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Abstract. 
This paper presents, a crack identification in a rotor dynamic system based on changes in natural frequencies predicted from the 
transfer matrix approach using a crack point matrix defined in terms of stress intensity factors. A local flexibility of the system 
due to crack is employed and changes in natural frequencies of the system are illustrated. Effect of cracked and it is location 
along the length are studied by using some interpolation formula. A generalized transfer matrix approach is applied after 
validating with the finite element model. Analytical results are compared with those obtained from numerical model through 
ANSYS. Fatigue analysis of cracked rotor shaft system containing the bearing at ends is performed using solid modeling tool. 
The results are compared and conclusions are drawn. 
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1 Introduction 
Dynamic behavior of mechanical elements is important and should be monitor to access reliability of machinery. 
Most of the components used in high speeds often possess flaws due to cracks formed by cyclic loading, vibration 
and other types of loads. Due to loss of integrity, the dynamic properties such as natural frequencies of such systems 
are drastically effected and requires a special attention. Compare to various non destructive techniques such as 
ultrasonic testing, visual examination etc, vibration based online monitoring for identification of crack location and 
severity has become more popular today. Vibration based techniques follow two rules for detection of cracks. First 
one monitors synchronous vibration amplitude and phase. If such 1X amplitude and phase exists, it implies the 
presence of crack. The second rule states that there also exist 2X vibration in cracked rotor at half of the resonance 
speed. There are several papers published on this subject and still various new methods are still under investigation. 
The constant rotation of the shaft with a crack has a periodic time varying stiffness characteristics. However, transfer 
cracks open and closed alternatively leading to breathing behavior. Here also the shaft stiffness variation is time 
periodic. Many investigation studied such parametric instability conditions in cracked rotor dynamics.  

Meng and Gasch [1] studied stability of cracked Jeffcott rotor supported on journal bearing. Gasch [2] 
given an overview of cracked Laval rotor stability diagram. Nonlinear-dynamic stability analysis of shaft disk 
system with-crack was presented in some works [3-5]. Most of these works focused on simple systems having few 
degrees of freedom. Sinou [6] conducted the stability analysis by applying perturbation to non linear periodic 
solution and identified effect of crack on the instability region. When crack depth increases, the model must include 
additional flexibility term so as to generate an integral model. The stress intensity factors in the theory of fracture 
mechanics may be used for modeling open or breathing edge cracks. Local flexibility coefficients depend on the size 
of crack and crack length geometry. Often cracked section is replaced by single rotation spring representing local 
flexibility of crack. Investigators divided the edged crack problem into two categories. These are (1) direct problem 
where the effect of crack on the natural frequencies is studied (2) inverse problem where the vibration data is used to 
predict location and size of the cracks. Cavelini et al. [7] calculated the additional flexibility introduced by the crack 
using linear fracture mechanics model. Tsai and Wang [8] investigated the position and size of crack on a stationary 
shaft by modeling crack as joint of local spring. Darpe [9] detected fatigue transverse crack in rotating shaft by using 
detection methodology exploiting both the typical non linear breathing phenomenon of the crack and the coupling of 
bending-torsional vibration due to presence of crack for its diagnosis. According to Gomez et al. [10], who detected 
crack in a rotating shaft by applying Wavelet Packet transverse energy combined with ANN (Artificial Neural 
Network) with RBF (Radial Basis Function) architecture. Attar [11] investigated mode and frequencies of stepped 
beam consisting an arbitrary number of transverse cracks by using analytical approach and also calculated position 
and depth of crack opting transverse matrix method. Broda et al. [12] investigated longitudinal vibrations of beams 
with breathing cracks numerically and experimentally both. In all the above mentioned works, it is assumed that the 
crack depth is relatively small in comparison with rotor diameter. Also most of the literature dealt with open crack 



modeling. In practice, the crack depth may elongate towards the centre line of the shaft and it requires additional 
flexibility consideration using fracture mechanics theory. In this line, present paper formulates an approach based on 
mode-1 failure to model the crack in terms of its depth function and the frequency analysis of the rotor bearing 
system is carried out using transfer matrix approach. The breathing crack behavior is analysed in detail with 
variations in natural frequencies and mode shapes. The reminder of the paper is organized in the following format. 
Section 2 deals with mathematical modeling of the crack and rotor system. Section 3 presents results and discussion 
and brief conclusions are given in section 4.  
 
2 Mathematical modeling 
This section deals with description of the breathing crack model along with a transfer matrix method employed in 
the present work. When the crack width is very small, it is known as gaping fatigue crack which is different from 
notch. Gaping cracks are difficult to manufacture. The shaft should be subjected to prolonged cyclic bending fatigue 
to initiate the crack. Compliance of a cracked shaft is a function of uncracked shaft compliance and additional 
compliance induced by the crack. Dimarogomas et al. [13] employed the fracture mechanics techniques for 
estimating crack compliance, where the strain energy release rate was used along with linear elastic fracture 
mechanics. 
2.1 Additional flexibility due to crack 
A shaft element of length L having a transverse crack of depth h is located at the middle position as shown in Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Cracked shaft element 
 

By considering that there are 6 degrees of freedom at each station of the shaft element(i=1-6) the method is 
explained. If D= 2R is the diameter of the cross section, E is elastic modulus and  is Poisson ratio of the material 
then the additional strain energy Uc is given by the integration of the strain energy density function over the cracked 
area Ac as follows 
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Here KI, KII, and KIII are the stress intensity factors corresponding to opening, sliding and shearing modes of the 
crack, ‘i’ denotes the applied load. Based on the stress distribution on the cross section of the crack, these stress 
intensity factors are determined. As mode-I (opening) is predominant on the crack flexibility it is only considered in 
this work. This is expressed as  
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Where i   is stress at the crack due to applied load Pi and  f is a shape function called crack configuration factor. 
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flexibility matrix depends only on the degrees of freedom being considered for moments and forces applied on the 
crack cross section. The full compliance matrix is 6×6, however in present study the flexural vibration of beam in 
one plane (X-Y) is only considered so that the load P5 (moment) only comes in equations. That is the component of 
flexibility matrix C=c55 only exists in this case. The detailed derivation of this component for a circular sections is 
given in appendix.   
 
      
2.2 Transfer matrix method 
Transfer matrix method is useful techniques for solving the natural frequencies of the present rotor. Any section or 
station of the rotor is described by a state vector whose coordinates are physical quantities defining the vibration 
state of the section. In a 2-D bending, the state vector S is defined in terms of transverse displacement y, slope θ, 
bending moment M, and shear force Q. The method consists in relating the ends of entire shaft line by means of 
several transfer matrices. Then the boundary conditions can be applied and natural frequencies or critical speeds are 
calculated. Several papers have been recently focused on the applications of transfer matrix method in rotor 
dynamics. Albuquerque and Barbosa [14] used transfer matrix method to predict the bending critical speeds of 
hydro-generator shaft. Ghasemalizadeh et al.[15] analysed a shaft system using transfer matrix method by 
considering gyroscopic effect. Albuquerque and Barbosa[16] predicted bending critical speed of a hydrogenerator 
shaft using transfer matrix method. More recently, Lee and Lee [17-18] determined the solution to the free vibration 
characteristics of a tapered and twisted Bernoulli beam by finding the roots of differential equation. Fig.2 shows the 
rotor model in present work. Here, the station locations are also shown. 
 
 
 
   
 
 
 
 
 
 

Fig.2 Cracked rotor under study with station numbers 
 
There are 8 stations and the rotating shaft is assumed to be bending in one plane. In applying the method, there are 
two sets of matrices (1) field matrix which relates the distributed effects such as shaft elements (2) point matrix 
which relates the lumped phenomena such as springs, crack, or disk etc. Following, field and point matrices are used 
to compute overall transfer matrix[19].  
 
Field matrix for the shaft elements - 
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with 4 A
a

EI

 . Here,  and E are density and elastic modulus of shaft while A and I are cross section and moment 

of inertia of the section. Also,  is natural frequency, while other terms are defined as: 
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Point matrix for bearing support with translation =[P12]=[P78]=
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Point matrix for the disk with mass m, diametral moment of inertial Id and polar moment of inertia Ip- 
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Here,  is speed of the shaft.  
 
Point matrix for the cracked portion (discontinuity between the slopes revealed by bending moment and rotation) 

[P56]= 3
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The resultant overall transformation matrix is given by 
                          [T]=[P78][R67][P56][R45][P34][R23][P12] 
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As both ends of the shaft after the support springs have free end-conditions, the moment and shear become zero. 
Thus, the resultant characteristic equation is obtained as T31T42-T32T41=0. The natural frequencies of the system are 
obtained by solving this equation for the frequency parameter a. 
 
2.3 Breathing crack 
So far only the studies of rotor with transverse open crack is studied. As shaft start to revolve the crack smoothly 
transits from fully open to fully closed mode. So, we use a cosine function to model this behavior. 
Here Mayes’ model is employed as: 
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Or                                                      maye maye mayeK K iK         (9b) 

Where mayeK  , mayeK   are shaft stiffness with crack along  and  , and t    is angular displacement.  
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Here if   , ,maye mayeK K K K       and if 0  , 0maye mayeK K K   . First case is called, fully open crack and 

second case is called fully closed crack. 
 
3 Results and Discussion  
Initially the problem is solved as direct analysis approach where the crack parameters are varied and the 
corresponding changes in natural frequencies are predicted. Dimensions of the rotor under consideration are given in  
Table 1. 

Table 1 Geometric and material properties of system 
Parameter  Value 
Diameter of the shaft(mm) 15 
Diameter of the disk(mm) 128 
Thickness of the disk(mm) 10 
Length of the shaft(mm) 328 
Elastic modulus of shaft and disk(GPa) 200 
Material density(Kg/m3) 7850 
Bearing stiffness k (N/m) 1×105 

  
A computer program is developed to obtain the natural frequencies of the system with variable crack dimensions at 
different speeds of operation and the support stiffness values.  Without crack, the intact model of the rotor is tested 
for its natural frequencies using transfer matrix method. A comparison of the first three frequencies using finite 
element analysis using Timoshenko beam theory, ANSYS solution is depicted in Table 2. 

Table 2 First three natural frequencies (in Hz) of intact rotor 
Method Mode-1 Mode-2 Mode-3 
Present transfer matrix 52.91 160.10 483.90 
Timoshenko finite element  52.86 160.01 481.62 
ANSYS  52.92 160.56 483.68 

 
3.1 Effect of crack depth 
Fig.3 shows variation of fundamental natural frequencies as function of local crack flexibility parameter. 

 
Fig.3 The natural frequencies as a function of local flexibility parameter 
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As is obvious, it can be seen that as flexibility reduces from 0 to 0.01, the natural frequencies first increases and then 
decrease. In the next step, the relative crack depth (h/D) is varied from 0.1 to 0.5 and the corresponding c55 values 
are computed and the three natural frequencies are obtained in a similar manner as shown in Table 3. It is seen that 
there is a marked effect of crack depth on the natural frequency. In this paper value of c55 is calculated by using the 
best fit formula [21] for solid circular shaft as a function of h/D. Table 3 shows the change in the value of natural 
frequencies at different mode and by changing the value of c55 obtained from above reference and crack location is 
fixed at 82mm from the right end of shaft. 
 

Table 3. Variation of natural frequency with h/D 
h/D c55 

(10^-6) 
Natural frequencies(Hz) 
(Mode-1) 

Natural frequencies(Hz) 
(Mode-2) 

Natural frequencies(Hz) 
(Mode-3) 

0.1 1.55 52.91 159.9 484.2 
0.2 7.818 52.96 160 485 
0.3 20.4 53.01 160 486.5 
0.4 42.85 53.16 160.2 489.4 
0.5 84.02 53.41 160.5 494.8 

  
 
It is clear that the natural frequencies with c55 have some change with respect to uncracked rotor from mode 3 
onwards. 
 

 
Fig.4 Variation of natural frequencies of cracked beam 

 
 
 
3.2 Effect of crack location 
Table 4 shows the effect of crack location on the natural frequencies of the system and the variation are shown in 
table at the fix value of h/D ratio of the crack. From table 4, it is clear that the natural frequencies vary as a function 
of crack location. 

Table 4. Variation of natural frequencies (Hz) with the change of crack location 
Non dimensional 
crack location Lc/L 

 (Mode-1)  (Mode-2)  (Mode-3) 

0.167 99.26 257.3 565.7 
0.25( initial location) 122.4 238.4 623.6 
0.334 132.6 214.5 -- 



3.3 Modeling of crack in 2-D 
Ansys software is used to model the crack in the present shaft and analyse the system with two ends supported on 
spring elements. Fig.5 shows the 2-D model of the rotor with crack. Plane 183 elements are used to mesh the model.  
 

 
 

Fig.5 2-D model for rotor and shaft 
 
 

 
Table 2 First five frequencies obtained from ANSYS  

Mode Intact Fatigue crack(depth h=3mm, 
width b=6 mm) 

1 10.315 10.323 
2 19.420 19.433 
3 646.97 642.87 
4 1453.1 1441.1 
5 2423.1 2419.5 

 
 
3.4 Fatigue analysis of system on difference condition 
Using 3D solid modeling fatigue analysis is done for with and without crack (depth 2mm and width 3mm) in 
ANSYS. Material used is stainless steel and rotation speed 500rps. Result about life of system is shown in fig (5a 
and 5b). And it is clear that life of system decreases after introduction of crack. 
 

 
 

Fig 5a. Shown fatigue life of system without crack 



 
Fig 5b. Shows fatigue life of system with crack 

 
 
 
4 Conclusions 
In the context of this paper in which various analysis is done for finding natural frequency of shaft and rotor system 
at different position and dimension of shaft, it is clear that with variation of crack depth natural frequency increases. 
It can be also concluded from fatigue analysis that fatigue life of any shaft rotor system decreases with introduction 
of crack. 
 
Appendix: The flexibility coefficient derivation 
Stress Intensity Factor,                                 
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