banshidhar Majhif, Gadadhar Sahoo*
Department of Computer Science and Engineering
* Birla Institute of Technology, Mesra, India.
t National Institute of Technology, Rourkela, India.
{anurag.satpathy, kanti.sourav, akturuk, bmnitr} @gmail.com, gsahoo@bitmesra.ac.in

Abstract—Virtual machine (VM) placement in cloud data
centers is a challenging task. With the increasing popularity of
cloud computing across the globe, a large number of VMs are
to be consolidated on a minimum number of data centers (DCs)
to optimize the energy consumption and data center utilization.
In this paper, we propose a resource aware approach based on
a metaheuristic crow search algorithm (CSA) to consolidate a
large number of VMs on minimal DCs to meet the Service
level agreement (SLA) and desired quality of service (QoS) with
maximum data center utilization. We propose two independent
techniques, (i) greedy crow search (GCS), (ii) travelling salesman
problem based hybrid crow search (TSPCS), to meet the desired
objectives. A comparative study has been made from the obtained
results. To evaluate the performance of proposed methods we
compare them with the classical First Fit (FF) approach and
proposed methods significantly outperform the classical method.

Index Terms—Virtual Machine, Data Center, Cloud Comput-
ing, Crow Search Algorithm, Travelling Salesman Problem

I. INTRODUCTION

Cloud computing is defined as a shared pool of virtualized
resources that can be used on an on-demand and on a pay
as you go basis. The virtualized pool of resources consists
of virtual computing power (CPUs), virtual storage, virtual
networks etc. These resources are scaled up or down according
to the user requirements and can be accessed by a public
infrastructure like Internet. This pay-as-you use computing
model is the prime reason for cloud computing’s growing
popularity. Several MNCs like Google, Microsoft, Amazon,
and IBM have built cloud platforms for enterprises and users
to access cloud services [1], [2], [3].

Cloud computing uses virtualization at the servers and
virtualization implies running more than one operating system
instances on a single physical machine sharing the same
hardware resources. These operating system instances are
called as VMs. Resources at the data centers are provided
to the users in the form of VMs. By using virtualization,
we intend to reduce the number of servers, thereby, reducing
the amount of power consumption, resource wastage, which
sometimes is very high due to inefficient use of the servers
[4]. Energy consumption is one of the major concerns in
data center management. Reduction in energy consumption
not only helps in reducing the power expenses but also helps
in reducing the carbon dioxide (CO3) and other greenhouse
gas emissions. Information and communication technology

industry produces 2% of the total C'Oy emissions that is
equivalent to aviation industry worldwide [5]. Moreover, data
centers worldwide consume 271.8 billion KWh electricity [6].
Hence the issues of power consumption needs to be addressed.

The placement of VMs to DCs is called as the virtual
machine placement problem or VMP problem. The objective
of the VMP problem is to find an optimal placement that
doesn’t violate the SLA from the cloud users perspective and
minimizes the number of data centers used by maximizing
the per-data center utilization from a CSPs perspective. This
optimal placement reduces the number of data centers used by
consolidating the VMs on less number of servers [7], it also
reduces many operational parameters such as power, space and
hardware resources.

In this paper, we propose an optimal placement algorithm
which takes its motivation from the intelligent behaviour of
the crows [8]. The objective is to find an optimal placement
of the VMs along the DCs which ensures a balanced reduction
in total energy consumed and maximizes resource utilization
at each DC. The under-utilized data centers can be turned off
to reduce power consumption. This VMP problem is similar
to an optimization problem. Intelligent as well as greedy
behavior of crows have been employed to meet the desired
objectives. Crows hide their extra food in certain positions of
the environment and retrieve it as and when the need arises.
They also follow each other to find better food sources which
itself is a challenging task. If a crow finds out that another crow
is following it, the latter tries to fool the initial crow by going
to another position in the environment. From optimization
point of view, the elements performing the search represents
the crows and the search space represents the environment.
Each position of the crow is a feasible solution, the quality
of the food source is the objective function and the best food
source of the environment is the global solution. Based on
these behavior of the crows we try to find out the optimal
solution to the problem in hand. 7o best of our knowledge no
literature exists to address VMP problem using Crow Search
algorithm (CSA).

The remainder of the paper is organized as follows, section
IT outlines related work. Section III describes the distribution
model along with the problem definition and its constraints.
Section IV outlines the results of the simulation. Finally
section V concludes the paper.

TABLE I
NOTATIONS USED

Notation Description
DC Data Center
VM Virtual machine
M Total number of data centers
N Total number of virtual machines
K Total number of users
P Total no of homogeneous physical machines on a DC
VMREQ Represents the VM request set
USER Represents the user set
USERREQ This set contains all the VM requests of the users
VMRESOURCE | This set contains the resource requests of all the VMs
DCSET Contains all the data centres of the dcset
memory;; Memory matrix keeps track of placement of the VMs at various data centers
cap_pma(j) Represents the capacity of the physical machine j along the d" dimension
cap_dcq (1) Represents the capacity of the data center i along the d*" dimension
cap_vmreqq Represents the capacity of the VM request set along the dt" dimension
util_dcq(7) Represents the utilization of data center j along the d*" dimension

II. RELATED WORK

The problem of virtual machine placement has been studied
and analysed by a number of researchers. In [9], a greedy
approach has been presented. Various greedy heuristics like
Best-fit, First-Fit, Next-Fit, Worst-Fit, and Random-Fit have
been applied and Best-Fit has been found to be most optimal.
Maximization of the profits as well as the minimization of
power consumption and SLA violations of hosted applications
is studied in [4]. In [10], a genetic algorithm and fuzzy
logic based technique has been used to simultaneously mini-
mize total resource wastage, power consumption and thermal
dissipation costs for VM placement. In [11], an optimal
virtual machine placement (OVMP) algorithm to minimize the
total cost due to buying reservation and on-demand plans of
resource provisioning has been proposed.

Ant colony optimization (ACO) has been applied to solve
many real world problems like travelling salesman problem
(TSP) in [12]. In [13], ACO has been used to find an optimal
solution to VM placement that simultaneously minimizes the
resource wastage and power consumption. A hybrid queuing
model for VM placement is proposed in [14] for data centres to
improve the total placement time and earn more profit. In [15],
an approach to handle requests along different dimensions that
are stochastic and time varying in nature is studied. In Kaur
[16], a modified best fit decreasing (MBFD) algorithm has
been proposed, which aims to reduce the number of active
servers to obtain a stable host for every VM, such that,
the number of unnecessary migrations and the total power
consumption can be reduced. In [17], a balanced approach has
been proposed, to maintain the tightness of packing, as well as,
the stability of the VMs by minimizing the number of physical
machines and unnecessary migrations. A biogeography based
optimization (BBO) technique has been proposed to optimize
the VM placement that simultaneously reduces the resource
wastage and the power consumption [18]. The overview of all
the existing virtual machine placement strategies have been
studied in [19].

UR1 4000 UR2

If UR2<UR1, UR3

Fig. 2. Final Configuration GCS

III. PROPOSED MODEL

The proposed model is motivated by CSA. The crows have
shown many evidences of their intelligence by remembering
faces, warning each other when an unfriendly one approaches
through sophisticated communication. They are also good in
retaining their memory of food hiding places. They observe
other birds behavior and grab the chance of stealing their

UR2 DC2 1000

If UR3<UR1, UR2, UR4 UR5

Fig. 4. Final Configuration TSP

food, as and when they have the chance to. If a crow has
committed theft, then it uses his experience of thievery to
protect himself from being a victim of any such theft in
future. We have exploited, the intelligent behavior of the
crows to suggest for two schemes of placement of VMs
in DCs. The VMREQ set {VM;,VMy,VMs,..,.VMy}
consists of N number of VMs, with each VM requesting
resources along three dimensions. The VM request set is
modelled in the form of crow matrix,

Crows =
N o Y

where, an entry c’fl in the matrix represents the peak request
of V M, along the d*" dimension.
There are ' K’ users generating such VM requests represented
by a USER set {Uy,Us,Us, ...,Uk }. A user can request more
than one VM according to his need. A USERREQ set is defined
to keep track of requests generated by each user in the form
of U;V M,,, where the i*" user has made a request for the Kt
VM. Similarly, a VMRESOURCE set is also introduced, where
detailed requests are kept in the form of VM, R, for every
VM, where Ry, is the resource request of the V M,. A DCSET
comprising M homogeneous DCs {DC}, DCs, ..., DCys} is
taken. Each DC has P homogeneous physical machines. As
the crows need to store their extra food in optimal hiding
places, similarly an optimal placement of VMs to DCs is
proposed by maximizing per data center utilization and min-

imizing the number of DCs. As crows memorize their hiding
places a memory matrix is used keep track of placements of
VMs to DCs. The memory matrix is represented in the form
of:

mi,1 mi2 -
m21 m22 -

mi,M
Mo M
memory =

mpy;1 MN,2 MN M

where, an entry m; ; = 1 if V.M, is placed in DC}, otherwise
the entry is a 0.

A global resource awareness matrix is defined, where
available resource at any instant are stored. It tells us about
the unused resources at any instant along all dimensions for
every DC. This matrix is similar to crow matrix but rows here
represents the DCs and columns represent the dimensions.
An entry in the Resource Awareness matrix RA; ; represents
the unused resource of DC; along the j** dimension. The
DCs are interconnected with each other and the connection is
represented in the form of a weighted directed graph given by:

dijidi2 -+ dim

doj1 d22 -+ dom
adj =

dy dar2 - Ay,

where an edge d; ; represents the distance between the two
DCs ¢ and j in KMs. A connectivity matrix is taken which
represents the maximum range of DCs in Kms. A connectivity
of 7000 Kms for a DC implies that in case of a migration the
migrating VM will have to be placed in a DC within the 7000
Km range from the migrating DC.

A. Constraints

There are certain constraints that the VM placement across
DCs must follow.

i. Assignment constraint. This constraint makes sure that
the VMs are placed in such DCs where the request is
met along all the three dimensions.

ii. Capacity constraint: This condition makes sure that the
total resource requirements of the VMREQ set should be
less than or equal to the total available resources taken
all the DCs together along all the dimensions so that all
the VMs can be placed effectively.

iii. Placement constraint: This constraint makes sure to dis-
tribute a VM to only one data centre from the DCSET
provided, the resource requirements are met along all the
dimensions.

B. Problem statement

The VMP problem finds out the best possible placement of
the VMs on different data centers.
Suppose cap_pmg(j) denotes the capacity of physical ma-
chine PM; along the dt" dimension. Then the capacity of
the data centers along the d*" dimension can be calculated as
follows:

P
cap_deq(j) = Z cap_pmg(7) (1)
i=1

The three dimension under consideration are CPU, memory
and disk size.

There are M homogeneous data centres present in the DCSET
and the capacity of DCSET along the d" dimension is given
by the following Equation:

M

cap_dcsety = Z cap_dcq(j)
j=1

2

Similar calculations are made for the capacity of VM
requests along a particular dimension as shown:

N
cap_vmreqq = Z cap_vmg(j) 3)
j=1

The utilization can also be defined along a particular di-
mension for a DC as the ratio of all the VMs placed along
that particular DC to the total capacity of the DC along that
particular dimension.

N
> cap_vmg(i) * memory;;
i=1

util_deq(j) = 4)

cap_dcq(j)

Mathematically, the constraints are represented as:

n
anp_vmd (i) * memory;; <= cap_dc(j)q ;Vj € {1,2,..M}; Vd
i=1

S)
Z cap_vmy (i) <= cap_dcsety;Vd (6)
i=1
Zmemoryij =1;Vie{l,2..N} @)

Jj=1

Vmemory;; € {0,1}; Vie {1,2.N}; Vje€{1,2,.M}
®)
Equation (5) satisfies the assignment constraint, Equation
(6) represents the capacity constraint, Equation (7) and Equa-
tion (8) refer to the placement constraints respectively.

C. Greedy Crow Search Algorithm (GCS)

In GCS, the data centers are organized in the form of a
complete directed graph as shown in Figurel. The nodes of
the graph represent the DCs and the edges show the connection
among the DCs. The weights associated with the edges rep-
resents the distance between the two connecting DCs (KMs).
Initially, the VMs are placed in the DCs randomly. Then, for
every VM, a specific DC is found where, if placed, utilization
is highest among all the DCs considering all dimensions.

Algorithm 1: Greedy Crow Search Algorithm

Input: (resourceawareness, crows, adj, connectivity, memory)
1 Randomly allocate DCs to N VMs based on the constraints mentioned in
Equation 5,6,7,8.
2 Initialize the memory matrix as per the placement. memory;; < 1, if V.M; is
placed at DC';, 0 otherwise
3 Calculate the resource utilization of each DC based on Equation 4.
4 fori = 1 to N do

5 Find a DC ’k* such that memory; r == 1, calculate the unutilized
Resource along the DC 'k’ in U Ry,

6 for dim = 1 to ddo

7 L URj, = URy + resourcesawarenessy, dim;

8 forj = 1 to M — {k} do

9 if adjr,; <= connectivity; then

10 Check for all the dimension d

11 if crows; ¢ <= resourcesawareness; q then

12 for dim = 1 to ddo

13 L UR; = URj + (resourceawareness; qim —

Crowsi,dhn);

14 Find a DC} such that U Ry is minimum where t ={1,2..M}

15 if #/ = k then

16 Release all the resources

17 memory; ;. = 0;

18 for dim = 1 to ddo

19 L resourceawarenessy,dim= resourceawarenessk, dim+Ccrows; dim;

20 Allocate Resources to the selected DC ’t’

21 memory; (= 1;

22 for dim = 1 to ddo

23 L resorceawarenesst dim= resourceawarenesst dim —Crows; dim;

Algorithm 2: Hybrid Crow Search Algorithm

Input: (resourceawareness, crows, adj, connectivity, memory)
1 Randomly allocate DCs to N VMs based on the constraints mentioned in
Equation 5,6,7,8.
2 Initialize the memory matrix as per the placement. memory;; < 1, if V.M; is
placed at DC';, 0 otherwise
3 Calculate the resource utilization of each DC based on Equation 4.
4 fori = 1 to N do

5 forj = 1 to M do

6 | wisited; = false;

7 Find a DC ’k’ such that memory; , == 1

8 Find the unutilized resource of DC ’k’ in U R}, along all the dimension
9 for dim = 1 to ddo

10 L URjy = URy + resourcesawarenessy,dim;

11 reachablity = connectivityy;

12 visitedy = true;

13 forj = 1 to M do

14 if reachabilty > 0 && visited; == False then

15 Find a DC,, such that Adjy is minimum and Adjy ! =
16 visited, = true;

17 rechabilty = rechability — Adji, q;

18 if placement is possible then

19 L calculate U R,

20 set k=a;

a | Place V M, in DC}, such that U Ry, is minimum.

Migration of a VM is done only if the specific DC found will
have higher utilization than the DC where it is placed initially,
provided it is reachable from the initial DC. Reachability of
the DC, is defined by the maximum distance that a VM placed
in it can move and is mentioned within the respective nodes of
the graph, for example in Figure 1, 5000 mentioned inside the
first DC represents the reachability of DC,. The reachability
is represnted by the connectivity matrix. If the above two
conditions fail, there is no movement. In Figure 2, it is seen

TABLE 11
UTILIZATION TABLE (%)

No. of VMs | DC] Fir'st Fit _] Random' Allocatim}] GCS _] TSPCS]

Dim 1 Dim 2 Dim 3 Dim 1 Dim 2 Dim 3 Dim 1 Dim 2 Dim 3 Dim 1 Dim 2 Dim 3

1 35.0 43.0 38.0 8.0 11.0 9.0 28.0 38.0 30.0 21.0 27.0 22.0

2 0.0 0.0 0.0 7.0 7.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0

50 3 0.0 0.0 0.0 6.0 9.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 7.0 6.0 7.0 7.0 7.0 8.0 14.0 16.0 16.0

5 0.0 0.0 0.0 7.0 9.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0

1 75.0 83.0 71.0 13.0 13.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 19.0 24.0 19.0 75.0 83.0 71.0 15.0 17.0 16.0

100 3 0.0 0.0 0.0 14.0 15.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 18.0 18.0 18.0 0.0 0.0 0.0 60.0 66.0 55.0

5 0.0 0.0 0.0 10.0 12.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0

1 100.0 100.0 96.0 18.0 22.0 23.0 0.0 0.0 0.0 0.0 0.0 0.0

2 19.0 25.0 17.0 26.0 24.0 22.0 0.0 0.0 0.0 60.0 62.0 63.0

150 3 0.0 0.0 0.0 30.0 30.0 23.0 97.0 100.0 94.0 37.0 38.0 31.0
4 0.0 0.0 0.0 22.0 25.0 19.0 22.0 25.0 19.0 22.0 25.0 19.0

5 0.0 0.0 0.0 22.0 23.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0

1 100.0 100.0 93.0 36.0 38.0 41.0 99.0 100.0 95.0 2.0 2.0 2.0

2 64.0 69.0 68.0 33.0 32.0 28.0 0.0 0.0 0.0 0.0 0.0 0.0

200 3 0.0 0.0 0.0 30.0 37.0 34.0 0.0 0.0 0.0 63.0 67.0 65.0
4 0.0 0.0 0.0 40.0 38.0 33.0 65.0 69.0 66.0 99.0 100.0 93.0

5 0.0 0.0 0.0 24.0 24.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0

1 100.0 95.0 100.0 49.0 48.0 52.0 100.0 92.0 100.0 16.0 14.0 16.0

2 100.0 85.0 100.0 47.0 37.0 45.0 0.0 0.0 0.0 25.0 20.0 23.0

300 3 36.0 37.0 40.0 41.0 40.0 41.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 52.0 49.0 53.0 100.0 95.0 100.0 99.0 96.0 100.0
5 0.0 0.0 0.0 47.0 44.0 49.0 36.0 36.0 40.0 95.0 88.0 100.0

1 100.0 100.0 99.0 61.0 54.0 62.0 0.0 0.0 0.0 35.0 25.0 32.0

2 82.0 94.0 100.0 61.0 55.0 64.0 100.0 94.0 99.0 0.0 0.0 0.0
400 3 100.0 100.0 100.0 61.0 73.0 72.0 84.0 100.0 99.0 94.0 94.0 100.0
4 28.0 23.0 28.0 68.0 76.0 66.0 100.0 100.0 100.0 91.0 100.0 95.0
5 0.0 0.0 0.0 58.0 60.0 66.0 25.0 24.0 28.0 89.0 93.0 100.0

1 100.0 93.0 100.0 74.0 85.0 79.0 71.0 77.0 72.0 0.0 0.0 0.0

2 100.0 93.0 93.0 85.0 71.0 81.0 100.0 91.0 97.0 100.0 87.0 99.0
500 3 92.0 98.0 100.0 78.0 70.0 81.0 95.0 87.0 100.0 100.0 99.0 100.0
4 98.0 96.0 98.0 88.0 87.0 84.0 100.0 100.0 98.0 100.0 99.0 98.0

5 0.0 0.0 0.0 64.0 65.0 66.0 23.0 25.0 25.0 90.0 94.0 95.0

that a VM in DC] migrates to DC5. This movement occurs,
because the utilization is maximum at D5 or in other words
it has minimum unutilized resources (UR2 < UR1,U R3) and
is reachable from DC' . This approach is called a greedy crow
search because we greedily place the VMs at those DCs where
the utilization is at a cumulative maximum.

D. Hybrid Crow Search Algorithm (TSPCS)

A combined approach of TSP and CSA is used to solve
the VM placement problem. The initial placement follows
the same random allocation. Then, for every VM, TSP is
implemented from the DC where it is placed initially (By
Random Allocation). Continuing to visit DCs (nodes of the
graph) till either the reachability (connectivity) of the DC of
initial placement is exhausted or all the nodes are visited,
whichever happens earlier. The selection of DCs in every
movement of the TSP is made greedily. Here, we are greedy
about the distance as the DC placed at a minimum distance
adjacent to the current DC is selected as the next probable
DC for placement. By visiting a DC which is at a lesser
distance, we make sure that we traverse as many DCs as
possible. By traversing many DCs we improve our chances
of getting a better placement. Finally, the VM is moved to
the DC having maximum utilization, from among the visited
DCs during the traversal. Otherwise, there is no movement.
The initial configuration for the TSPCS in depicted in Figure3
is similar to GCS, the only difference is all the DCs are not

connected to each other by a direct edge. A VM placed at DC}
migrates to DC5 as shown in Figure4. The path traversed is
represented by darkened arrows.

IV. SIMULATION RESULTS AND DISCUSSION

The proposed models are implemented using CSA and
obtained results are compared with the existing classical First
Fit strategy. An in-house simulation is done using JAVA on a
desktop system with Intel (R) Core (TM) i3-380M processor
with 2.53 GHz and 2 GB memory. In the simulation, a
configuration of 5 homogeneous DCs are taken where each
DC has 100 homogeneous physical machines.

The PMs have resources along three dimensions namely,
CPU, memory and disk size. Every PM is assumed to have
a maximum of 90% utilization capacity along all three di-
mensions. The VM requests are taken in order of 50 to 500
with a interval of 50 for the first four observations and 100
for the next three observations. The VM requests, weighted
adjacency matrix and connectivity (reachability) are generated
randomly. The Table II represents the resource utilization
of the 5 DCs involved in the simulation. In the First Fit
allocation, DCs encountered first (DCs having lower index)
are filled up first. The second column shows the utilization
after random allocation. For the same random allocation GCS
and TSPCS are performed and the utilization of DCs for these
two approaches are shown in the third and fourth column
respectively.

For the GCS the DCs that have higher utilization that is
more VMs are placed in it, have higher chances of VMs
migrating to them provided they are reachable from the other
DCs. Otherwise that DC is selected for migration which has
the next highest utilization. By making such movements we
try to fill up those DCs that have higher utilization but still
have unused resources.

TSPCS is similar to GCS but the difference lies in the

connection among the DCs,a complete directed graph is used
in GCS which implies that every DC has a direct connection to
every other DC, which is not practically feasible. Taking the
same directed graph into consideration, we randomly delete
edges from it without compromising with the connectivity of
the graph (i.e there is a path from every node to every other
node) which represents a more practical scenario of connection
among the DCs.
Results show that the TSPCS is faster than both the classical
First Fit approach and the GCS. Not only does TSPCS take
lesser time to execute than the other two algorithms Table III
but also a comparative study in Table IV shows TSPCS takes
less number of migrations than GCS.

TABLE III
TIME CONSUMED BY VARIOUS APPROACHES

Time Consumed (in milliseconds)

No of VMs o rit TGOS TSPCS
50 7 3 5
100 10 14 7
150 10 7 9
200 11 20 7
300 14 2% 10
200 14 28 3
500 34 31 19
TABLE IV

NUMBER OF MIGRATIONS

No of VMs Total Number of Migrations

GCs | TSPCS

50 39| 29
100 48 48
200

300 185 159

400 164 39

500 107

\ \
\ \
\ \
\ \
| 150 | 106
\ \
\ \
\ \
| | 69

\
\
|
|
82 |
|
\
|
\

\
\
131 | 115
\
\
[

V. CONCLUSION

In this paper, we addressed the issue of VM placement.
With increasing use of cloud, more number of VMs are to
be consolidated on less number of DCs through effective
utilization of DCs. We proposed two different algorithms
which use the clever behavior of the crows to solve the
placement problem. The parameters to be optimized have been
carefully studied and it has been found that TSPCS technique
performs the best. VM placement is associated with migration
and migration is a costly process and involves many more

parameters including distance. These issues will be addressed
in the extended versions of this paper.

REFERENCES

[1] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in INC, IMS and IDC, 2009. NCM °09. Fifth
International Joint Conference on, Aug 2009, pp. 44-51.

[2] W. Voorsluys, J. Broberg, and R. Buyya, “Introduction to cloud com-
puting,” Cloud computing: Principles and paradigms, pp. 1-44, 2011.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-
the-art and research challenges,” Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7-18, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s13174-010-0007-6

[4] J. Xu and J. A. B. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” in Green Computing and
Communications (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l
Conference on Cyber, Physical and Social Computing (CPSCom), Dec
2010, pp. 179-188.

[5] A. Khosravi, S. K. Garg, and R. Buyya, Energy and Carbon-Efficient
Placement of Virtual Machines in Distributed Cloud Data Centers.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 317-328.

[6] K. Bilal, S. U. Khan, and A. Y. Zomaya, “Green data center networks:
Challenges and opportunities,” in Frontiers of Information Technology
(FIT), 2013 11th International Conference on, Dec 2013, pp. 229-234.

[7]1 B. Speitkamp and M. Bichler, “A mathematical programming approach
for server consolidation problems in virtualized data centers,” IEEE
Transactions on Services Computing, vol. 3, no. 4, pp. 266-278, Oct
2010.

[8] A. Askarzadeh, “A novel metaheuristic method for solving constrained
engineering optimization problems: Crow search algorithm,” Computers
and Structures, vol. 169, pp. 1 — 12, 2016.

[9]1 A. K. Paul, S. K. Addya, B. Sahoo, and A. K. Turuk, “Application of

greedy algorithms to virtual machine distribution across data centers,”

in 2014 Annual IEEE India Conference (INDICON), Dec 2014, pp. 1-6.

H. N. Van, F. D. Tran, and J. M. Menaud, “Performance and power

management for cloud infrastructures,” in 2010 IEEE 3rd International

Conference on Cloud Computing, July 2010, pp. 329-336.

S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual machine place-

ment across multiple cloud providers,” in Services Computing Confer-

ence, 2009. APSCC 2009. IEEE Asia-Pacific, Dec 2009, pp. 103-110.

C. Blum, “Ant colony optimization: Introduction and recent trends,”

Physics of Life Reviews, vol. 2, no. 4, pp. 353 — 373, 2005.

Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective

ant colony system algorithm for virtual machine placement in cloud

computing,” Journal of Computer and System Sciences, vol. 79, no. 8§,

pp. 1230 — 1242, 2013.

S. K. Addya, A. K. Turuk, B. Sahoo, and M. Sarkar, “A hybrid

queuing model for virtual machine placement in cloud data center,”

in 2015 IEEE International Conference on Advanced Networks and

Telecommuncations Systems (ANTS), Dec 2015, pp. 1-3.

H. Jin, D. Pan, J. Xu, and N. Pissinou, “Efficient vm placement with

multiple deterministic and stochastic resources in data centers,” in

Global Communications Conference (GLOBECOM), 2012 IEEE, Dec

2012, pp. 2505-2510.

A. Kaur and M. Kalra, “Energy optimized vm placement in cloud

environment,” in 2016 6th International Conference - Cloud System and

Big Data Engineering (Confluence), Jan 2016, pp. 141-145.

M. Mishra and U. Bellur, “Whither tightness of packing? the case for

stable vm placement,” IEEE Transactions on Cloud Computing, vol. PP,

no. 99, pp. 1-1, 2015.

Q. Zheng, R. Li, X. Li, N. Shah, J. Zhang, F. Tian, K.-M.

Chao, and J. Li, “Virtual machine consolidated placement based on

multi-objective biogeography-based optimization,” Future Generation

Computer Systems, vol. 54, pp. 95 — 122, 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X15000564

M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual

machine placement schemes in cloud computing,” Journal of Network

and Computer Applications, vol. 66, pp. 106 — 127, 2016.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

