
Ambiguity-Region Analysis for Double Threshold
Energy Detection in Cooperative Spectrum Sensing

Dhritiman Das and Siddharth Deshmukh
Department of Electronics and Communication Engineering

National Institute of Technology, Rourkela, Odisha, 769008

Email: dhritimandasec2015@hotmail.com, deshmukhs@nitrkl.ac.in

Abstract—In this paper we investigate cooperative spectrum
sensing technique in which double threshold based energy de-
tection is used at local cognitive radio (CR) sensors. Coop-
erative spectrum sensing improves reliability in detection of
underutilized spectrum by fusing the decisions of local CR
sensors. Local CR sensors use two thresholds, λ1 and λ2 (with
λ2 > λ1). If the sensed energy is greater than λ2 or less
than λ1 then with complete certainty local sensors decide for
the presence or absence of primary user (PU) respectively. The
difference between λ2 and λ1 defines the ambiguity region, i.e.,
Δth = λ2 − λ1 in which local CRs are unable to decide the
presence or absence of PU. In this work local sensors report
the decision along with situation in which sensed energy falls in
ambiguity region. In our analysis we use majority rule at the
fusion center and compute an analytical expression of average
probability of sensing error as a function of width of ambiguity
region, i.e., Δth. Using the derived analytical expression and by
simulation we show that there exists an optimal value of Δth for
which the probability of sensing error is minimum.

Index terms— Cooperative sensing; ambiguity region; false

alarm; double threshold; spectrum hole.

I. INTRODUCTION

Radio frequency spectrum is identified as one of the most

valuable resource for current generation wireless technologies.

Due to the rapid advancement in communication technologies

and exponential growth in bandwidth hungry applications the

need for efficient utilization of the spectrum resources has

gained a considerable attention among the researchers. The

existing spectrum assignment policy aims in improving relia-

bility in communication; however, the allocation policy leaves

a great portion of spectrum severely under-utilized. Thus, there

is an urge for a more intelligent and flexible communication

technology that can exploit the spectrum resource in a more

efficient way. In order to address the above challenge cognitive

radio (CR) technology [1], [2], has been found to be an attrac-

tive solution. By definition, a cognitive radio is an intelligent

device which according to the surrounding radio environment

and other user requirements, adapts its transmission power,

frequency, modulation technique etc.

The CR technology enables the unlicensed secondary user
(SU) to coexist with the licensed primary user (PU) without

causing significant interference or very little interference. The

secondary user uses a portion of the spectrum, which is

unused by the primary user, called spectrum hole, at a par-

ticular duration of time. Spectrum hole detection is performed

by secondary user and is termed as spectrum sensing, [7].

Based on the signal processing approach spectrum sensing can

be broadly classified into three categories: energy detection,

matched filter detection and feature detection[9]. Since energy

detection approach cannot differentiate the type of signal from

the primary user, it is the most simple form of spectrum

sensing technique. The energy detector collects a number of

samples from the radio environment, computes the energy,

compares it with a threshold and decides for the presence

or absence of the primary user signal. To further improve

the performance of spectrum sensing, cooperative spectrum

sensing technique have been studied in [8], [11]. Here a

number of CR sensors with different spatial locations are used

which individually sense the spectrum and reports to the fusion

center, through a reporting channel. Fusion center combines

the decision using Soft Combination or Hard Combination
technique [3]. In soft combination technique the quantized

value of the calculated energy, i.e., the test statistic is sent to

the fusion center, where as in hard combination technique the

local decisions of the CR sensors are sent. In this work hard

combining technique is used as it is more cost efficient and

less time consuming. Fusion center finally makes the decision

based on rules like AND, OR or Majority rule.

Considering CR sensors it has been observed that around

the threshold of an energy detector the probability density

functions of the test statistics which decides the presence or

absence of primary user signal has a very small difference.

So no decisions can be made with a good certainty when the

test statistic falls around the threshold. The double threshold

energy detection technique [4], [5], is introduced in place

of the conventional single threshold, which implements two

thresholds λ1 and λ2. The sensed energies lying between

upper and lower threshold (Δth = λ2 − λ1) are considered

unreliable and are not considered in cooperation. In [10]

it has been shown that the double threshold scheme with

cooperative sensing shows better results than the conventional

single threshold scheme. Further, [6] implemented dynamic

double threshold considering the noise uncertainty. One of

the basic question which has remained unanswered in the

above works is the width of arbitrary double threshold region

(ambiguity region). Further there is a need to compute the

width of ambiguity region for maximizing the cooperative CR

performance.

In this paper we reinvestigate the theory behind the double

threshold scheme. The local sensors report the decision along



with situation in which sensed energy falls in ambiguity region

to the fusion center. In our analysis we use majority rule at the

fusion center and compute an analytical expression of average

probability of sensing error as a function of width of ambiguity

region, i.e., Δth. Using the derived analytical expression and

by simulations we show that there exists an optimal value of

Δth for which the probability of sensing error is minimum.

The remaining part of the paper is organized as follows.

Section II gives description of the system model; Section

III analyses the ambiguity-region and finds the cooperative

probabilities as a function of the width of ambiguity-region;

Section IV derives the analytical formula for average proba-

bility of sensing error. Section V presents the description of

the simulation done and displays the results. In section VI we

finally present conclusion and the scopes of future works on

this topic.

II. SYSTEM MODEL

Consider a cooperative cognitive radio (CR) sensing sce-

nario in which N CR sensors sense a given narrow band

spectrum. The local CR sensors are similar detectors and

are arbitrarily located at different spatial locations such that

they experience approximately uncorrelated channel from the

primary user. Every local CR sensors i, where i ∈ {1, ..., N},

collects L number of samples and are denoted as xi(n), where

n ∈ {0, ..., L− 1}, in a given time frame. The corresponding

test statistics which will be compared with the threshold for

decision making can be expressed as,

Ti(x) =

L−1∑
n=0

| xi(n) |2

where the samples xi(n) can take values in two categories,

H0 : xi(n) = wi(n)

H1 : xi(n) = hi(n) · s(n) + wi(n)

Here H0 and H1 denotes null and alternate hypothesis for

absence and presence of primary user signal respectively.

hi(n) denotes Rayleigh distributed channel fading co-efficient;

s(n) denotes the primary user signal; wi(n) denotes AWGN

noise with variance σ2
n. Thus expected signal to noise ratio

(SNR) can be expressed as

η =
E

[| hi(n) |2
]
P

σ2
n

where P is the power of the primary user signal. It is assumed,

for simplicity, that expected SNR η and noise variance σ2
n are

same at all the CR sensors’ frontend. So that test statistic Ti(x)
at all the CR frontends are identically distributed.

Next, we assume that the number of samples, L is large

enough such that distribution of test statistics Ti(x), repre-

sented as P (Ti(x)) is Gaussian distributed. Thus, distribution

of Ti(x) under two hypothesis can be expressed as,

Ti(x)
H0∼ N (

Lσ2
n, 2Lσ

4
n

)
Ti(x)

H1∼ N (
Lσ2

n(η + 1), 2Lσ4
n(2η + 1)

)

The conventional energy detector based single threshold λ
can be calculated by fixing the probability of false alarm

(P (H1 | H0)), denoted as Pfai . Applying the Neyman-

Pearson Hypothesis testing criterion [12], the threshold can

be expressed as

λ =
√

2Lσ4
nQ

−1(Pfai) + Lσ2
n

For double threshold detection, an ambiguity region of width

Δth, around the threshold can be defined as shown in figure

1.
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Fig. 1. Ambiguity region in null and alternate hypothesis

Figure 1 shows the generalized scenario, where normalized

ambiguity region width Δ is expressed as

Δ =
Δth

λ

The two threshold λ1 and λ2 can now be expressed as,

λ1 = λ

(
1− Δ

2

)

λ2 = λ

(
1 +

Δ

2

)
Finally, based on the occurance of the test statistic Ti(x) in

the regions as shown in figure 1, the corresponding double

threshold based energy detection rule is expressed as:

Ti(x) ≥ λ2 :H1(presence of primary user, R1)

Ti(x) ≤ λ1 :H0(absence of primary user, R0)

λ1 < Ti(x) < λ2 : no decision(Rx)

After detection process, the hard decisions[3], i.e., whether

primary user is absent or present, from the local CR sensors is

reported to a central fusion center. Here we assume that local

sensors also inform the fusion center about their undecided

state when the test statistics fall in the ambiguity region. The

fusion center neglects such local sensors in the final decision

making and only fuses the data from those local CR sensors

which without uncertainty decide for H1 or H0. The fusion

rule can be either AND, OR or Majority rule; in this paper

we limit our analysis to majority rule only.



III. AMBIGUITY-REGION ANALYSIS

Since the test statistic of any local CR sensor can fall in

ambiguity region, we assume that at a particular sensing phase

only K out of N sensors are effective as rest N −K sensors

report “no decision” to the fusion center. Next for each local

CR sensors the probability of false alarm and probability of

detection are respectively given by,

Pfa =

∫ ∞

λ2

P (Ti(x) | H0) dx = Q

(
λ2 − Lσ2

n√
2Lσ4

n

)
(1)

Pd =

∫ ∞

λ2

P (Ti(x) | H1) dx = Q

(
λ2 − Lσ2

n(η + 1)√
2Lσ4

n(2η + 1)

)

(2)

Similarly, probability of misdetection and probability of cor-

rect decision of absence of primary user respectively are given

by,

Pmd =

∫ λ1

−∞
P (Ti(x) | H1) dx = 1−Q

(
λ1 − Lσ2

n(η + 1)√
2Lσ4

n(2η + 1)

)

(3)

Pc =

∫ λ1

−∞
P (Ti(x) | H0) dx = 1−Q

(
λ1 − Lσ2

n√
2Lσ4

n

)
(4)

The probability that a sensor makes no decision, i.e., the test

statistic Ti(x) of the sensor lies in the ambiguity region Rx,

assuming H0 is true is given by

PL0 =

∫ λ2

λ1

P (Ti(x) | H0) dx

= Q

(
λ1 − Lσ2

n√
2Lσ4

n

)
−Q

(
λ2 − Lσ2

n√
2Lσ4

n

)
(5)

Similarly assuming H1 is true, the probability that a sensor

makes no decision is given by

PL1 =

∫ λ2

λ1

P (Ti(x) | H1) dx

= Q

(
λ1 − Lσ2

n(η + 1)√
2Lσ4

n(2η + 1)

)
−Q

(
λ2 − Lσ2

n(η + 1)√
2Lσ4

n(2η + 1)

)

(6)

Assuming only K out of N number of CR sensors report a

non-ambiguous decision to the fusion center (i.e., K number

of sensors are effective), a decision of H1 is made when

• Exactly (N − K) number of CR sensors’ test statistic

Ti(x) lies in ambiguity region Rx as shown in figure 1.

• Atleast
⌈
K
2

⌉
number of CR sensors’ test statistic Ti(x)

lies in region R1.

• Rest of the other CR sensors’ test statistic Ti(x) lies in

region R0.

TABLE I
EXPRESSIONS FOR P

′
fa FOR N = 4

K P
′
fa = P (H1 | H0)

0 P 4
L0 × 1

1
(4
1

)
(PL0)

3 × Pfa

2
(4
2

)
(PL0)

2 ×∑1
k=0

(2
k

)
P 2−k
fa Pk

c

3
(4
3

)
(PL0)×

∑1
k=0

(3
k

)
P 3−k
fa Pk

c

4 (PL0)
0 ×∑2

k=0

(4
k

)
P 4−k
fa Pk

c

TABLE II
EXPRESSIONS FOR P

′
md FOR N = 4

K P
′
md = P (H0 | H1)

0 P 4
L1 × 0

1
(4
1

)
(PL1)

3 × Pmd

2
(4
2

)
(PL1)

2 × P 2
md

3
(4
3

)
(PL1)×

∑1
k=0

(3
k

)
P 3−k
md Pk

d

4 (PL1)
0 ×∑1

k=0

(4
k

)
P 4−k
md Pk

d

Hence the cooperative probability of false alarm P
′
fa(K) when

K number of CR sensors are effective is given by

P
′
fa(K) =

(
N

N −K

)
(PL0)

N−K ×
�K

2 �∑
k=K

(
K

k

)
P k
faP

K−k
c

=

(
N

K

)
(PL0)

N−K ×
K−�K

2 �∑
k=0

(
K

k

)
PK−k
fa P k

c (7)

Similarly, assuming K out of N number of CR sensors are

effective, a decision of H0 is made when

• Exactly (N − K) number of CR sensors’ test statistic

Ti(x) lies in ambiguity region Rx .

• Atleast
(⌊

K
2

⌋
+ 1

)
number of CR sensors’ test statistic

Ti(x) lies in region R0.

• Rest of the other CR sensors’ test statistic Ti(x) lies in

region R1.

Hence the cooperative probability of misdetection P
′
md(K)

when K number of CR sensors are effective is given by

P
′
md(K) =

(
N

N −K

)
(PL1)

N−K ×
�K

2 	+1∑
k=K

(
K

k

)
P k
mdP

K−k
d

=

(
N

K

)
(PL1)

N−K ×
K−�K

2 	−1∑
k=0

(
K

k

)
PK−k
md P k

d

(8)

Here K takes values from {0, 1, ..., N}. Pfa, Pd, Pmd and Pc

are given respectively by (1)-(4) and PL0 and PL1 are given

by (5) and (6) respectively.

An example for the expressions of all the cooperative

metrics assuming N = 4 are shown in tables I and II.

IV. SENSING ERROR RATE VS. AMBIGUITY-REGION

All the cooperative probabilities expression derived in the

previous section are function of the number of effective sensors



making decisions K, which takes values from {0, 1, ..., N}.

Thus, the average probability of sensing error can be expressed

as,

Peavg
= αPav(H0 | H1) + (1− α)Pav(H1 | H0)

= αPmdav
+ (1− α)Pfaav

(9)

where Pmdav = Pav(H0 | H1) is defined as average prob-

ability of misdetection; Pfaav
= Pav(H1 | H0) is defined

as average probability of false alarm; and α denotes the

probability that the primary user is present, i.e., the probability

of occupancy of the channel by the primary user, α = P (H1).
Further, since the cases of different values of K are mutually

exclusive and the corresponding cooperative probability of

false alarm and cooperative probability of misdetection for

each of the cases are given by P
′
fa(K) and P

′
md(K) respec-

tively, the average probability of misdetection and average

probability of false alarm can be expressed as the sum of the

probabilities for each cases:

Pmdav =

N∑
K=0

P
′
md(K) (10)

Pfaav
=

N∑
K=0

P
′
fa(K) (11)

Substituting the expression of Pmdav
and Pfaav

in (9) the final

expression for sensing error can be expressed as:

Peavg =αPmdav + (1− α)Pfaav

=α

N∑
K=0

P
′
md(K) + (1− α)

N∑
K=0

P
′
fa(K) (12)

It can be observed from equation (12) that the average proba-

bility of sensing error is a function of Δth for some constant

values of SNR η, Pfai
and number of sensing samples L.

Thus the probability of sensing error can be minimized when

an optimal value of Δth is used at every local sensors.

V. SIMULATION AND RESULT

A cooperative cognitive radio system is simulated taking

N = 4 number of CR sensors. The sensing channel, i.e., the

channel between PU and CR sensors is assumed to be Rayleigh

distributed fast fading channel. The PU signal is taken as

BPSK modulated with probability of occupancy of channel as

P (H1) = α = 0.5. The channel coefficients observed by the

CR sensors are assumed to be uncorrelated. The probability of

false alarm for each of the CR sensors, Pfai is set to obtain

the conventional single threshold λ. Then a variable width of

ambiguity region, Δth is taken for the CR sensors. The sensors

report their decision along with the situation in which the

sensed energy falls in the ambiguity region through a reporting

channel to the fusion center using 2 bit hard decision as shown

in the table below.

Decision Hard decision bits

H0 00

H1 11

No decission 01 or 10
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P
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Peavg(theory)

Pfaav(theory)

Fig. 2. Peavg and Pfaav vs Δ for L = 500, η = −10dB and Pfai
= 0.2

The reporting channel, for simplicity is assumed to be perfect.

The fusion center then fuses the decisions from the CR sensors

using the Majority rule to obtain the final decision.

Now, for different values of SNR η, at the CR sensor front

end, number of sensing samples L and probability of false

alarm for each of the CR sensors Pfai , average probability of

false alarm Pfaav
and the average probability of sensing error

Peavg
are plotted as a function of Δ. The theoretical values

are obtained from equation (11) and (12) respectively. Figure 2

shows the plot of Peavg and Pfaav vs Δ for number of sensing

samples L = 500, SNR at CR sensor front end η = −10dB

and probability of false alarm Pfai
= 0.2. Figure 3 shows the

plot of Peavg
and Pfaav

vs Δ for number of sensing samples

L = 1000, η = −12dB and Pfai
= 0.15. Figure 4 shows the

plot of Peavg
and Pfaav

vs Δ for number of sensing samples

L = 2000, η = −10dB and Pfai = 0.05.

The following inferences can be made from the simulated

plots:

• The theoretical and simulated plots overlap each other

assuring correctness of the theory.

• There exists an optimum value of Δ for which the sensing

error is minimum.

• The values of Peavg
and Pfaav

at Δ = 0 are the values

for conventional single threshold scheme.

• The optimum value of Δ is a function of the number of

sensing samples L, SNR η and initial probability of false

alarm Pfai .

From the plots of figure 2, 3 and 4 it can be observed that

an optimum value of Δ and hence Δth can be obtained by

putting some constraints on Pfaav
. For example, let us assume

a constraint on Pfaav
as

Pfaav
≤ Pfa0

where Pfa0
is the cooperative probability of false alarm for

Δ = 0, i.e., the cooperative probability of false alarm when

double threshold scheme is not used. Or in other words, a

restriction is put on the average probability of false alarm that
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Fig. 3. Peavg and Pfaav vs Δ for L = 1000, η = −12dB and Pfai
= 0.15
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Fig. 4. Peavg and Pfaav vs Δ for L = 2000, η = −10dB and Pfai
= 0.05

it cannot exceed the value of cooperative probability of false

alarm for single threshold scheme, which is given by

Pfa0 =

N−�N
2 �∑

k=0

(
N

k

)
PN−k
fai

(1− Pfai)
k

Hence the final optimization problem is simplified to

minimize
Δ

Peavg

subject to Pfaav
≤ Pfa0

(13)

By solving this optimization problem an optimum value of Δth

can be obtained for a particular value of number of sensing

samples L, SNR η and initial probability of false alarm Pfai
.

VI. CONCLUSION

Hence in this paper the double threshold energy detection

technique in cooperative spectrum sensing scenario is rein-

vestigated. An analytical expression for probability of sensing

error is found out using majority fusion rule at the fusion

center as an example. The analytical expression and simulation

results confirms that there exists an optimal value of Δth for

which the probability of sensing error is minimum. Finally

a simple optimization problem (13), is formulated subject to

a nonlinear constraint on average probability of false alarm

Pfaav
solving which the expression for the optimum width of

the ambiguity region can be obtained.
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