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Abstract

In this paper, we propose a node architecture and a token-based algorithm to access the shared medium in an optical

ring network. The algorithm is based on a reservation scheme. However, unlike other reservation schemes which op-

erate in three stages viz. reserve, transmit and release, the proposed scheme operates in two stages viz. reserve and

transmit and does not explicitly release the reserved resources. The proposed algorithm selects the earliest available

data-channel for reservation hence we call it earliest available channel (EAC) algorithm. The EAC algorithm operates in

a distributed manner, and has the capability of handling channel collision and destination conflicts. Each node in the

network maintains three modules: send module, receive module and token processing module, and is equipped with a

tunable transceiver in contrast to the previous work which uses an array of fixed transceivers. We study the performance

of the algorithm, by simulation, for fixed-sized bursts and bursts whose size is determined by M/Pareto distribution. We

find our algorithm is superior in terms of wavelength utilization. Since, our algorithm uses a single tunable transceiver

at each node, this is scalable with respect to the number of data-channels, however, delays are marginally increased.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

It is widely acknowledged that the rapid growth
in demand for bandwidth due to the Internet ex-

plosion can be satisfied by optical networks, and in

particular using the wavelength-division multi-
plexing (WDM) technology. A single fiber can

support hundreds of wavelength channels. With

the successful deployment of WDM in core net-
works, the access networks, e.g., local area net-

works (LANs) and metropolitan area networks

(MANs) are bottlenecks. Recently, a lot of work

has been reported in the literature for the deploy-

ment of WDM technology in the access network.

In a LAN, the available bandwidth is shared

among all the network users. To deal with multi-

user access a media access control protocol is
needed in such networks [1,2]. In recent years
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many media access control protocols have been

proposed for WDM LAN based on star, or a ring

as the underlying physical topology.

There are three well-known access strategies for

LANs based on ring topology viz. token ring,

slotted ring and insertion register ring. These have

reserved resources are not explicitly released. Each

node in the network maintains status of its trans-

mitter, receivers of other nodes, and data-channels

in the network. Status gives the time at which

transmitter, receivers and data-channels are

available. Resources (source node transmitter, re-
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been widely used as local area networks both in

commercial systems and research prototypes. Ring

network offers several attractive features such as

higher channel utilization and bounded delay.

WDM slotted rings are reported in [3–6]. Syn-

chronization among the slots is a major design

factor in slotted rings. Nodes must be synchro-

nized so that a slot starts at the same time on all
the wavelength channels in the network at the

synchronization point. Synchronization points are

the network hubs for star topology and the WDM

ADMs for ring topology [7]. Bengi and van As [3]

discussed multihop WDM metro ring where sev-

eral nodes use the same channel for reception of

packets. Marsan et al. [4] discussed an all-optical

network where number of nodes in the network
are equal to the number of wavelength channels.

Marsan et al. [5] assigned separate slotted channels

to a disjoint subset of destination nodes. A group

of nodes share the same channel for reception.

Fransson et al. [8] equipped the nodes with a

WDM laser-array transmitter capable of trans-

mitting at all wavelengths used in the network, and

receive at a particular wavelength.
Token-based WDM ring networks are ex-

plained in [9,10]. Unlike FDDI rings, authors in

[9,10] discussed multiple token in the ring. In

[9,10], the number of tokens in the ring, the

number of transmitter and receiver that each node

is equipped with, is equal to the number of data-

channels available in the ring which is one less

than number of available wavelengths. In this
paper, we propose a token-based algorithm called

earliest available channel (EAC) algorithm to ac-

cess the shared medium in a WDM ring network.

The algorithm is based on a reservation scheme.

An early version of this paper with a few initial

results has been accepted for presentation in [11].

Unlike other reservation schemes that operate

in three stages viz. reserve, transmit and release,
the EAC algorithm operates in two stages viz.

reserve and transmit. In our proposed scheme
ceiver of destination node and a data-channel) are

reserved for a duration which is determined at the

time reservation request is made. The duration for

which resources are reserved is different for dif-

ferent reservation requests. The reserved resources

can be requested for reservation by another node

after that period. This does not necessitate the

explicit release of reserved resources. Two different
nodes can make reservation requests for the same

resource during the same cycle of the token but for

different times. Transmitter of the source and re-

ceiver of the destination are tuned to the same

reserved data-channel before communication be-

tween them takes place. In other words a lightpath

is dynamically established between the source and

destination along the reserved data-channel and
remains in place until the transmission is com-

pleted. Availability of fast tuning lasers as re-

ported in [12–15] makes it possible to set up

lightpath dynamically.

The EAC algorithm operates in a distributed

manner. Each node in the network maintains three

modules: send module, receive module and token

processing module. A node invokes send module if
its req_made queue (a queue that stores all the

reservation request made by the node) is non-

empty. Similarly, receive module is invoked if its

req_rec queue (a queue that stores all the trans-

mission request to the node) is non-empty. Token

processing module is invoked when a node receives

a token. Req_made queue and req_rec queue are

updated by the token processing module. The al-
gorithm has the capability of avoiding channel

collision and destination conflicts. The reservation

mechanism is explained in details in the sub-

sequent sections.

We study the performance of the algorithm by

simulation for different types of traffic including

bursty traffic which we model using a M/Pareto

distribution. We compare the performance with
another token-based algorithm Multi-Token Inter-

Arrival Time (MTIT) Access Protocol [10]. To the



best of ourknowledgeMTIT is theonly token-based

protocol proposed for optical ring networks. In the

later part of the paper, we include a qualitative

comparisonofMTITandEACalgorithms inTable 7.

The rest of the paper is organized as follows. In

Section 2, we described the system model. In Sec-

tunable transceiver, so that a node can transmit

packets on one wavelength and receive packets on

some other wavelength independently. The fixed

transmitters and receivers are tuned to wavelength,

k0, to transmit and receive control information

between adjacent nodes. Tunable transmitters and
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tion 3, the EAC algorithm is detailed. The proof of

correctness of the algorithm is given in Section 4.

Simulation results comparing MTIT and EAC al-

gorithms are reported in Section 5. Finally, some

conclusions are drawn in Section 6.

2. System model

2.1. Assumptions
There are N nodes in the network, numbered as

0; 1; 2; . . . ;N � 1. Node i of the network is con-
nected to node j by an optical fiber such that

j ¼ ðiþ 1ÞmodN where i 6¼ j, and for all

i; j 2 0; 1; . . . ;N � 1; node j is the successor of
node i and node i is the predecessor of node j. R is

the Ring Latency. The system supports W wave-

lengths k0; k1; . . . ; kW�1. There are W � 1 data-

channels and one control-channel. One of the

wavelength, k0, is dedicated to a control-channel,

and rest of the wavelengths are used as data-

channels. A circuit is established on wavelength,

k0, between every pair of adjacent nodes i and j.
The circuit thus established is the dedicated con-

trol-channel. A pair of nodes i and j are said to be

adjacent if j is the successor of node i and node i is
the predecessor of node j.

A node architecture is shown in Fig. 1. Each

node is equipped with a fixed and tunable trans-

ceiver. A similar architecture is proposed in [16].

However, the authors in [16] have equipped the
nodes with a SONET ADM and a DWADM

(dynamic wavelength add-drop multiplexers). The

property of a DWADM dictates that, at any time,

the input channel wavelength must be same as the

output channel wavelength. A node equipped with

DWADM, must transmit and receive on the same

wavelength. This limits the usage of wavelengths

and performance of the ring networks equipped
with DWADM. To overcome the limitation of a

node with DWADM, we equip the nodes with
tunable receivers are tuned to data-channels as and

when required. For two nodes in the network to

communicate, tunable transmitter of the source

node and tunable receiver of the destination node

must be tuned to the same wavelength (data-

channel). Note that information transfer now

takes a single hop over a data-channel. The system

has a single token that circulates around the ring
on the control-channel. The token consists of N
fields which we call slots with slot i assigned to

node i. Each field is subdivided into five mini-fields

which we collectively called control information of

a slot. We define a Token Period (TP) as the period

between two successive receives of the token by a

node. We calculate TP as TP ¼ Rþ N � p where p
is the processing delay of token at each node. Since
TP is same for all nodes in the network, each node

gets a fair chance to access the shared medium.

Thus, the delay involved is bounded.

A node on receiving the token processes each

slot, l (06 l < N ) to update its knowledge about

node, l, in the network. Prior to communication

between a pair of nodes, the source must reserve

the destination and a data-channel. A node re-
serves the destination and a data-channel by writ-

ing the control information, at its slot in the token.

Reservation mechanism is explained in Section 3.

Every node has N � 1 buffers, one for every

destination. Buffers handle packets in a FIFO or-

der. The buffers are scanned by a pre-determined

method to select packets to transfer.

2.2. Notations

Each node i maintains the vectors DAT and

CAT where:

DAT ½i�: Indicates the earliest time at which the

transmitter of node i will be available for trans-
mitting.

DAT ½x�: Indicates the earliest time at which the
receiver of node x will be available for receiving,
where x 6¼ i.



CAT ½c�: Indicates the earliest time at which the

data-channel c will be available for transmis-

sion.

st: Transmitter available time.

sd : Destination available time.

sc: Channel available time.

the current node (here current node is the node

that is processing the token) is the destination. For

example say, there is a reservation request from
node 1 destined to node 5. When node 5 receives

the token reservation request from node 1 is en-

tered in its req_rec queue. No other nodes will
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Fig. 1. Architecture of node i in the optical ring network.
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tu: Tuning time of the transmitter/receiver.
tp: Average propagation delay between source

and destination, and

current_time: time at which an action is taken at

a node.

req_made queue is a FIFO queue that holds the

reservation requests made by a node. Each element

of the queue has the following fields: tuning_time –

time at which transmitter of a node is tuned to a
data-channel, destination_identity – identity of

destination node to which transmission will take

place, data_channel – wavelength to which the

transmitter of a node will be tuned to, transmis-

sion_duration – duration for which transmission

will take place.

req_rec queue is a sorted queue that holds the

reservation requests from other nodes for which
make an entry of this request in its req_rec queue.

Elements of the req_rec queue are same as that of

req_made queue. Here the data_channel field spec-

ifies the wavelength to which the receiver of a node

will be tuned to.
Tx: Indicates the status of a node�s transmitter

(BUSY/FREE).

Rx: Indicates the status of a node�s receiver

(BUSY/FREE).

Control information in a slotjðs; d; c; tc;DÞ of

the token are:

s: 1 indicates node j is requesting for reserva-

tion; 0 indicates no request is made by node j.
d: Identity of the destination node requested for

reservation.

c: Identity of the data-channel requested for res-

ervation.



tc: Time at which receiver of the destination,

and transmitter of the source are tune to data-

channel c.
D: Duration of transmission.

Algorithm has the following three modules:

Send module, Receive module, and Token Pro-

cessing module.

If a node�s req_made queue is non-empty and

the transmitter of the node is free, then the node

invokes the send module. The front element of the
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3. EAC algorithm

In this section we describe a token-based dis-
tributed algorithm which we call EAC algorithm

for medium access to a WDM ring networks. The

inter-arrival time of token at each node remains
the same (i.e., TP ), giving each node a fair access to
the shared data-channels. EAC algorithm guar-

antees that no collision destination and/or data-

channel takes place and is based on a reservation

scheme. However, it differs from the traditional

reservation scheme in two aspects. First, no ex-

plicit release of reserved resources takes place.

Second, unlike the traditional reservation scheme

where resources are reserved only when they are
free, EAC algorithm look ahead to find at what

time the required resources are available, and re-

serve the resources from that point of time. Each

node maintains status of its transmitter, receiver of

other node�s, and data-channels indicating the

time at which they will be available for transmis-

sion.

Upon receiving the token, a node first updates
its status vectors DAT and CAT maintained at its

node. If its buffers are non-empty, then selects the

burst with maximum waiting time and an earliest

available data-channel. Node then makes the res-

ervation request by writing the control informa-

tion in its allotted slot of the token. Then the token

is sent to its adjacent node. When a node receives

back the token (i.e., after a period of TP ), its res-
ervation request is completed, and all the nodes

have recorded the next availability of the requested

resources in their status vector DAT and CAT .
Before transmission, transmitter of the source and

the receiver of the destination are tuned to the

same data-channels in other words a circuit

(lightpath) is established between the source and

destination and remains established for the period
of transmission which is determined at the time

reservation request is made.
req_made queue is removed and the status of the

transmitter, Tx, is set to BUSY. Transmitter is

tuned to the data-channel specified in the

data_channel field of the element at the time

specified in the tuning_time field of the element.

Once the transmitter of the node is tuned to the

specified data-channel, transmission from the node

begins and continues for a duration specified in the
transmission_duration field of the element. After

transmission is completed, the status of the trans-

mitter, Tx, is set to FREE, and another transmis-

sion process begins. Note the transmitter of the

node is tuned to the specified data-channel only at

the specified time eventhough the status of the

transmitter is set to BUSY. Requests made by a

node are added in the req_made queue in the order
in which the requests are made. Note a request

made by a node is added to the req_made queue

only if the request is successful in making reser-

vation.

Similarly, if a node�s req_rec queue is non-

empty and the receiver of the node is free, then the

node invokes the receive module. The front ele-

ment of the req_rec queue is removed and the
status of the receiver, Rx, is set to BUSY. Receiver

is tuned to the data-channel specified in the

data_channel field of the element at the time

specified in the tuning_time field of the element.

Once the receiver of the node is tuned to the

specified data-channel, node starts receiving in-

formation and continue for a duration specified in

the transmission_duration field of the element. Af-
ter the transmission is completed, the status of the

receiver, Rx, is set to FREE, and another trans-

mission process begins. Note the receiver of the

node is tuned to the specified data-channel only at

the specified time eventhough the status of the

receiver is set to BUSY.

When a node receives the token it invokes the

token processing module. Following actions are
taken by the token processing module. First, it

updates the DAT and CAT vectors maintained at



the node. If the buffers are non-empty, then it finds

the destination identity of the burst with maximum

waiting time, and an earliest available data-chan-

nel. The maximum of the time at which the node�s
transmitter, destination node�s receiver and the

selected data-channel is free, is found. Let this time

• Tune the transmitter to data-channel,

req madeðlÞ � data channel
4. if current timeP req madeðlÞ � tuning timeþ tu

then
• Transmit data to node, req madeðlÞ�

destination identity

2.

3.

4.
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be t0 and this gives the time at which the required

resources viz. source node�s transmitter, destina-

tion node�s receiver, and the selected data-channel

are available at the same time. The node can re-

serve the resources at t0. Suppose the node has

received the token at t. Its reservation process is

completed at t þ TP . If t0 < t þ TP , this implies the

required resources are available before the reser-
vation is completed. But, a node can reserve the

required resources only after its reservation re-

quest is completed, i.e., on or after t þ TP . Hence,

if t0 < t þ TP the value of t0 is set to t0 ¼ t þ TP .
Control information is written at the slot allotted

to the node in the token and the token is sent to its

successor node. When the destination node re-

ceives the token, it adds the request in its req rec
queue. When the source receives back the token its

reservation process is completed and the reserva-

tion requested is inserted in its req send queue.

For transmission to take place between source

and destination, the transmitter of the source and

the receiver of the destination must be tuned to the

same data-channel at the same time. We have

shown later that the transmitter of the source and
the receiver of the destination are tuned to the

same data-channel precisely at the same time.

3.1. Pseudocode of EAC algorithm

Perform the following Cases at each node i:
CASE: if req made queue is non-empty and

Tx ¼ FREE then invoke the Send module
CASE: if req rec queue is non-empty and

Rx ¼ FREE then invoke the Receive module

CASE: Invoke the Token processing module

when a node i receive the token

3.1.1. Send module

1. Remove the front element of the req made
queue. Let it be req madeðlÞ

2. Set Tx ¼ BUSY
3. if current timeP req madeðlÞ � tuning time then
5. if current timeP req madeðlÞ � tuning timeþ tuþ
tp þ req madeðlÞ � transmission duration then
• Set Tx ¼ FREE

3.1.2. Receive module

1. Remove the front element from the req rec
queue. Let it be req recðlÞ

2. Set Rx ¼ BUSY
3. if current timeP req recðlÞ � tuning time then

• Tune the receiver to data-channel,

req recðlÞ � data channel
4. if current timeP req recðlÞ � tuning timeþ tu

then
• Receive data

5. if current timeP req recðlÞ � tuning timeþ tu þ
tp þreq recðlÞ � transmission duration then
• Set Rx ¼ FREE

3.1.3. Token processing module

1. Examine slotiðs; d; c; tc;DÞ of the token if

(s ¼ 1) then do the following:

• Set s field of sloti to zero
• Add the request in req send queue of node i
• Set DAT ½d� ¼ DAT ½i� ¼ CAT ½c� ¼ tc þ tu þ

tp þ D /* request made by node i is added

to the req send queue of node i. Availability

of destination node d �s receiver, transmitter

of node i, and data-channel c are updated

in DAT and CAT of node i */
For all slotjðs; d; c; tc;DÞ of the token, j 6¼ i do
the following:

• if ðs ¼ 1 and tc þ tu þ tp þ D > DAT ½d�) then
� DAT ½d� ¼ tu þ tc þ tp þ D

• if ðs ¼ 1 and tc þ tu þ tp þ D > CAT ½c�) then
� CAT ½c� ¼ tu þ tc þ tp þ D
/* node i updates its knowledge about the

availability of receiver of other nodes, and da-
ta-channel by appropriately updating its DAT
and CAT vector */

if node i�s buffers are empty goto step 13

Find a burst with maximum waiting time. Let

the destination identity of the burst be say x



5. Find the earliest available channel k ¼
fm : CAT ½m� is minimum for m ¼ 1; . . . ;W � 1g

6. st ¼ DAT ½i�
7. sd ¼ DAT ½x�
8. sc ¼ CAT ½k�
9. Find s ¼ maxðst; sd ; scÞ. This gives the earliest

assumed to be negligible. Computed value of tp as

given in [17] is 10.

Let t ¼ 6 and node 0 received the token at t.
Node 0 selects the burst with maximum waiting

time i.e, burst destined to node 2, and a earliest

available data-channel i.e., k1. The following
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time at which the transmitter of node i, re-

ceiver of destination node x and the data-chan-

nel k are available at the same time, and can be

reserved by node i
10. if s < current timeþ TP then s ¼ current timeþ

TP /* resource reservation time is updated to

reservation completion time if the required re-
sources are available before the reservation is

completed */

11. Compute the duration of transmission, D
12. Write the control information in slotiðs ¼ 1;

d ¼ x; c ¼ k; tc ¼ s;DÞ of the token

13. Send the token to successor node of i

3.1.4. Example

In the following example, we consider a four

node ring-network to illustrate the reservation

process. The number of data-channel is assumed

to be 2. Let the contents of DAT and CAT vectors

at time t be as shown in Table 1. Table 2 shows the

traffic matrix at time t. The entry bðx; yÞ corre-

sponding to row m and column n of Table 2 in-

dicates, node m has a burst destined to node n.
Duration of transmission of the burst is indicated

by x, and y indicates the time at which the burst

has arrived at node m. We assume the following

value for the parameters: TP ¼ 20; tu ¼ 2, propa-

gation delay of token between adjacent node be 5

and the processing delay of token at each node is

Table 1

Contents of DAT and CAT vectors at the nodes at time t

DAT[0]¼ 0, DAT[1]¼ 5, DAT[2]¼ 7, DAT[3]¼ 10

CAT[k1]¼ 5, CAT[k2]¼ 7
Table 2

Traffic matrix at time t

Node 0 1 2 3

0 bð10; 4Þ bð4; 3Þ
1 bð20; 4Þ bð25; 3Þ
2 bð10; 3Þ
3 bð10; 5Þ
computation is performed: st ¼ 0ðDAT ½0�Þ, sd ¼
7ðDAT ½2�Þ, sc ¼ 5ðCAT ½k1�Þ, s ¼ 7ðmaxðst; sd ; scÞÞ.
s < t þ TP so the value of s is set to t þ TP , i.e., 26.
Node 0 writes control information in slot0ðs ¼ 1;
d ¼ 2; c ¼ k1; tc ¼ s;D ¼ 4Þ of the token and sends

it to its successor, node 1. Node 1 on receiving the

token updates the contents of DAT and CAT vec-

tors shown in Table 3.
Node 1 selects the burst destined to node 2 and

the earliest available data-channel k2. Following

computation is performed: st ¼ 5, sd ¼ 47; sc ¼ 7;
s ¼ 47. When node 1 receives the token, the value

of t is updated to t þ 5 (i.e., t+ the propagation

delay between adjacent nodes which we have as-

sumed to be 5 in our example). Node 1 writes

control information in slot1ðs ¼ 1; d ¼ 2; c ¼ k2;
tc ¼ s;D ¼ 25Þ and sends it to node 2.

Updated values of DAT and CAT vectors at

node 2 are shown in Table 4. Request from node 0

and node 1 are entered in the req_rec queue of

node 2.

Node 2 selects the burst destined to node 1 and

the data-channel k1. Following computation is

performed: st ¼ 7; sd ¼ 5; sc ¼ 47; s ¼ 47. Node 2
writes control information in slot2ðs ¼ 1; d ¼ 1;
c ¼ k1; tc ¼ s;D ¼ 10Þ, and then sends it to node 3.

Updated values of DAT and CAT vectors at

node 3 are shown if Table 5.

Node 3 selects the burst destined to node 0 and

data-channel k1. Following computations is per-

formed: st ¼ 10; sd ¼ 0; sc ¼ 69; s ¼ 69. Node 3

Table 3

Contents of DAT and CAT vectors at node 1

DAT[0]¼ 0, DAT[1]¼ 5, DAT[2]¼ 47, DAT[3]¼ 10

CAT[k1]¼ 47, CAT[k2]¼ 7
Table 4

Contents of DAT and CAT vectors at node 2

DAT[0]¼ 0, DAT[1]¼ 5, DAT[2]¼ 7, DAT[3]¼ 10

CAT[k1]¼ 47, CAT[k2]¼ 84



writes control information in slot3ðs ¼ 1; d ¼ 0;
c ¼ k1; tc ¼ s;D ¼ 10Þ and then sends the token to

the Node 0.

When node 0 receives the token, it adds the

reservation request in its req_made queue. The

contents of DAT and CAT vectors after processing

Suppose node y receives the token at t0 > t such
that t < t0 < t þ TP , and makes reservation request

for node z. We show that node y makes reservation

request to node z only after node x�s transmission

to node z is completed. Node y first updates the

value of DAT ½z� setting DAT ½z� ¼ T þ tu þ tp þ Dx

Table 5

Contents of DAT and CAT vectors at node 3

DAT[0]¼ 0, DAT[1]¼ 69, DAT[2]¼ 84, DAT[3]¼ 10

CAT[k1]¼ 69, CAT[k2]¼ 84

Table 6

Contents of DAT and CAT vectors at node 0

DAT[0]¼ 47, DAT[1]¼ 69, DAT[2]¼ 84, DAT[3]¼ 10

CAT[k1]¼ 91, CAT[k2]¼ 84
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the token are shown in Table 6.

The above example illustrate how the reserva-

tion is made and the values of DAT and CAT
vectors updated at each node of the ring for given

traffic matrix.

4. Correctness of the algorithm

4.1. Destination collision never occurs
Destination collision occurs when a node re-

ceives data from more than one nodes at the same
time. In the following section, we prove that, in

our proposed algorithm, destination collision
never occurs.

Suppose destination collision occurs at node z.
This implies that, node z has received data from

more than one nodes say, node x and node y at

same time. We show that node y (node x) can

transmit to node z only after the completion of

transmission from node x (node y).
We know that source must reserve the destina-

tion before it transmits. Suppose node x receives

the token at t, and makes reservation request for

node z. Let the value of s (the time at which node x
reserves the destination node z) in step 10 of token

processing module be T , and the transmission

duration be Dx. In other words, we can say, node x
completes its transmission to node z at T þ tu þ
tp þ Dx.
when it receives the token. To make reservation

request to node z, the time at which receiver of

node z is available, is calculated. This is given by

sd ¼ DAT ½z� in step 7 of the token processing

module. The value of s in step 10 of the token

processing module gives the earliest time at which

node y can reserve node z.
The earliest time at which node y can reserve

node z is sPDAT ½z� ¼ T þ tu þ tp þ Dx. But node

x completes its transmission to node z at

T þ tu þ tp þ Dx. This implies node y can reserve

node z only after node x completes its transmis-

sion. Which further implies that node y transmits

only after node x completes it�s transmission.

Thus, destination collision does not occur.

4.2. Channel collision never occurs

Channel collision occurs only when more than

one nodes transmit on the same data-channel.

Similar to Section 4.1 we can show that channel

collision never occurs.

4.3. Reservation request by a node does not overlap

in time

Reservation request made by a node overlaps in

time only when a new transmission is initiated

before the completion of the on-going transmis-

sion.

Let a node x make two reservation requests say,

destined to nodes y and z, respectively, that over-
lap in time. In other words transmission to node z
(node y) initiated before the completion of trans-

mission to node y (node z). Here we show that the

transmission to node z (node y) is initiated after

the completion of transmission to node y (node z).
We know that when a node receives the token,

it makes a single reservation request. Let node x
receive the token at t, and make reservation re-
quest to node y. Let T be the time at which node x
reserves the resources, and duration of transmis-



sion be Dy . This implies transmitter of node x will

be free at T þ tu þ tp þ Dy .

When node x receives back the token it updates

its transmitter�s available time DAT ½i� ¼ T þ tuþ
tp þ Dy . Let node x make another request to node

z. The transmitter�s available time st ¼ DAT ½i� ¼

When node x makes reservation request to node

z: (1) step 6 of the token processing module

guarantees that all the previous transmission from

node x is completed at st, (2) step 7 of the token

processing module guarantees that all previous

transmissions to node z are completed at sd , (3)

gorithm by simulation. We measure the perfor-

mance in terms of throughput and mean packet

delay. Throughput is defined as through-
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T þ tu þ tp þ Dy is found in step 6 of the token

processing module. Step 10 of the token processing

module gives the earliest time at which node x can

reserve the resources corresponding to its request

to node z.
The earliest time at which resources are reserved

by node x corresponding to its request to node z is
sPDAT ½i� ¼ T þ tu þ tp þ Dy . This implies that
node x�s transmission to node z is initiated after

completion of its transmission to node y.
Hence, the requests from node x to nodes y and

z, respectively, do not overlap in time. This con-

tradicts our assumption. Thus, the reservation re-

quest made by a node does not overlap in time.

4.4. Reservation request received by a node does not

overlap in time

Similar to Section 4.3 it can be shown that

reservation request received by a node does not

overlap in time.

4.5. Transmitter of the source and the receiver of

the destination are tuned to the same data-channel

precisely at the same time

For transmission to take place, transmitter of

the source and receiver of the destination must

be tuned to the same data-channel at the same

time.

We know that when a request is in req_made

queue of a node, a copy of that request will also be
there in the req_rec queue of another node. Fur-

ther, send and receive modules process the requests

in the order in which the requests exist in the re-

q_made and req_rec queues of the node. So when

the transmitter of a node i is tuned to data-channel

c at time t, there exists another node j whose re-

ceiver is also tuned to data-channel c at time t.
Let node x make reservation request to node z.

Let the data-channel selected be k and the time at

which node x reserves the resources be T .
step 8 of the token processing module guarantees

that previous transmission on data-channel k is

completed at sc.
Step 10 of the token processing module gives

the earliest time at which transmitter of node x and
receiver of node z are tuned to the data-channel k
which we assume to be T Pmaxðst; sd ; sc). This

implies at T : (1) All transmissions corresponding
to previous requests made by node x are com-

pleted, (2) All transmissions corresponding to

previous requests to node z are completed, (3) No

transmission is taking place on data-channel k.
Let send module of node x remove the request

to node z from the req made queue of node x and

tune the transmitter of node x data-channel k at T .
This also implies all requests made to node z be-
fore node x�s request, have completed their trans-

missions, and receive module of node z has

removed the request of node x from req rec queue

of node z and tuned the receiver of node z at T to

data-channel k.
Similarly, let the receive module of node z re-

move the request of node x from the req rec queue
of node z and tune the receiver of node z to data-
channel k at T . This also implies node x has

completed transmission of all requests that it has

made before its request to node z, and the send

module of node x has removed the request to node

z from req made queue of node x and tuned the

transmitter of node x at T to data-channel k.
Thus we conclude that the transmitter of the

source and receiver of the destination are tuned to
same data-channel precisely at the same time.

5. Simulation results

We evaluate the performance of the EAC al-



put¼ (transmission time)/(transmission time+

scheduling latency), and is a measure of how effi-

ciently data-channels are utilized in the network.

We consider a 10-node ring network. Nodes are

spaced equally in the ring. The number of data-

channels is taken to be five as a default value; for

The D, P and E are suffixed by a and b, which
we use for denoting inter-arrival and burst size

respectively. For example, EaPb implies exponen-

tial inter-arrival of bursts and Pareto distributed

size of the bursts. For deterministic cases, the size

of the burst and the inter-arrival of the burst are
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Fig. 2. Burst size vs. throughput for DaDb.
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others, it is mentioned along with the results. We

assume the following values for other parameters:

length of the ring is 100 kms, processing time of

token at each node is 1 ls, tuning time of trans-

mitter and receiver is 5 ls. Computed value of TP

is 510 ls. The average propagation delay, tp, be-
tween nodes is computed as given in [17],

tp ¼ N=2� s where s is the propagation delay be-
tween adjacent nodes.

We use different types of data traffic – fixed-

sized bursts and bursts whose size is determined by

M/Pareto distribution. We consider bursty traffic

as the traffic in LANs is reported to be bursty in

nature [18]. We use M/Pareto distribution for

generating the bursts of varying sizes [19]. We keep

the size of packets in a burst to be fixed at 10 kb
per packet. We have taken capacity of the data-

channel to be 1 Gbps. A node can transmit at a

maximal speed of 1 Gbps. Bursts of fixed size and

fixed inter-arrival time do not generate bursts of

size exceeding this capacity. However, the bursts

generated from M/Pareto distribution which fol-

low an exponential distribution for inter-arrival

time may generate bursts exceeding this capacity.
In the following subsections, we have included

results of the traffic generated from the following

three types of cases :

• Case 1: Both size and inter-arrival of bursts are

deterministic which we call DaDb.

• Case 2: Inter-arrival of bursts to follow an ex-

ponential distribution and deterministic burst

size which we call EaDb.
• Case 3: Inter-arrival of bursts to follow an ex-

ponential distribution and burst size follows

M/Pareto distribution we call EaPb.

We use the following notations in terms of DaDb,

EaDb and EaPb:

D: deterministic size,

E: exponential distribution,
P : M/Pareto distribution,
a: inter-arrival of burst,
b: burst size.
known a priori. We have included results for

deterministic cases of data (DaDb), mainly, for

understanding differences in MTIT and EAC al-

gorithms. However, in the real-world scenario,

neither the burst-size nor the inter-arrival of bursts

are known a priori. Therefore, the real-world sce-

nario is better modeled by EaPb cases.

5.1. Burst size vs. throughput

First, we include the plots for burst size vs.

throughput in – Figs. 2–4. Burst size is expressed in

number of packets and throughput is a measure of

wavelength utilization in the network.

Throughput for fixed arrival and fixed-sized

bursts is plotted in Fig. 2. The inter-arrival of
bursts is assumed to be 1 ms. From the plots, it is

observed that the throughput in both EAC and

MTIT algorithms increases with increase in the

burst size; this is mainly due to the increase in

transmission duration. For example, at a burst size

of 50 packets the duration of transmission is 500

ls whereas at a burst size of 200 packets the du-

ration of transmission is 1 ms. Throughput in-
creases linearly with burst size for both EAC and

MTIT up to a certain limit, and then this gets

0.6

0.7

0.8

ut

EAC
MTIT



saturated for MTIT comparatively at a lower

range. However, it continues to increase up to a

larger burst-size (the range is not shown in the
Fig. 2) for EAC. In MTIT, the duration of trans-

mission by a node is the token holding time which

is determined when a node captures the token, and

period of wavelength is lesser, for EAC, because it

reserves immediately after its release. Thus, the

total latency is smaller for EAC over MTIT al-

gorithm. This difference is more significant for

larger bursts. This behavior is reflected in the plots

included in Fig. 2.
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Fig. 3. Burst size vs. throughput for EaDb.
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Fig. 4. Mean burst size vs. throughput for EaPb.
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there are multiple tokens.

For larger bursts, there are fewer nodes to

transmit for an equal amount of data generated. In

case of MTIT, a node has to transmit for a fixed

duration, and to make more than one attempt to
complete the transmission. In contrast, in EAC

algorithm, a node will finish the complete trans-

mission of higher bursts in a single attempt, and

thus reduces the scheduling latency. Second, a

wavelength remains unutilized till another node

has data to transmit, in MTIT. However, this idle
Next, we include results of fixed-sized bursts

with an exponential inter-arrival time in Fig. 3. It

is observed again that the throughput increases

linearly for MTIT with increase in burst size and at

a higher burst size it gets saturated; the reasons are

stated above. However, in case of EAC algorithm,

the throughput remains almost constant. There are

two contributing factors to this phenomenon
which governs the scheduling latencies and the idle

period of wavelength utilization. One is the avail-

ability of the wavelength, as cited in the previous

case, and second is the availability of destination

node-receiver. Thus, for exponential distribution

of inter-arrival time, we get an almost uniform

wavelength utilization factor. However, this is not

the case with MTIT, because, they have multiple
receivers.

Finally, we include results of bursts taken from

a Pareto distribution with an exponential inter-

arrival time in Fig. 4. In this case, throughput re-

mains almost constant throughout the burst-sizes

for both the algorithms. Pareto distribution may

generate a few bursts of very large size, and thus

we have collected the simulation results for mean

burst-size. We attribute contribution to the

throughput response to two factors. First is from

the varying burst size (Fig. 2), and the second is

due to the inter-arrival burst-time (Fig. 3). An

aggregation over burst-sizes and a fusion of this

inter-arrival time are giving us an almost constant

wavelength utilization across the mean burst-size.

This is a very interesting phenomenon and
needs more investigation. Most of the work in

literature has been confined to the data generated

from Poisson distribution. It is almost established

now that the real-data, in particular multimedia

data, is self-similar and better modeled by a Pareto

distribution. Not much analytical results are

available for such self-similar data. An analytical

study of the M/Pareto distribution along with the
analysis of such algorithms may give deeper in-

sight. This will also verify the simulation results.



This is an active area of research to be investigated

further.

5.2. Burst size vs. mean delay

Next, we simulate results for burst size vs. mean

current transmission and completion of the previ-

ous transmission.

When both inter-arrival time and burst-size are

deterministic, delays for smaller burst-sizes are

insignificant for both EAC and MTIT as shown in
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Fig. 7. Mean burst size vs. mean delay for EaPb using six and

seven data-channels.
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delay and include in Figs. 5–7. Mean delay is an

end-to-end delay and is the sum of access delay,

propagation delay and the transmission time.

Since, we have fewer data-channels than the

number of nodes, the major contributing factor to

mean-delay is the access delay. Access delay de-

pends on scheduling latency on the channel. For

EAC, scheduling latency is the time-duration be-
tween start of transmission and reserving a chan-

nel. For MTIT, it is duration between start of
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Fig. 5. However, at larger burst-size, MTIT expe-
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data-channels.
riences higher delays; this is because of larger

scheduling latency that MTIT experiences for

larger bursts resulting in slower access to data-

channel.

For exponential inter-arrival time and deter-

ministic burst size, delays are plotted in Fig. 6. It is

observed that mean delay experienced in EAC in-
creases with burst size; this is due to the propor-

tionate increase in the scheduling latency resulting

in slower access and large delay. For MTIT, at

higher burst size the scheduling latency increases

giving higher delay. It is also observed in Fig. 6

that with increase in the number of data-channels

the delay experienced by both EAC and MTIT

decreases. This is in conformity with WDM tech-
nology.

The above observation remains the same for the

case of EaPb shown in Fig. 7. In both the cases of

EaDb and EaPb, delays are smaller for MTIT over

EAC algorithm. Since, MTIT uses a fixed array of

transmitters and receivers whose number is equal

to the number of data-channels that each node can

have, delays are smaller in comparison to EAC
node which has a single transceiver. In MTIT, a

node can transmit to more that one node concur-



rently resulting in smaller delays. Obviously, with

increase in the number of data-channels, delay
decreases in both the cases (Figs. 6 and 7).

Fixed array of transmitters and receivers in

MTIT has some disadvantages too. For example,

for a change in wavelength requirement, number

whose characteristics are known a priori. How-

ever, the performance is almost comparable for the
bursts following a M/Pareto distribution for their

size and an exponential distribution for the inter-

arrival time. This performance of EAC is achieved

using a single tunable transceiver rather than a

Table 7

Comparison of MTIT with EAC algorithms

MTIT EAC

Number of tokens Equal to the number of data-channels One

Number of transmitters and

receivers per node

Equal to the number of data-channels Two

Fiber-delay lines Exist at every node No

Channel selection strategy A channel is selected on capturing a token Selects the earliest available channel

Transmission Simultaneous transmission on each data-

channel is possible at a node

A single transmission on a data-channel takes place

at a node

Header processing Header is processed at each intermediate node No processing of header takes place

Packet removal Removed by the source Removed at the destination

Token arrival Inter-arrival of token at a node may differ Inter-arrival of token at each node remains same
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of transmitters and receivers has to be changed

accordingly at each node. Second, if the spectrum

requirement changes the old (fixed) transceivers

have to be replaced by new ones. Moreover, it is
difficult to support QoS in MTIT [10] which is

essential for the next generation optical networks.

This is again an area of active research.

The qualitative comparison between MTIT and

EAC is given in Table 7.

6. Conclusions

We proposed a token-based distributed algo-

rithm EAC for medium access in a optical ring
network. EAC is based on a reservation scheme,

and has the capability of avoiding channel

1998.

[2] C.S.R. Murthy, G. Mohan, WDM Optical Networks:

Concepts, Design and Algorithms, Prentice-Hall of India
collision and destination conflicts. The scheme

looks-ahead to find the time at which the required

resources are available using a simple data struc-
ture and reserves them from the point of time of

their release. We compared EAC algorithm with

MTIT algorithm. We used a tunable transceiver to

overcome the scalability problem associated with

MTIT; this approach is in tune with the current

advances in laser technology. From simulation we

found that, the performance of EAC is superior

in terms of throughput and delay for the traffic
fixed array of components. MTIT also pays the

penalty in terms of scalability of data-channels,

cost and maintenance. If the spectrum requirement

changes the fixed lasers of MTIT have to be re-
placed with new ones, which is not the case in EAC

algorithm. Since the number of transmitters at a

node is equal to the number of data-channels, in

MTIT any change in the data-channel requirement

necessitates the change in the number of trans-

mitters and receivers at each node. This increases

the cost of the network. With multiple tokens

equal to the number of data-channels in the net-
work, the maintenance of token in the ring is not

too trivial. These are the inherent advantages of

our proposed EAC algorithm. Currently we

are working to extend this work to include QoS

provisioning.
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