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Abstract: The authors investigate the problem of 
channel equalisation in the presence of co-channel 
interference (CCI), intersymbol interference and 
additive white gaussian noise. The optimal 
Bayesian decision feedback equaliser decision 
function for this problem is derived and an 
elegant fuzzy implementation of the optimal 
solution is proposed. This fuzzy implemented 
equaliser is able to provide performance close to 
the optimal equaliser with a substantial reduction 
in computational complexity. The equaliser 
consists of a fuzzy equaliser with an input 
processing block for co-channel compensation. 
This preprocessor can be used under severe-to- 
moderate CCI and can be removed under low 
CCI conditions. Simulation studies demonstrate 
the performance of the fuzzy equaliser developed. 

I 

1 Introduction 

The demand for cellular mobile communication has 
been increasing rapidly in the last decade. With the lim- 
itation on the available signal spectrum, one of the 
ways to incorporate more users is to reduce cell size, 
increasing frequency reuse. With this, there is rise in 
interference from the users of one cell to the users in 
another cell using the same carrier frequency and is 
termed co-channel interference (CCI). Communication 
systems also suffer from the effects of intersymbol 
interference (ISI) due to nonideal channel characteris- 
tics and additive white gaussian noise (AWGN) [l]. 
The problems of CCI, IS1 and AWGN are encountered 
in digital cellular radio [2], dual-polarised microwave 
radio [3] and twisted-pair subscriber loops [3, 41 to 
name a few. The equaliser present in the receiver 
should be capable of compensating these effects with 
limited computational complexity [5]. 

The equaliser that can provide the minimum bit error 
rate (BER) under one or more of above conditions is 
called the maximum likelihood sequence estimator 
(MLSE) [6]. The MLSE, although very effective in 
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combatting these problems, suffers from a large com- 
putation requirement. The optimum solution for the 
symbol-spaced equalisers can be derived from maxi- 
mum a posteriori probability and is termed Bayesian 
equalisers. The Bayesian equaliser can be implemented 
using a feedforward or feedback structure [7]. When 
feedback is employed the equaliser is termed the Baye- 
sian decision feedback equaliser (DFE). A conventional 
DFE [5] with linear filters tries to approximate the per- 
formance of the Bayesian DFE. These equalisers can 
perform satisfactorily for channels corrupted by IS1 
and AWGN. But in the presence of CCI they suffer 
from performance degradation by treating CCI as addi- 
tive noise and exploiting spectral characteristics for 
equalisation. The CCI can be treated as cyclostationary 
in nature and linear fractionally spaced DFE can be 
used [2, 81 to overcome the problem with limited suc- 
cess. The satisfactory performance of these equalisers is 
limited to the condition of low AWGN with moderate 
CCI or vice versa. Equalisation in general is a nonlinear 
problem and hence nonlinear equalisers using artificial 
neural networks (ANN) [9, 101 and radial basis func- 
tion (RBF) networks [ l l ,  121 have been shown to pro- 
vide superior performance to linear equalisers for 
channels corrupted with IS1 and AWGN. In case of 
channels with CCI similar attempts have also been 
made to successfully design nonlinear equalisers using 
RBF [13], ANN [14, 151 and polynomial perceptron 
[16]. However, in most of these studies either the co- 
channel power or the channel noise power has to be 
low for satisfactory performance. 

In a recent study Chen et al. [17] proposed a Baye- 
sian DFE that incorporates CCI compensation (Baye- 
sian CCI-DFE), providing the optimum solution for 
the symbol-spaced architecture. However, an MLSE 
incorporating CCI compensation can provide better 
performance but would be computationally very expen- 
sive and difficult to design owing to the difficulty in 
estimating the co-channel without a training signal. 
The equaliser proposed in [17] outperforms MLSE that 
treats CCI as noise, under severe to moderate CCI. 
This equaliser is still computationally complex and the 
complexity grows if there is more than one co-channel. 
In recent years, fuzzy systems have been successfully 
used for equalisation [18-211. In a earlier study [22], we 
proposed fuzzy implemetation of Bayesian equalisers. 
This equaliser uses scalar channel states instead of vec- 
tor channel states used by RBF equalisers. The use of 
scalar channel states reduces the computational com- 
plexity in implementation. Additionally the use of sca- 
lar channel states provides a scheme for subset states 
selection reducing the computational complexity even 
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further. The advantages of using scalar channel states 
motivated us to use these structures for equalisation of 
channel corrupted with CCI [23]. In this paper we pro- 
pose a technique to implement the Bayesian CCI-DFE 
with fuzzy systems which use scalar channel states and 
scalar co-channel states. This equaliser provides near 
optimal performance but its computation complexity is 
comparable to the Bayesian DFE that treats CCI as 
noise (Bayesian DFE). The equaliser is also able to 
equalise channels with more than one co-channel with- 
out a substantial rise in computational complexity. 

I 

I 
I i 

training signal 
S O W )  

Fig. 1 
interference 

Discrete time model of cornmunicution system with eo-channel 

2 System model 

The discrete-time model of the communication system 
discussed in this paper is presented in Fig. 1. This 
model is widely used to represent a communication sys- 
tem corrupted with CCI, IS1 and AWGN [3]. Here 
Ho(z) is the channel transfer function which is cor- 
rupted with n interfering co-channels Hj(z) with 1 5 i 5 
TI. The impulse response of the channels and the co- 
channels can be represented as 

P ,  -1 

Hz(z)  = a;& 0 5 2 5 n (1) 
j = O  

Here p 2  and ai,j are the length and tap weights of ith 
channel impulse response. We assume a binary commu- 
nication system which would make the analysis simple, 
though it can be extended to any communication sys- 
tem in general. The transmitted symbols si@), 0 I i I; n 
for the channel and co-channels are drawn from a set 
of independent, identically distributed (IID) dataset 
comprising of { cl } and are mutually independent. 
They satisfy the condition 

E[sz(kj]  = 0 (2) 

( 3 )  E [S%(kI)Sj(k2)] = b(i - j ) J ( k l  - k 2 )  

where E[.] denotes the expectation operator and 

1 k = O  i 0 k # 0  6(k) = (4) 

The channel output scalars can be represented as 

Here i ( k )  is the desired received signal, ?,,(k) is the 
interfering signal and ~ ( k )  is the noise component. The 
noise q(k) is assumed to be Gaussian with variance 
4q2(k)]  = oq2 and is uncorrelated with the data. The 
desired and the interfering signal can be represented as 

r ( k )  = F(k )  + FCO(k) + rl(k) (51 

Po--l  

n P , - 1  

P c o ( k )  = az,3s,(k - 3 )  (7) 
Z Z 1  3=0 

With this the signal-to-noise ratio (SNR), signal-to- 
interference ratio (SIR) and signal-to-interference noise 
ratio (SINR) as defined as 

( 8 )  
n2 S N R =  2 

(9) 

The task of the equaliser depicted in Fig. 1 is to esti- 
mate the transmitted sequence so(k - d) based on the 
channel observation vector r(k) = [r(k), r(k - l), ... r(k 
- m + l)]? Here m is the order of the equaliser and d is 
associated detection delay. During the initialisation 
period called training, a copy of the transmitted 
sequence so(k) is available locally at the receiver for the 
equaliser to update its parameters. During the actual 
data transmission the equaliser updates its parameters 
in a decision directed mode. However, the equaliser 
does not have access to the transmission sequence s,(k), 
1 s i I; n of the co-channels. 

In a DFE implementation the past decisions of the 
equaliser are fed back to the equaliser as shown in 
Fig. 2. This equaliser uses the information contained in 
the observed channel output vector r(k) and the past 
detected symbol vector 

Sf(k) = [s^o(k - d - l),s^o(k - d - a), 
T 

. . . ,s^o(k - d ~ 4 ) ]  

(11) 
to produce the estimate io(k - d). Here q is the equal- 
iser feedback order. Without loss of generality, we can 
select [7] d = po  - 1 to cover the entire channel disper- 
sion with m = d + 1 = p o  and q = p o  + m ~ d - 2 = 
Po - 1. 

Fig. 2 Schematic of DFE 

3 

The optimal decision function for a Bayesian equaliser 
in the presence of IS1 and AWGN can be derived by 
Bayes probability theory [24] and can be expressed as 

Bayesian DFE in presence of CCI 

[71 

(12) 
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Here r(k) represents the equaliser input vector, 0; rep- 
resents the channel noise variance, ct € Rm and C J  € 
Rm are the noise-free received signal vectors corre- 
sponding to so(k - d) = +1 and so(k - d) = - 1, respec- 
tively, and are called channel states. For convenience, 
we term cf and C J  as positive and negative channel 
states, respectively. The terms n,' and n; are the 
number of positive and negative channel states, respec- 
tively, and they are equal. With the assumption of 
binary transmission the sign of the decision function in 
eqn. 12 is sufficient to provide the decision and scaling 
terms can be ignored. With this, the decision function 
can be represented as 

where n, is the number of channel states, equal to 
2Pm-l with n$ = n; = nJ2, wi are the weights associ- 
ated with each of the centres. wi = +1 if ci E n,' and w i  
= -1 if ci E n;. The estimate of the symbol from the 
memoryless detector is 

However, when decision feedback is employed the feed- 
back vector GAk) can assume one of nf = 24 states, and 
the equaliser forms the decision based on nshf channel 
states for each of the feedback states. Thus the n, chan- 
nel states in eqn. 13 can be grouped into nf subsets 
based on the feedback states, with each of the feedback 
states containing nsf states. 

n, 

Here U represents the union operation with j corre- 
sponding to the feedback state and I corresponding to 
the channel state in each of the feedback states. The 
vector c: is the channel state I corresponding to the 
feedback state j .  With this the equaliser decision func- 
tion can be represented as 

(16) 
To derive the decision function of Bayesian CCI-DFE 
we assume that there is only one interfering co-channel. 
If there are more the same analysis can be extended. In 
the presence of CCI the interfering signal rco(k) = 
[v,,(k), v,,(k - l), ..., v,,(k - m + 1)IT will have ns,co = 
2Vm-l co-channel states cco,[, where 1 I Is nf,co corre- 
sponding to each of the channel states. The presence of 
the co-channel states will modify the decision function 
as 

. fDFE,CCI (r(k)(gf(k) s') 

,, i=l k 1  

This forms the optimum solution for a symbol-spaced 
DFE decision function when the channel is corrupted 
with CCI, IS1 and AWGN. 
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3.1 Normalised Bayesian DFE with scalar 
channel states 
The Bayesian equaliser presented in eqn. 13 can be 
expressed in another form with the scalar channel 
states. Each of the n, channel states ci E Rm of the 
equaliser decision function has m components taken 
from a set of MO = 2J'o scalar channel states. Expanding 
the vectors in the square norm of eqn. 13 as a product 
of scalar exponential 

(18) 
here cil is the (1 + 1)th component of channel state vec- 
tor ci corresponding to the ( I  + 1)th component of the 
input vector r(k). This Bayesian equaliser decision func- 
tion can also be represented in a normalised form in 
line with the normalised RBF [25] 

(19) 
The Bayesian equaliser described by eqn. 13 can be 
implemented with an RBF network and the equaliser 
described by eqn. 19 can be implemented with normal- 
ised RBF [26] or fuzzy systems [22]. The advantage of 
the implementation of the decision function in eqn. 19 
lies in its computational simplicity [22]. 

A DFE form of the NBEST can be represented as 

f D F E ( r ( k ) l e f ( w  = S J )  

Here c t  corresponds to the I + 1 component of the 
vector channel state ci and o has been added for con- 
venience to represent the exact scalar state involved in 
vector state calculation, corresponding to the feedback 
state j ,  where 1 5 j s ny In the presence of CCI the 
Bayesian DFE with scalar channel states can be pre- 
sented as 

(21) 
Here c,",~ corresponds to the ( I  + 1) component of vec- 
tor co-channel state cco,m The scalar a corresponds to 
the specific co-channel state being considered. Like the 
channel states the scalar co-channel states are taken 
from a set of M I  = 2P1 scalar co-channel states. The 
equaliser presented in eqn. 17 and its normalised form 
(eqn. 21) provide the same decision function but the 
equaliser in eqn. 21 can be implemented with lower 
computational complexity as it can take advantage of 
the regular array of the channel states and the time 
shifting property of the equaliser input. 

A comparison of the computational complexity of 
the equalisers is presented in Table 1. It is evident that 
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the normalised form of Bayesian equaliser with scalar 
states uses a smaller number of additions, divisions and 
exponential functions with a slight increase in multipli- 
cation operations with respect to the Bayesian equaliser 
decision function using vector channel states. 

Table 1: Computational complexity comparison for alter- 
nate implementation of Bayesian DFE with CCI, IS1 and 
AWGN 

Bayesian CCl-DFE Computation NBEST DFE with 
(eqn. 17) aspects CCI (eqn. 21) 

2mn,fnR,,, addition n,ins,co + MOM1 
mRSfk ,co  multiplication mnsrns,co + MOM1 

~ S f ~ S , C O  exponential MOM1 

nsfnsco + 1 division MOMl + 1 

4 

We have derived the Bayesian DFE decision function 
for channels with CCI, IS1 and AWGN in Section 3. 
The Bayesian equaliser implemented with scalar chan- 
nel states can provide the same decision function with a 
substantial reduction in computational complexity. The 
equalisers in eqns. 17 and 21 use n,Jn,,, channel states 
in decision function. However, in the presence of two 
or more co-channels the number of channel states in 
the decision function increases by a factor equal to the 
number of co-channel states for each co-channel. The 
NBEST can be implemented with fuzzy systems [22]. 
For this implementation the Bayesian equaliser in 
eqn. 20 can be represented as 

Fuzzy implementation of Bayesian CCI-DFE 

where 

The DFE presented in eqns. 22 and 23 represents a 
fuzzy system with gaussian membership function 

(eqn. 23), product inference, Singleton’s fuzzifier and 
centre of gravity defuzzifier [27]. Modification of the 
membership function to 

cu=o I 

can provide a powerful tool to compensate CCI. Here 
A refers to the maximum of the exponential function 
for different values of a ranging from 0 to M I  - 1. In 
this membership function equation o is the spread 
parameter to be optimally selected. This membership 
function equation finds the maximum of the member- 
ship function with scalar co-channel states correspond- 
ing to each of the scalar channel states and is used to 
find the equaliser decision function given by eqn. 22. In 
implementation this membership function can be evalu- 
ated with the following function with a substantial 
reduction in computational complexity: 

Here v performs minimum operation to find the small- 
est absolute distance for values of a ranging from 0 to 
M I  - 1. The schematic of the co-channel equaliser with 
fuzzy implementation is shown in Fig. 3. Here the 
input scalar is fed to the membership function genera- 
tor which arc centred at the scalar channel states. The 
output of the membership function generator is delayed 
and this forms the membership function for previous 
received signal samples. The product block has nJf sub- 
blocks and each of these sub-blocks receive member- 
ship functions from one of the centres corresponding to 
each input scalar. These membership functions arc suit- 
ably combined to provide the modified channel state 
output. The membership function generators consist of 
MO membership function sub-blocks. Each of the 
sub-blocks has M I  centres. The closest centre to the 
corresponding input scalar provides the membership 
function to the product block. The product blocks 
corresponding to the positive and the negative channel 

~ 

Fig. 3 Schematic of fuzzy co-channel equalisev 
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states are suitably combined to provide the equaliser 
output. 

To study the effectiveness of fuzzy equaliser in CCI 
compensation consider a channel with impulse response 

HchO(2) = 0.5 + 2-l 

Hchl(Z) = X ( 1  + 0.22-1) 

(26) 

(27) 

corrupted with CCI from the channel 

The SIR can be varied by varying the factor A. We 
observe the decision boundaries for the equalisers with- 
out decision feedback for SNR of 15dB under SIR of 5 
and lOdB which correspond to SINR = 4.586dB and 
SINR = 8.8067dB, respectively. The decision boundary 
provided by the Bayesian CCI equaliser and the fuzzy 
CCI equalisers is plotted in Fig. 4. From the decision 
boundaries it is observed that CCI compensation is 
essential at 5dB SIR but not essential at lOdB SIR in 
this problem. However, fuzzy co-channel equaliser pro- 
vides near optimal decision boundary with only eight 
channel states in comparison to Bayesian CCI equaliser 
using 64 channel states. 

-2 -1 0 1 2 

r(k) 
a 

1 

-2 

r(k-I) 

-2 1 0 1 2 

r(k) 
b 

Fi .4  Comparison of decision boundary formed by fuzzy CCI equaliser 
an?Bayesian CCI equaliser with channel Hi),o(z) = 0.5 + 2' and co-chan- 
ne1 Hchl(z) = I + 0.22' 
U SIR = 5dB 
b SIR = lOdB 
~-~~ fuzzy CCI equaliser 

optimum (Bayesian) CCI equaliser 

4.1 Adaptive implementation 
The fuzzy CCI-DFE discussed can be trained in two 
steps. The first step in training involves estimation of 
the scalar channel and scalar co-channel states and the 
second step involves learning weights with the LMS 
algorithm. 
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4. I. I Step I .  Determination of channel and co- 
channel states: The scalar channel and scalar co- 
channel states of the equaliser can be estimated by a 
clustering algorithm. The scalar channel states can be 
determined from the noisy received scalars with the 
help of a training signal via a supervised clustering 
algorithm. The noise and co-channel state being zero 
mean, their effect will cancel in the process of channel 
state estimation. The SINR can also be estimated dur- 
ing this period. The scalar channel states estimated, 
along with the training signal sequence producing 
them, can be arranged to form the vector channel 
states [17]. Once the channel states have been, deter- 
mined the channel residue rr&) = r(k) - c i  ( c i  is the 
scalar channel state) arising from the CCI and AWGN 
can be used to estimate co-channel state and noise var- 
iance with an unsupervised clustering algorithm such as 
k-means or improved k-means [ 171. 

4.7.2 Step 2. Weight training: On completion of 
the channel and co-channel scalar state estimation, the 
equaliser can be constructed (Fig. 3). The initial 
weights w i  of the equaliser can be assigned as +1 if ci E 
n,' else they can be assigned as -1. The LMS algorithm 
can be used to fine tune the equaliser weights so as to 
reduce the error at the equaliser output due to error in 
the channel states estimate. 

4.2 Advantages of fuzzy implementation of 
Bayesian CCI-DFE 
The advantages of fuzzy CCI-DFE over Bayesian 
CCI-DFE (eqn. 17) are as follows: 

The fuzzy CCI-DFE can provide the near optimal 
decision function with substantial reduction in compu- 
tational complexity. The computational complexity of 
this equaliser is compared with Bayesian CCI-DFE 
and Bayesian DFE in Table 2. 

Table 2: Computational complexity comparison of Baye- 
sian CCI-DFE, Fuzzy CCI-DFE and Bayesian DFE 

Computation Bayesian CCI. Fuzzy CCILDFE Bayesian DFE 
aspects DFE (eqn. 17) (eqns. 22, 25)  (eqn. 16) 

Addition 2mnSfn,,, n,f+ MOM, 2mnsf 

Multiplication mnSfns,,, mn*,+ MO mnsf 

Division nsfns,co + 1 MO + 1 4, 
Exponential nsfns,, MO nsf 

The fuzzy CCI-DFE (eqn. 22) uses the fuzzy equal- 
iser with a modified membership function preprocessor. 
This makes it very flexible. The co-channel compensa- 
tion module can be introduced when the SIR drops 
below acceptable limits. 

The scalar channel and co-channel states provide a 
suitable method to find the condition under which co- 
channel compensation is not essential. This condition 
can be represented as 

2=M0-2  
j z M o - 1  Mi v (cz - C j )  2 2 A C c 0 , k  (28) 

*=o k=O 
3 = .  

In this inequality, the left-hand side represents the 
smallest distance between any two scalar channel states 
and the right side represents the maximum scalar co- 
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channel state corresponding to any channel state. If 
this condition is not true then co-channel compensation 
may be required. 

Training the fuzzy CCI equaliser is much simpler as 
it uses scalar unsupervised clustering for the co-channel 
state estimate. Whereas Bayesian CCI-DFE will 
require unsupervised vector clustering for co-channel 
states estimation, unsupervised vector clustering 
requires a longer training sequence and its performance 
cannot be guaranteed. 

5 Simulation results 

For the purpose of validation of the fuzzy CCI-DFE 
developed in the preceding sections extensive simula- 
tions were carried out. We considered the following 
channel and co-channel models for simulation: 

(29) 

(30) 
In the simulations SIR was set to 5 and 10dB. The 
BER was considered as the parameter for evaluation of 
equaliser performance. The transmitted signal constel- 
lation was set to {+1] keeping the transmitted power 
unity. In all the simulation studies the DFE parameters 
were set to m = 3, d = 2 and q = 2, and the detected 
symbols were fed back to the equaliser input. 

Hch(z)  = 0.3482 + O.8704zY1 + 0 . 3 4 8 2 ~ ~ ~  

H, ,~ ( z )  1 X(0.5 + 0 . 8 1 ~ ~ '  + 0 . 3 1 ~ ~ ~ )  

1 

-2 

[r W 
m 
0 -3 ... 
cn - 

was set to 0; + oZa (estimated from the supervised 
clustering algorithm) whereas for 5dB SIR the fuzzy 
CCI-DFE spread cs was set to estimated 0; (estimated 
from the unsupervised clustering algorithm). The scalar 
channel and co-channel states for the fuzzy equalisers 
were estimated with 500 training samples averaged over 
50 experiments. The equaliser weights were trained 
with 500 training samples averaged over 20 experi- 
ments. The BER performance of the equalisers is pre- 
sented in Fig. 5. From the BER performance of the 
equalisers, it is seen that under severe CCI conditions 
( 5 ,  10dB) the fuzzy CCI-DFE performs close to the 
optimal BER, whereas the the Bayesian DFE which 
treats CCI as noise fails, even though both structures 
use the same number of channel states. From further 
simulations for SIR = 15dB (results not presented here) 
it was observed that the performance of all the equalis- 
ers is almost the same. Hence at this low SIR, compen- 
sation of the CCI is not essential. 

0 I I I I I I I I 

-1 

[r -2 
m 
w 
0 

m 
7 

-3 
- 

-4 

. .  . 
' )  

-5 I I I 1 . 1  I I 

0 10 20 30 40 

SNR, dB 
Fig. 6 Fuzzy CCI-DFE BERperjormance with two eo-channels, CCI = 
5, 10, 15dB with channel HchO(z) = 0.3482 t 0.87042' + 0.3482z2, co- 
channel l H (z )  = h(0.5 t 0.812' + 0 . 3 1 ~ ~ )  and co-channel 2 Hch2(z) = 
h,(0.5 + 
-0- Bayesian DFE 
..+.... fuzzy CCI-DFE 

I I I I I \  

0 10 20 30 
SNR, d 0  

Fi .5 BER per ormunce for d8erent equalisers under SIR = 5 , l0dB 
w i z  channel f$,zOL) = 0.3482 f 0.87042' + 0.3482z2, eo-channel Hchi(z) 
= 0.5 + 0.812 + 0 . 3 1 ~ ~  with estimated channel and co-channel states 
-0- Bayesian CCI-DFE 
--..+..-- Bayesian DFE 
- -E - fuzzy CCI-DFE 

The BER performance of the Bayesian CCI-DFE 
(eqn. 17), Bayesian DFE (treating CCI as noise) 
(eqn. 16), fuzzy CCI-DFE (eqn. 22 with eqn. 25) were 
compared. The Bayesian CCI-DFE uses 256 of the 
available 1024 channel states whereas the other equalis- 
ers use only eight out of 32 channel states to estimate 
each of the samples. The channel states were estimated 
with supervised clustering algorithm and the co-channel 
states were estimated with unsupervised k-means clus- 
tering. The performance of the fuzzy CCI-DFE and 
the Bayesian DFE are compared with the optimal 
Bayesian CCI-DFE. Perfect knowledge of channel 
states, co-channel states and noise statistics were 
assumed for the Bayesian DFE and the Bayesian 
CCI-DFE. For SIR of lOdB the spread parameter o 
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A further experiment considered the performance of 
the fuzzy equaliser in a channel corrupted with two co- 
channel interferers. The same system model as used in 
previous examples was considered. Here the second co- 
channel impulse response was assumed to be Hcoz(z) = 
AI(l.O + 0.22'). The co-channel weights iL and A, were 
adjusted to divide the co-channel power equally 
between the two co-channels. The optimal Bayesian 
CCI-DFE for this problem would involve evaluation 
of 4096 out of 16348 channel states and was not simu- 
lated owing to its impracticability of implementation. 
We compare the BER performance of the fuzzy 
CCI-DFE and the Bayesian DFE under CCI of 5,  10 
and 15dB. The actual number of scalar co-channel 
states in this problem is 2Pl  * 2Pz  = 32. In the simulation 
studies only eight co-channel states were estimated. The 
BER performance of the fuzzy CCI-DFE and Bayesian 
DFE is presented in Fig. 6. From the simulation results 
it is seen that the fuzzy CCI-DFE fails under severe 
CCI (SIR = 5dB) with multiple co-channels. But under 
moderate CCI (SIR = 10dB) it is able to perform bet- 
ter than the Bayesian DFE using the same number of 
channel states. The Bayesian DFE fails to provide a 
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BER of better than even under infinite SNR, but 
the fuzzy CCI-DFE BER performance shows improve- 
ment with an increase in SNR. However, under 15dB 
SIR the effect of co-channel compensation is minimal 
and the fuzzy CCI-DFE performs only marginally bet- 
ter. 

To investigate the effect of the number of estimated 
co-channel states on fuzzy equaliser BER performance, 
the number of scalar states in the unsupervised cluster- 
ing algorithm was varied and the equaliser BER per- 
formance was evaluated. The performance of the fuzzy 
CCI-DFE for 4, 8, 16 and 32 co-channel states, for 
SIR = lOdB is presented in Fig. 7. It is seen that 
assuming a very small number of co-channel states 
degrades the equaliser performance substantially. With 
the assumption of 8, 16 or 32 co-channel states, the 
performance tradeoff is small. However, the perform- 
ance of the equaliser with fewer number of co-channel 
states is nearer to the Bayesian DFE as seen from 
Fig. 7 in conjunction with Fig. 6. 

0 ,  I I I I I I I I . .  

1 

U -* 
3 
- 8 
P 

-3 

-4 

’ 7 . .  . .  . .  
I I I 1 I I j h, -5 

0 10 20 30 40 
SNR, dB 

Fig. 7 Effect of number of co-channel clusters on fuzzy CCI-DFE per- 
formance for CCI = 10dB with channel IR Heho(z) = 0.3482 + 0.8704~‘ + 
0.3482z2, co-channel 1 IR H (z)  = 0.5 -t 0 . 8 1 ~ ‘  + 0 . 3 1 ~ ~  and co-chan- 
ne1 2 IR Heh2(z) = 0.5 + I d h ’  
-0- co-channel states = 4 
....+-.. co-channel states = 8 
- -0- - co-channel states = 16 
.... x .... co-channel states = 32 

In the earlier Section we stated the condition which 
under which CCI compensation is not essential 
(eqn. 28). The scalar co-channels are estimated by 
unsupervised clustering and in low SNR conditions the 
estimation of the scalar co-channel states is not accu- 
rate. From the simulation studies we found the follow- 
ing rule to determine the necessity of implementing 
CCI compensation. 

The scalar co-channel states can be determined with 
an assumption of p 1  = 1 and p 1  = 3 (PI > 3 does not 
provide much performance improvement). This would 
provide Ml = 2 and Ml = 8 scalar co-channel states, 
respectively. 

If the scalar co-channel for M I  = 2 is less than half 
the distance between the closest scalar channel states, 
co-channel compensation is not necessary. Otherwise 
the scalar co-channel states estimated with p 1  = 3 
should be used to modify the membership function 
generation so as to incorporate CCI compensation. 
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6 Conclusion 

We have implemented a new elegant fuzzy CCI-DFE 
which performs close to the optimal Bayesian 
CCI-DFE with substantial reduction in computational 
complexity. This equaliser can be easily modified in the 
presence of CCI providing a low computational com- 
plexity equaliser for high SIR, and a more complex 
structure for low SIR conditions. Simulation studies 
have demonstrated the equaliser’s performance. In cer- 
tain applications where the DFE structure cannot be 
used, the fuzzy CCI equaliser can provide greater com- 
putational reduction than the Bayesian equaliser. This 
equaliser can provide further performance to computa- 
tional complexity tradeoff with the introduction of 
combination of minimum inference and maximum 
defuzzification rules [22]. 
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