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Abstract—Cloud Computing era comes with the advancement
of technologies in the fields of processing, storage, bandwidth
network access, security of the internet, etc. Several advantages of
Cloud Computing include scalability, high computing power, on-
demand resource access, high availability, etc. One of the biggest
challenges faced by Cloud provider is to schedule incoming jobs
to virtual machines(VMs) such that certain constraints satisfied.
The development of automatic applications, smart devices, and
applications, sensor-based applications need large data storage
and computing resources and need output within a particular
time limit. Many works have been proposed and commented
on various data structures and allocation policies for a real-
time job on the cloud. Most of these technologies use a queue-
based mapping of tasks to VMs. This work presents a novel,
min-heap based VM allocation (MHVA) designed for real-time
jobs. The proposed MHVA is compared with a queue based
random allocation taking performance metrics makespan and
energy consumption. Simulations are performed for different
scenarios varying the number of tasks and VMs. The simulation
results show that MHVA is significantly better than the random
algorithm.

Keywords— Cloud Computing, Energy Consumption,
Makespan, Min-heap, Virtualization, VM.

I. INTRODUCTION

Cloud computing is a model that must enchanter following
three needs: Dynamism, Abstraction and Resource Sharing.
For the same, it provides both hardware and software comput-
ing resources (e.g. Storage, networks, and processing power)
as a service in an on-demand pay-per-use basis over the
internet. Usually, a cloud is a three layered stack, bottom
most being infrastructure layer, followed by platform layer
and finally application layer. The bottom most layer consists
of physical resources like routers, switches, power, physical
servers, cooling systems, and likes. The platform layer consists
of VM containers, and each of them may have same or
different operating systems and/or frameworks. Application
layer hosts the service that a user may demand such as
email, HTTP, SSH, database services and others. A software
system as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS) make up the service
model of cloud [1, 2]. Here, we need to map application tasks
or jobs to appropriate VM so that the overall cost of jobs
reduces along with processing time. Hence, a major challenge
in cloud computing is energy management while guaranteeing
user demanded QoS [3]. Increasing energy demands due to an

exponential growth of cloud users require to be addressed as
energy today means increased carbon footprints [4]. Schedul-
ing (Resource Allocation) is a process in the cloud meant
for even distribution of tasks to resources to guarantee user
demanded QoS and using the least amount of resources. Now,
it is a well-established fact that energy consumption depends
on system load. A proper data structure can benefit scheduling
to reduce computation time, do a uniform load distribution
among VMs and ultimately reducing energy consumption.

In cloud computing, virtual machines (VMs) are made
available to the user on lease basis over the Internet. A fixed
amount is charged setting aside the VM utilization during
the rental period. As the cloud consists of a finite pool of
virtualized resources, it requires a scheduling policy that can
guarantee maximum use of the resources [5]. The scheduling
mechanism may consider various Quality of Services (QoS)
metrics like the deadline, low energy consumption, minimum
response time, etc. The organization of tasks has a significant
impact on scheduling outcome, so an efficient data structure
for task organization can lead to a useful scheduling algorithm.
Mostly queue data structure is used for job organization whose
most of the operations performed in O(n) time (n is the
number of elements). So, a data structure whose running time
is less than O(n) is preferable. Cloud computing is gaining lots
of interest in several domains such as disaster management,
healthcare, military [6, 7, 8]. Still, there is a scope to contribute
security solutions to protect data in cloud and intermediate
edge data center [6]. In the current era, data turns to a new
term as big data, which need a unique solution to support 4V’s
properties to process big data in cloud [7, 8].

The main contributions of the paper are as follows:

1) Propose a min-heap based scheduling algorithm to exe-
cute deadline constraint task in the cloud.

2) Demonstrate the applicability of the algorithm with the
help of an example and simulation result. The perfor-
mance metrics used for the evaluation of the algorithm
are energy consumption and makespan.

The given work is organized as follows: Section 2 discusses
literature that focused on this problem and problem definition.
The next section describes scheduling model. Section 4 con-
sists of our proposed algorithm followed by an example. Sec-
tion 5 shows the simulation results, and finally, the conclusion



is presented in Section 6.

II. RELATED WORK

Scheduling is a colossal issue in the development of cloud
system whose primary job is mapping jobs to VMs so that
they have a shorter response time, a boost in the utilization
of the system following some constraints such as cost, dead-
line, energy consumption, etc. In [9] researchers proposed a
scheduling algorithm based on min-heap i.e. (MHSA) for both
homogeneous and heterogeneous distributed environments.
The primary goal of the algorithm is to provide efficient
scheduling of tasks in both static (i.e. Known task demand) and
dynamic (i.e. Varying task demand) environment using migra-
tion and rescheduling wherever applicable. Resource allocation
problem in an IaaS cloud for the real-time task is presented as a
constrained optimization problem [10]. The proposed polyno-
mial time scheduling algorithm with cost performance metric
compared with optimal and EDF solution [11]. A comparative
study of numerous scheduling algorithms like Round-Robin,
Random Resource Selection, Opportunistic Load Balancing,
and Minimum Completion Time presented for time bound task
in a cloud environment. The performance of the system is
measured by throughput, makespan, and total execution cost
metrics [12]. The proposed auto-scaling approach dynamically
allocate/deallocate tasks to the most cost-efficient VM such
that all tasks meet their deadlines. Researchers used workflow
DAG as scheduling input, exerted genetic algorithm and back-
tracking to schedule deadline constrained tasks [13]. Cloud
computing state-of-the-art techniques and different energy
efficient processes discussed for IaaS cloud [14]. Slack and
migration function based scheduling algorithm suggested for
aperiodic and periodic task to meet their deadline constraint in
a cloud environment. Separate queues used for both the tasks
and lower bound on the number of resources defined based on
application type, computation, and communication cost [15].

An analysis of resource scheduling in cloud computing dis-
cussed that includes taxonomy, challenges, and future research
directions [4]. Greedy task scheduling based on most-efficient-
server-first compared with a random scheme taking energy
consumption as a performance metric. Here the scheduling
problem is formulated as an integer programming optimization
problem [16].

An optimal level of utilization of VM based scheduling
algorithm proposed to reduce energy consumption. Here VM
migration is eliminated by taking VM utilization level from
unequal level to optimal level to reduce energy consumption
in the cloud [3]. This paper represented resource allocation
as an optimization problem with minimum CO2 emission
and maximum profit constraint and offered a dynamic voltage
scaling based solution [17]. The authors have comprehensively
and comparatively studied software and hardware based energy
efficient schemes in cloud computing [18]. The survey study
highlights the key concepts, architectural principles, state-
of-the-art implementation, and research directions of cloud
computing [19].

A. Problem Definition

Consider a list of jobs Ji ∈ J with arrival time (Ti), a time
limit (Di) in seconds and load (Li) in millions of instructions.
Suppose there are m VMs in the system represented as V.
Each VM Vj ∈ V can provide instruction processing at an
average rate of Si (in MIPS). A VM may be in an active
state where it consumes αj = 10(−8) × (Si)

2 J/MI of energy
while it reduced by 40%, i.e. βj = 0.6 × αj J/MI when VM
is idle. The task with the earliest deadline is always allocated
to VM with higher processing speed. For the laid assumption
we need to assign a set of jobs J to set of virtual machines V
with the objective of minimizing overall energy consumption,
maximize makespan and still meeting the target time. We
assume that the incoming jobs are stored in min-heap.

III. SCHEDULING MODEL

A cloud data center consists of a vast number of VMs
created by virtualization technique. A task (real-time/non-real-
time) request coming to the cloud data center is assigned to an
appropriate VM. The real-time task is characterized by arrival
time(Ti), a time limit(Di) and load(Li). Its instruction pro-
cessing rate (Si) classifies each VM. The primary requirement
of real-time task processing in the cloud is to choose a VM
that will finish the task before its time limit. An effective data
structure for task organization will be useful to speed up the
scheduling.

Fig. 1. scheduling model

Fig. 1 demonstrates the scheduling model used in this work.
The scheduler takes incoming job requests stored in a waiting
queue. The scheduler takes a set of tasks that are less than
or equal to some threshold, i.e. window size and schedule
them. VM assignment begins with the creation of a min-
heap based on the deadline of the number of tasks equal to
the window size. Initially, the fastest VM becomes the root
node of the min-heap. The allocation is done based on the
following principle: assign fastest VM to the earliest deadline.
Once a task is assigned to appropriate VM, the VM min-
heap is heapified after updating selected VM completion time,
and min-heap for jobs is heapified again after removing the
allocated task. This course continues until there are no more
jobs in the waiting queue.

IV. SCHEDULING ALGORITHM

The proposed scheduling algorithm use the min-heap data
structure for job assignment of incoming user requests to
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TABLE I
VIRTUAL MACHINE DETAILS LIST

VM (Vi) Processing Speed (Si)
V1 1500
V2 1200
V3 1000

TABLE II
JOB DETAILS LIST

Jobs Ti Di Li

J1 0 30 27000
J2 0 53 45000
J3 0 23 18000
J4 0 27 22500
J5 0 60 36000
J6 0 38 18000

suitable VM with an objective of effective job scheduling and
decreasing the amount of energy consumed. The reason behind
the use of min-heap is that it performs most operations in
amortized time complexity in O(log n) whereas most linear
data structure does operations in O(1) or O(n) where n is the
number of nodes. Algorithm 1 describes the process used to
calculate expected time to compute in a VM.

Algorithm 1 Generate ETC Matrix
Input: J ← J1, J2, ..., Jn:List of jobs with their deadlines

L← L1, L2, ..., Ln:List of job loads
V ← V1, V2, ..., Vm:List of VM’s
S ← S1, S2, ..., Sm:Processing speed of VM in MIPS
CT (j, k) ← 0, 0, 0, ..., 0:Expected computation time ma-
trix

Output: ETC matrix CT
1: for j = 1 to n do
2: for k = 1 to m do
3: CT (j, k) =

Lj

Sk

4: k = k + 1
5: end for
6: j = j + 1
7: end for

Algorithm 2 depicts the process to schedule jobs to appro-
priate VM. Lets we have 3 VMs having different computation
speed as shown in Table I. Say the system is in the idle
state before the arrival of jobs/tasks as shown in Table II. For
simplicity of explanation, we have assumed that all requests
arrive at the same time with different time limits and load.

We have applied Algorithm 1 for data of Table I and Table
II, thus obtained ETC matrix as shown in Table III.

Let us solve the following allocation problem using linear
queue: Here we assume that jobs are linearly queued as
per increasing order of their deadlines. So for given dataset,
a linear queue would look as follows: J3, J4, J1, J6, J2, J5
where W = 6. We are using a circular queue to store the list
of VM based on decreasing order of their processing speed
initially and then by computation time. The VM queue would
look as V1, V2, V3. By following the linear queue policy jobs

Algorithm 2 Scheduling Algorithm
Input: J ← J1, J2, ..., Jn: List of jobs with their deadlines

L← L1, L2, ..., Ln: List of job loads
V ← V1, V2, ..., Vm: List of VM’s
S ← S1, S2, ..., Sm: Processing speed of VM in MIPS
CT (j, k): Expected computation time matrix
E(m)← 0, 0, 0, ..., 0: Energy usage matrix
C(m)← 0, 0, 0, ..., 0: Computation time of VM
H1 ← Heap(C(m)): Min Heap of VM using computa-
tion time
H2← Heap(J(n)): Min heap of Job using deadline
w ←WINDOWSIZE: Number of tasks taken at time
LV ← LV1, LV2, LV3: Total load in a VM

Output: makespan (ms), energy consumption (E)
Initialize:E(m) = 0, C(m) = 0, LV (m) = 0

1: while i ≤ w do
2: if C(k) ≤ Di then
3: Assign Root(H1) to Root(H2)
4: Heapify(H1)
5: Heapify(H2)
6: end if
7: while k ≤ m do
8: if Root(H2) = V (k) then
9: C(k) = C(k) + CT (i, k)

10: LV (k) = LV (k) + L(k)
11: end if
12: k = k + 1
13: end while
14: i = i+ 1
15: end while
16: ms =Max(C(k))
17: for p = 1 to m do
18: E(p) = 1.6× 10(−8) × S(p)2 × LV (p)
19: end for

TABLE III
ETC MATRIX

Jobs/VM V1 V2 V3

J1 18 22.5 27
J2 30 37.5 45
J3 12 15 18
J4 15 18.75 22.5
J5 24 30 36
J6 12 15 18

J3 and J6 will be allocated to VM V1, Jobs J4 and J2 will
be assigned to VM V2 and Jobs J1 and J5 allotted to VM V3.
The jobs J2 and J5 placed on VMs V2 and V3 respectively
cannot be finished by the deadline as shown below:
Processing time for J4 on V2 is 18.75 and J1 on V3 is 27s,
Processing time for J2 on V2 is 37.5 and J5 on V3 is 36s,
The total time to complete both the jobs, J1 and J5 on V3 is
63s, but the deadline for J5 = 60s. Similarly, total completion
time of J4 and J2 on V2 is 56.25s but the deadline for J2 is
53s. If we use linear queue jobs, J2 and J5 will miss their
deadline. Hence queuing methodology is not able to provide
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an optimal solution to the job-placement problem.
Now lets use min-heap to tackle the challenge for the same

dataset: construct a min-heap tree of VMs using computation
time as key. To break the tie use processing time of VMs. A
min-heap of the jobs by using the principle: Job I is child of
Job J if and only if deadline of Job I is greater than that of Job
J as shown in Fig. 2. Here we assign root node of min-heap

Fig. 2. Initial Min-heap tree for Jobs and VM’s

of jobs to the root node of min-heap of virtual machines and
heapify both the trees again.
Iteration 1: Job J3 is dispensed to VM V1 and expected
computing time of V1 i.e. C(1) becomes 12s. Consequently,
on heapifying both the trees, V2 and job J4 becomes new root
of the corresponding min-heaps as demonstrated in Fig. 3.

Fig. 3. Min-heap tree after Iteration 1

Iteration 2: Similarly, the system would allocate J4 to V2
and update C(2) = 18.75s.
Again heapify both the heaps, next J1 and V3 are the root of
corresponding trees as presented in Fig. 4.

Fig. 4. Min-heap tree after Iteration 2

Repeating the process, we come up with following final
assignment: J3, J6, and J5 on V1, J4 and J2 on V2 and J1
on V3. Final total processing time for each VM is C(1) = 48s,
C(2) = 56.25s and C(3) = 27s. In this case only J2 misses

its deadline and overall computation time of all the jobs also
reduced.

The significant difference between both the data structures
is that linear queue does not evenly distribute jobs, it just
sequentially allocates them while min-heap can select the best
candidate in every iteration because the root of the min-heap
tree for VM will always have minimum computation time
compared to other members. Table IV indicates how min-heap
outperforms linear queue by reducing makespan by 10.7%.
Makespan is the maximum processing time among all VM

TABLE IV
PROCESING TIME RESULT MATRIX

DATA STRUCTURE / VM V1 V2 V3 MAKESPAN
LINEAR QUEUE 24 56.25 63 63
MIN-HEAP 48 56.25 27 56.25

on the system. Hence, it can be mathematically expressed
as Max (C(i)) where i = 1, 2, 3, ...,m. Considering energy
consumption perspective, each VMs consumes E(i) amount
of energy in active state and 0.6× E(i) amount of energy in
idle state [20]. It can be rewritten as

E(i) = 1.6× 10−8 × S2
i (1)

Unit of E(i) is J/MI (Joules per million instructions), to
obtain energy used by one VM we need to multiply no of
instructions to E(i). Thus,

E′(i) = E(i)× 1.6 (2)

Total energy consumption of whole system is

TE =

m∑
i=1

E(i) (3)

Energy consumption by individual virtual machines is re-
vealed in Table V where it can be noted that min-heap uses
15.72% more energy than linear queue to process all requests
by deadline.

TABLE V
ENERGY CONSUMPTION MATRIX

DATA STRUCTURE/VM V1 V2 V3 TOTAL
LINEAR QUEUE 1296 1555.2 1008 3859.2
MHVA 2592 1555.2 432 4579.2

V. SIMULATION RESULTS

We have performed the simulation is in the cloud computing
environment using the CloudSim tool [21]. We have compared
our algorithm with the random algorithm in the cloud environ-
ment. To simulate our algorithm, we have some assumptions
as follows: We have performed the simulation in the cloud
computing environment using the CloudSim [21]. We have
compared our algorithm with the random algorithm in the
cloud environment. Following simulations are made for the
simulation:
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1) Physical Machines (PMs) are heterogeneous, and each
PM has m number of heterogeneous VMs.

2) Tasks are deadline-constrained and independent.
3) Resource requirement of each task is independent of

each other.
Various scenarios considered for the evaluation of the algo-
rithms are as follows: Scenario-1: We are fixing the number
of tasks to 1000 and varying the number of VMs from 50 up
to 500 in the interval of 50. Fig. 5 and Fig. 6 shows the bar-
chart for makespan and energy consumption of the system for
the MHVA and random algorithms.

Scenario-2: We are fixing the number of VMs to 200 and
varying the number of tasks from 200 up to 2000 in the interval
of 200. Fig. 7 and Fig. 8 shows the bar-chart for makespan and
energy consumption of the system for the MHVA and random
algorithms.
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Fig. 5. A bar chart to compare makespan value for Scenario-1
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Fig. 6. A bar chart to compare energy consumption for Scenario-1

VI. CONCLUSION & FUTURE WORKS

In the following work, the benefits and drawbacks of queue
based random algorithm and min-heap based job allocation
in the cloud. Both example and simulation results show that
MHVA performs better as compared to the random algorithm.
From the graph shown in simulation section, it is evident that
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Fig. 7. A bar chart to compare makespan value for Scenario-2
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Fig. 8. A bar chart to compare energy consumption for Scenario-2

MHVA performs better as compared to the random algorithm.
Devising a data structure that balances the trade-off between
dynamic job assignment and reducing energy consumption
is an open problem. In future, we are planning to compare
scheduling algorithm based on other data structure and design
a new job organization so that maximum cloud resources can
be utilized.
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