
Time Efficient Task Allocation in Cloud Computing
Environment

Sambit Kumar Mishra
Department of Computer Science & Engineering

National Institute of Technology
Rourkela, India

Email: skmishra.nitrkl@gmail.com

Md Akram Khan
Department of Computer Science & Engineering

National Institute of Technology
Rourkela, India

Email: akram.sgsits@gmail.com

Bibhudatta Sahoo
Department of Computer Science & Engineering

National Institute of Technology
Rourkela, India

Email: bibhudatta.sahoo@gmail.com

Sanjay Kumar Jena
Department of Computer Science & Engineering

National Institute of Technology
Rourkela, India

Email: skjena@nitrkl.ac.in

Abstract—Cloud computing is an evolution of Distributed
system that has been adopted by worldwide scientifically and
commercially. For optimal use of cloud’s potential power, effective
and efficient algorithm are required, which will select best
resources from available cloud resources for different applica-
tions. This allocation of user requests to the cloud resource can
optimize various parameters like energy consumption, makespan,
throughput, etc. This task allocation or mapping problem is
a well-known NP-Complete problem. In this paper, we have
proposed an algorithm, Task Based allocation to minimize the
makespan of the cloud system and also to increase the resource
utilization. We have simulated our algorithm, TBA in CloudSim
Simulator in a heterogeneous environment. CloudSim is one
of the simulation tools of cloud environment which provides
evaluation and testing of cloud services and infrastructure before
the development of the real world. During the comparison of the
algorithm, we provide the sorted tasks to the TBA algorithm
once and un-sorted tasks in the second time. We have compared
sorted-TBA, unsorted-TBA and random algorithm where the
sorted-TBA algorithm performs better.

Keywords— Cloud Computing, Makespan, PM, Task
Scheduling, TBA algorithm, VM.

I. INTRODUCTION

Cloud computing is an evolution of Grid Computing. In
the current scenario, Cloud computing is a buzzword and
getting more and more attention from users. Cloud computing
provides a wide pool of shareable resources (like physical
resources: CPU, Memory, Storage, Workstations, etc. logi-
cal resources: Operating System, Energy, Network through-
put/bandwidth, Network loads and delays etc.) which delivers
scalable on-demand resources as a service over the Internet
with the help of virtualization technique. In a simple way,
Cloud is a collection of parallel and distributed system which
is interconnected and virtualized. These virtualized resources
allocated to the consumer according to their respective Ser-
vice Level Agreement (SLA) between consumer and sup-
plier. These services can be PaaS (Platform-as-a-service), IaaS
(Infrastructure-as-a-service) or SaaS (Software-as-a-service).

The virualization technique virtualize the actual resources of
the physical hosts in the form of virtual machines (VMs).

In Technology world, every user wants to get their services
in few fraction of the time. Therefore, the task allocation
plays an important role [1]. In a competitive world, the
number of users working over the Internet is much more
and increasing with day-by-day. To provide services to these
large number of users is a challenging task and one of the
best solutions is Cloud Computing [2], [3]. Task allocation is
a combinatorial optimization problem in the fields computer
science. Allocation of the task in cloud computing is an
NP-Hard optimization problem [1]. The main aim of task
allocation is to distribute the tasks for cloud resources in such
a way that it will approach to minimize makespan, minimize
the execution cost and maximize the utilization of resources. In
this paper, we are concentrating on minimization of makespan
and maximization of utilization of resources.

Resource allocation algorithm is of two kinds: static and
dynamic [4]. In dynamic allocation algorithm, cloud resources
may be requested by the cloud user meanwhile running the
applications. Here, under-utilization and over-utilization of
resources are avoided as much as possible. But, in the static
allocation algorithm, the cloud user has to make a prior request
for the cloud resources (VMs). It leads to under-utilization
or over-utilization of resources depending on the time the
application is run. Here, elasticity and the on-demand feature
will be not consider. The resource management in the cloud
environment will performed with the help of virtualization
technique [5].

Contributions:
• Design a system model for cloud environment.
• Desing an algorithm sorted TBA (Task Based Allocation)

to reduce the makespan.
• Simulation between available no of algorithm.

The main aim of writing this paper is to propose a heuristic
algorithm for minimizing the makespan and maximizing the



utilization of CPU-time. We are considering resources are
heterogeneous in nature. The rest of the paper is organized
as follows. Section 2 outlines an overview of some related
work, Section 3 describes the cloud computing architecture,
Section 4 describes a brief idea about generic cloud system
model which includes physical machine (PM) model, virtual
machine (VM) model and task model. The section 5 describes
our proposed work to model the heterogeneous computing
environment. In Section 6, explains about simulation and
results, utilization of VMs and effectiveness of our algorithm.
Section 7, concludes the paper.

II. RELATED WORKS

In [2], authors mainly focus on preamble task. The author
proposed an adaptive resource allocation algorithm which
adjusts the cloud resources adaptively on the basis of actual
task executions update. For this, they are using two algorithms:
ALS (Adaptive List Scheduling) and AMMS (Adaptive Min-
Min Scheduling) algorithm which uses static task scheduling
paradigm to allocate the cloud resources statically. The online
adaptive procedure is also used for re-evaluating the remaining
task execution and update the task execution list. The author
proposed another algorithm PBSA (Priority Based Scheduling
Algorithm) giving an advance reservation of higher priority
task over lower priority task. If lower priority process is under
execution and a higher process is coming to execute, then
this case it will pre-empt the lower priority process and give
the chance to higher priority process to execute. During the
pre-emption it will also consider the multiple SLA parameter
i.e. network bandwidth, required CPU time, required main
memory spaces. The real-time task execution in the cloud
environment [9] by using MapReduce framework along with
the system model for scheduling of tasks is discussed in [8].

Cloud computing is gaining lots of interest in several
domains such as disaster management, health-care, military
[10], [11], [12]. Still there is a scope to contribute security
solutions to protect data in cloud and intermediate edge data
center [10]. In current era data turns to a new term as big
data, which need a unique solutions to support 4Vs properties
to process big data in cloud [11], [12].

In [7], dynamic resource allocation on various distributed
multiple criteria is used. The author proposed a PROMETHEE
method, that is used to take the follow decisions:
(1) VM placement: Aim is to find the best suitable Physical
machine (PM) which is capable of hosting particular Virtual
machine can run without interfering, try to assign that VM to
PM.
(2) Monitoring, in this phase algorithm, has to monitor total
utilization of resources by hosted VM.
(3) VM Selection: if the current physical machine is not
capable of running particular VM then try to migrate that VM
to some another Physical machine.

In [13], Tiwari et al. have proposed a reasonable pricing
strategy for cloudlets-services for mobile cloud users and
also tried to optimize the computational tasks fired by the
mobile cloud users. In [14], the objective is to maximize

the total expected profit with the help of considering SLA-
multidimensional resource allocation scheme for multi-tier
services. Basically, the author is considering three dimensions
of a server :(1) Processing power, (2) Memory usage, (3)
Bandwidth. Here author is giving more concentration on SLA;
they are defining two types of SLA:
(1) Gold SLA: response time is guaranteed and if cloud server
provider is violating the constraint then they have to pay
penalty.
(2) Bronze SLA: some limited amount of time response time
may be the delay, then this case no penalty has to pay.

In [15], the author introduces the concept of “skewness“
which is to identify the unevenness utilization of a server.
Authors main aim is to minimize the skewness with the help of
this we can maximize the utilization of a server. They designed
a Load prediction algorithm, which is used to identify the
current workload of a VM. The main aim of authors is to
achieve the following two things:
(1) Overload Avoidance: Load prediction algorithm is used
to identify the current workload of Physical machines. If any
physical machine is going to overloaded, then try to migrate
that VM to another available of PMs.
(2) Green Computing: if any physical machine is under loaded
then try to transfer that VM, is running on that PM, to some
another PM and turned off that PM, with the help of this
number of PM is minimized.

III. CLOUD COMPUTING ARCHITECTURE

t1

tn

t1

tn

t1

Independent TaskTask Queue

Request Request

 tn

Fig. 1. Cloud Computing Architecture

In this section, we are going to explain the cloud computing
architecture with the help of Fig. 1. This model will consist
of completely interconnected set of resources. These resources
are physical machines (PMs) (i.e., {PM1, PM2, ..., PMk}),
memory, CPU time, and network bandwidth, etc. Each PM has
a VMM (Virtual Machine Manager). Over the VMM a finite
number of the virtual machines (i.e., {VM1, V M2, ..., V Mm})
will run.
The cloud system model will consist the following module:

1) Task Manager
2) Task Scheduler
Interface nothing but a GUI (graphical user interface), a

web-page where cloud user can give their requests. These tasks



TABLE I
I. RELATED WORK

Author (Year) Objective VM Environment VM Allocation Resource Consideration

Krishna et al. (2013) [1] To reduce the load of the overloaded
VMs considering priority also Heterogeneous Dynamic CPU

Chitra et al. (2016) [2]

Objective is to assign the computational
tasks to the most suitable virtual machines from the

dynamic pool of the VMs by considering the requirements
of each task and the load of the VMs.

Homogeneous Dynamic & Static CPU

Chandrasekhar et al. (2012) [6] To reduce the makespan of VMs with the help of
Priority Based schedulling algorithm(PBSA) Homogeneous Dynamic CPU

Goudarzi et al. (2011) [14]
objective is to maximize the total

expected profit with the help of considering
SLA- multidimensional resource allocation scheme for multi tier services

Homogeneous Dynamic CPU, Memory,Network Bandwidth

Song et al. (2015) [16] To reduce the load of the overloaded hosts and
decreasing the communication cost among hosts Homogeneous Dynamic CPU

Ni et al. (2011) [17] VM mapping algorithm based on multi-resource
load balancing and aimed to easing load crowding. Homogeneous Static CPU & Memory

Yang et al. (2011) [18] To avoid the unnecessary costs caused by
the instantaneous peak of resource utilization. Heterogeneous Dynamic CPU

Jonathan et al. (2010) [19]
Its objectives are reducing the load on a single host,

moving a VM to a new host with more resources
or with specialized resources

Heterogeneous Dynamic CPU

will submitted to the Task Queue.
Task Manager: It will take a task from Task Queue, and the
Task Queue is nothing but a priority Queue. Here, we are
giving higher priority to higher task length or task size. Our
idea is to give the higher length of the task to the high speed
of VM, so that it will take less time to execute, so somehow
it will reduce the makespan.
Task Scheduler: It is the core module of our system. Its main
responsibility is to allocate available VMs for the input tasks
[24]. For minimizing the makespan, here we are applying some
heuristic techniques to allocate the task to available VMs. For
allocating the task to VMs, we are calling sorted TBA(Task
Based Allocation algorithm) to find suitable available VM to
the execution of task so that it will take less time to execute
the task. After execution of the task, it is the responsibility
of the task scheduler to release the VMs and corresponding
resources, and updates the available number of VMs and
resources.

IV. PROBLEM STATEMENT

Allocation of tasks in the cloud is an NP-hard optimization
problem [1]. Load balancing of non-preemptive independent
tasks on VMs is an important aspect of task allocation in the
cloud [6]. The main objective of our work is to balance the
load and speed up the execution of applications or minimizes
the makespan of the VMs. Makespan is the required time to
complete all tasks.
makespan=max{ CTij iεT , i = 1, 2, ..., n and jεV M , j =
1, 2, ...,m}
Objective Function = min{makespan}
We define our problem is a 3-tuple
S={PM, VM, TM}
to represent the problem. PM is a set of Physical machines.
VM is a set of virtual machines. TM is the task model that
consists task-id,task-length and task-type.

Our first contribution in this paper is to proposed a general-
ized system model which contains PM model, VM model and
task model. It is a generic model which can be used in different
scenario depends on the application requirements. The PM

contains all the resources i.e. network resources, computational
resources, memory requirements. The problem of minimiz-
ing the makespan where the resource utilization should be
maximum. The problem is containing multiple objectives: (1)
Minimize the makespan, (2) Maximize the resource utilization
(3) Increase the throughput. Our prime objective is to minimize
the makespan by applying sorted TBA (Task Based Allocation)
heuristic algorithm. The proposed heuristic algorithm also tries
to maximize the resource utilization, memory requirements
and VMs requirements, etc. which may require during the
execution of tasks [20]. The System model is explained as
below:

A. Physical Machine Model

A PM has its own hardware: Memory, network, processing
and storage resources. On this hardware, the VMM is loaded
[20]. It is a 6-tuples entity i.e.
PMk = {IDk, CPUk,MMk, SSk, BWk, V MMk} Where,

• IDK is the identification of kth physical machine
• CPUK is the computation processing speed (in MIPS)of

kth physical machine
• MMK is the capacity of main memory of kth physical

machine
• SSK is the capacity of secondary storage of kth physical

machine
• BWK is the bandwidth capacity of kth physical machine
• VMMK is the Virtual Machine Monitor(VMM) running

on the kth physical machine

B. Virtual Machine Model

We have m number of virtual machines running on ith

physical machine [20], VMi = {VMi1, V Mi2, ..., V Mim}
i.e.
A virtual machine can be modeled as 5-tuples,
VMij = {IDij , CPUij ,MMij , SSij , BWij} Where ,

• IDij is the identification of jth virtual machine running
on ith PM.



• CPUij is the computation processing speed (in MIPS)of
jth virtual machine running on ith PM

• MMij is the capacity of main memory of jth VM on
PMi

• SSij is the capacity of secondary storage of ith physical
machine

• BWij is the bandwidth capacity of jth VM on PMi

C. Task Model

A job is a collection of task in the cloud [20]. A task in
the cloud is a service request which the cloud has to provide.
We have n number of independent computing tasks running
on some virtual machines T k

ij = {T 1
ij , T

2
ij , ..., T

n
ij} i.e.

A task model can be modeled as 5-tuples,
T k
ij = {IDk

ij , L
k
ij , R

k
ij} Where ,

• IDk
ij is the identification of kth task running on VMij .

• Lk
ij is the length of the kth task running on VMij .

• Rk
ij represents the service-type 0 → CPU −

intensive, 1 → Data − intensive, 2 →
Communication− intensive. running on VMij

V. USED TECHNIQUES

A. Task Based Allocation algorithm

As mentioned earlier, our aim is to minimize the makespan
and maximize the resource utilization as it possible. The key
of this is to give the maximum task-length task to the higher
speed of VMs so that it will take less time to execute. It
is obvious if we are assigning higher task length to higher
speed VMs then it will take less time. For fetching higher
task-length form queue, we are storing the task into a Max-
Heap data structure. It will return higher task length first,
then we are calculating ETC (Expected Time to Complete)
matrix by calling the ETC generation algorithm. Since, we are
allocating the task dynamically, so we have to consider current
waiting time of VMs because at that time that particular VMs
also processing some another task. For this, we called sorted
TBA (Task Based Allocation) algorithm. Here, we have to
pass ETC, VM waiting. sorted TBA algorithm considers the
ETC as well as VM waiting time then it will calculate ETC
matrix. TBA algorithm returns the makespan.

Algorithm 1: ETC generation algorithm
Input: No of VMs,List of VMs Speed,

No of Task, List of Task Size
Output: ETC
begin

for i = 0 to (No of Task − 1) do
for j = 0 to (No of VMs− 1) do

ETC[i][j] =
List of Task Size[i]/List of VMs Speed[j];

end
end
return ETC

end

Algorithm 2: Sorted Task Based Allocation (TBA) algo-
rithm
Input: ETC matrix, V M waiting list,No of Task,

No of VMs
Output: makespan
begin

for i = 0 to (No of Task − 1) do
ind = 1,max =∞,makespan = 1;
for j = 0 to (No of VMs− 1) do

if wttime of VM + ETC[i][j]<max then
ind = index of currentV M ;
max=wttime of VM + ETC[i][j]

end
end
taskassigned[i] = ind;
wttime of VM+ = ETC[i][ind] ;

end
return makespan = max{wttime of VM}

end

B. Flowchart

Fig. 2 shows the flow chart of our proposed algorithm.
Firstly, it will accept the task, and then, it will store into the
Max-Heap queue. Task manager picks the task from the queue
and it will send the task to the task Scheduler. Task scheduler
check the availability of VMs in the system. If VM is not
available then create the new VM instance. If VM is available
then choose appropriate VM and assigned that task to that VM.
After execution of the task, it is the responsibility of the task
scheduler to release the VMs and corresponding resources,
updates the available no of VMs and resources.

Start

Accept Task

Stroe Task in 

Max-Heap Queue 

Send Task to VM 

Scheduler

Select 

Appropiate VM

Assign Task to 

That VMs

Execute Task

Release VM 

and 

corresponding 

resources.

Update 

available no of 

VMs

End

Check availlable 

VMs

Create VM 

instance and 

Update Available 

VM list

Yes

No

Fig. 2. Flowchart

C. Task Allocation

In Table II, we have services with their sizes, there are
total ten tasks. In Table III, VMs with their corresponding



speed, there are total 4-VMs. In Table -IV shows the result
of ETC generation algorithm, it will store in the form of a
matrix and the size of the matrix would be No of Task X
No of VM, so, here matrix size would be 10 × 4. Then, we
call sorted TBA algorithm and it will allocate the task to VM
shows in Table V. Since makespan is a maximum time to
complete the whole task, so here makespan is 2.255 by VM3.

TABLE II
SERVICES WITH THEIR SIZE

Task Id T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
Task Size
(MI) 1000 3000 2000 1500 2200 1200 1400 5000 1900 4000

TABLE III
VIRTUAL MACHINES WITH THEIR SPEED

VM Id VM0 VM1 VM2 VM3
VM Speed
(MIPS) 1000 2000 3000 4000

MI : million instructions.
MIPS :Million Instructions per Second.
The ETC matrix of size 10X4 matrix is as follows

TABLE IV
ETC MATRIX

Task Length/VM VM0 VM1 VM2 VM3
1000 2000 3000 4000

1000 1.0 0.5 0.33 0.25
3000 3.0 1.5 1.0 0.75
2000 2.0 1.0 .66 0.5
1500 1.5 0.75 0.5 0.375
2200 2.2 1.1 .73 .55
1400 1.4 0.7 .466 .35
1900 1.9 0.95 .633 .475
1200 1.2 .6 0.4 0.3
5000 5.0 2.5 1.66 1.25
4000 4.0 2.0 1.33 1.0

ETC : Expected Time to Complete.
Task Based Allocation (TBA) allocates the task to VM fol-
lowing way

TABLE V
ALLOCATION OF TASK TO VMS BY SORTED TBA ALGORITHM

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
VM3 VM2 VM1 VM3 VM0 VM2 VM3 VM1 VM2 VM3

Makespan in Task Based Allocation : 2.425

VI. SIMULATION RESULTS

The simulation is performed on the cloud computing envi-
ronment tools: CloudSim [21]. In CloudSim, there is two way
of execution of a task on the VM or VMs on the PMs. They are
Time-Shared and Space-Shared allocation. The space-shared
policy allows the multiple tasks to execute on VMs or VMs
to PMs simultaneously and they are isolated with the help
available spaces. The Time-Shared policy allows multiple tasks
to be executed on VMs or VMs on PMs to be multi-task and
run simultaneously. One data center is created with default

properties as it mentioned by the CloudSim designer. All PMs
are running on one data center. To simulate our algorithm, we
have some assumptions as follows:

1) Number of VMs will be proportion to a number of the
available core in a PM.

2) PMs are heterogeneous.
3) Every PMs have an m-finite number of VMs.
4) VMs are heterogeneous.
5) Tasks are non-preemptive.
6) Each Task is independent in nature.
7) Resource requirement of each task is independent of

each other.

40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

Number of VMs

M
ak

es
pa

n 
of

 th
e 

S
ys

te
m

 

 
Sorted TBA
Un−sorted TBA
Random Algorithm

Fig. 3. A bar chart to compare makespan value for Simulation-1

100 200 300 400 500 600
0

20

40

60

80

100

120

140

Number of Tasks

M
ak

es
pa

n 
of

 th
e 

S
ys

te
m

 

 
Sorted TBA
Un−sorted TBA
Random Algorithm

Fig. 4. A bar chart to compare makespan value for Simulation-2

In Simulation-1, we are fixing the number of tasks with 400
and varying the number of VMs from 40 up to 160. We have
plotted the bar-chart between makespan and the number of
VMs. From Fig. 3, it is shown that our proposed algorithm
sorted TBA with sorted task gives minimum makespan.



In simulation-2, we are fixing VMs with 80 and varying the
number of tasks from 100 up to 600. We have plotted the bar-
chart between makespan and the number of tasks. From Fig.
4, it is shown that our proposed algorithm TBA with sorted
task gives minimum makespan.

VII. CONCLUSION

In this paper, we have studied various task scheduling
approaches in homogeneous and heterogeneous cloud envi-
ronments proposed by different researchers. We have proposed
a task based heuristic algorithm for dynamic task allocation
in heterogeneous cloud computing environment. We have
introduced the system model consists of PM model, VM
model, and task model. We have used the ETC (Expected
Time to Complete) [22] to implement TBA. The proposed
sorted TBA algorithm, giving higher priority to higher task-
size, but there is no concept of preemption, and the simulation
shows that sorted TBA algorithm has improved makespan.

REFERENCES

[1] P. V. Krishna, ”Honey bee behavior inspired load balancing of tasks in
cloud computing environments.” Applied Soft Computing, pp. 2292-2303,
2013.

[2] C. Devi, and V. Uthariaraj, ”Load Balancing in Cloud Computing
Environment Using Improved Weighted Round Robin Algorithm for Non
preemptive Dependent Tasks.” The Scientific World Journal, 2016.

[3] S. Kumar, and R. H. Goudar, ”Cloud Computing-Research Issues, Chal-
lenges, Architecture, Platforms and Applications: A Survey.” Interna-
tional Journal of Future Computer and Communication, 1(4), pp. 356,
2012.

[4] S. K. Mishra, B. Sahoo, K. S. Sahoo, S. K. Jena, ”Metaheuristic
Approaches to Task Consolidation Problem in the Cloud.” Resource
Management and Efficiency in Cloud Computing Environments, pp. 168-
189, 2016.

[5] K. S. Sahoo, B. Sahoo, R. Dash, M. Tiwary, and S. Sahoo, ”Network
Virtualization: Network Resource Management in Cloud.” Resource Man-
agement and Efficiency in Cloud Computing Environments, pp. 239, 2016.

[6] Chandrashekhar P., and Rajnikant B., ”Priority based dynamic resource
allocation in cloud computing.” Cloud and Services Computing (ISCOS),
2012 International Symposium on. IEEE, 2012.

[7] Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti,
and Y. Coady, ”Dynamic resource allocation based on distributed multiple
criteria decisions in computing cloud.” in 3rd International Conference
on Cloud Computing, pp. 91-98, 2010.

[8] S. Sahoo, B. Sahoo, A. K. Turuk, S. K. Mishra, ”Real Time Task Exe-
cution in Cloud Using MapReduce Framework.” Resource Management
and Efficiency in Cloud Computing Environments, pp. 190, 2016.

[9] S. Sahoo, S. Nawaz, S. K. Mishra, and B. Sahoo, ”Execution of real
time task on cloud environment.” In 2015 Annual IEEE India Conference
(INDICON), pp. 1-5, December 2015.

[10] D. Puthal, S. Nepal, R. Ranjan, and J. Chen, ”Threats to Networking
Cloud and Edge Datacenters in the Internet of Things.” IEEE Cloud
Computing, Vol. 3(3), pp. 64-71, 2016.

[11] D. Puthal, S. Nepal, R. Ranjan, and J. Chen, ”A Secure Big Data Stream
Analytics Framework for Disaster Management on the Cloud.” In 18th
IEEE International Conferences on High Performance Computing and
Communications, pp. 1218-1225, 2016.

[12] D. Puthal, S. Nepal, R. Ranjan, and J. Chen, ”DLSeF: A Dynamic Key
Length based Efficient Real-Time Security Verification Model for Big
Data Stream.” ACM Transactions on Embedded Computing Systems, Vol,
16(2), pp.51, 2016.

[13] M. Tiwary, K. S. Sahoo, B. Sahoo, and R. Misra, ”CPS: a dynamic
and distributed pricing policy in cyber foraging systems for fixed state
cloudlets.” Computing, pp. 1-17, 2016.

[14] H. Goudarzi and M. Pedram, Multi-dimensional SLA-based Resource
Allocation for Multi- tier Cloud Computing Systems, in IEEE Interna-
tional Conference on Cloud Computing, pp. 324- 331, September 2011.

[15] Z. Xiao, S. Weijia, and C. Qi, ”Dynamic resource allocation using
virtual machines for cloud computing environment.” IEEE Transactions
on parallel and distributed systems, pp. 1107-1117, 2013.

[16] X. Song,M. Yaofei, and T. Da, ”A load balancing scheme using federate
migration based on virtual machines for cloud simulations.” Mathematical
Problems in Engineering, 2015.

[17] J. Ni, Y. Huang, Z. Luan, J. Zhang, and D. Qian, ”Virtual machine
mapping policy based on load balancing in private cloud environment.”
Cloud and Services Computing (ISCOS), International Conference on
Cloud and Service Computing (CSC), pp. 292-295, 2011.

[18] K. Yang, J. Gu, T. Zhao, and G. Sun, ”An optimized control strategy
for load balancing based on live migration of virtual machine.” Services
Computing (SCC),Sixth Annual ChinaGrid Conference. IEEE, pp. 141-
146, 2011.

[19] J. R. Cornabas, ”A distributed and collaborative dynamic load bal-
ancer for virtual machine.” European Conference on Parallel Processing.
Springer Berlin Heidelberg, pp. 641-648, 2010.

[20] S. K. Mishra, R. Deswal, S. Sahoo, and B. Sahoo, ”Improving energy
consumption in cloud,” In 2015 Annual IEEE India Conference (INDI-
CON), pp. 1-6, December 2015.

[21] R. Buyya, R. Ranjan, and R. N. Calheiros, ”Modeling and simulation
of scalable Cloud computing environments and the CloudSim toolkit:
Challenges and opportunities.” In IEEE International Conference on High
Performance Computing Simulation, 2009. HPCS’09, pp. 1-11, 2009.

[22] A. Shoukat, H. J. Siegel, M. Maheswaran, and D. Hensgen, ”Task
execution time modeling for heterogeneous computing systems,” In
Heterogeneous Computing Workshop, 2000.(HCW 2000), pp. 185-199,
2000.

[23] R. Buyya, R. Rajiv, and Rodrigo N., ”Intercloud: Utility-oriented federa-
tion of cloud computing environments for scaling of application services.”
International Conference on Algorithms and Architectures for Parallel
Processing, Springer Berlin Heidelberg, pp. 13-31, 2010.

[24] S. K. Mishra, P. P. Parida, S. Sahoo, B. Sahoo, and S. K. Jena, ”Im-
proving Energy Usage in Cloud Computing Using DVFS”, International
Conference on Advance Computing and Intelligent Engineering (ICACIE
2016), Springer, 2016.

[25] I. Foster, Y. Zhao, and S. Lu, Cloud Computing and Grid Computing
360-degree compared, in proc. Grid Computing Environments Workshop,
pp. 99-106, 2008.

[26] D. Grosu, A. Chronopoulos, and M. Leung, ”Cooperative load balancing
in distributed systems,” in Concurrency and Computation: Practice and
Experience, pp: 1953-1976, 2008.

[27] L. Heng, C. Haopeng, M. Sixiang, and D. Wenyun, ”Dynamic Virtual
Resource Management in Clouds Coping with Traffic Burst.” Services
Computing (SCC),International Conference on. IEEE, pp. 590-596, 2014.


