
Finite Element Buckling Analysis of Thin Plates with Complicated

Geometry

Saleema Panda & Manoranjan Barik
Department of Civil Engineering
National Institute of Technology, Rourkela, Odisha 769008, India

ABSTRACT: The plates used as structural elements in the field of aerospace, offshore, ocean, mechani-
cal, nuclear, and civil engineering take different shapes due to their functional and structural requirements
as well as for aesthetic considerations. Their application with complex configuration is of practical impor-
tance and requires accurate and efficient analysis of their stability. In this paper, finite element buckling
analysis of different complicated shaped thin plates is presented. In the formulation, the arbitrary plan-
form of the whole plate is mapped into a square domain where a cubic serendipity shape function is
used to represent the complicated geometry and an ACM plate bending element is considered for the
displacement function. Many researchers have used different elements to analyze plates but these ele-
ments are limited to solve a particular type of geometry only. This element is capable to model different
geometries just like isoparametric element without the shear locking problem and generation of spurious
mechanisms which is inherent in the isoparametric formulation. The versatility of the element is proved
by undertaking different plate geometries. New results are presented as no such geometries are analyzed
in any previous published literatures.

1 INTRODUCTION

Different arbitrary shaped plates are widely used
in the field of aerospace, offshore, ocean, mechan-
ical, nuclear, and civil engineering due to their
functional and structural requirements as well as
for aesthetic considerations. Therefore, it is re-
quired to calculate the buckling load at which the
structure becomes unstable. This paper presents
buckling analysis of elliptic, right angled triangle
and diamond-shaped plates with different bound-
ary conditions.

Some of the recent works done on the above
topic is discussed. Rao et al. (1992) proposed an
empirical formula following Rayleigh Ritz tech-
nique for calculating the critical loads of elliptical
plates. Buckling factors of triangular plates with
different translational and rotational elastic re-
straint using p-Ritz method is presented by Xiang
(2002). Different irregular straight-sided quadri-
lateral thin plates are analyzed by Karami and
Malekzadeh (2002) applying differential quadra-

ture (DQ) methodology. Rahai et al. (2008) substi-
tuted modified buckling mode shapes in the elastic
energy formulation and presented a new procedure
to find the buckling load of stepped and perforated
rectangular plates. Liu and Pavlović (2008) analyt-
ically solved simply supported rectangular plates
under arbitrary loads using Ritz energy technique.
Sectorial plates are analyzed by Coman (2009) em-
ploying interactive boundary layer analysis. Bui
et al. (2011) investigated buckling load factor of
rectangular plates with and without circular cut
outs using an improved Moving Kriging interpola-
tion meshfree method. Deformation theory and in-
cremental theories are used to study elastic/plastic
buckling analysis of rectangular plates by Kadkho-
dayan and Maarefdoust (2014). Papkov and Baner-
jee (2015) studied free vibration and buckling anal-
ysis of orthogonal clamped rectangular plates by
enhancing the method of superposition which re-
duces the boundary value problem to an infinite
system of linear algebraic equations.

Barik and Mukhopadhyay (1998) have analyzed



free flexural vibration of arbitrary plates. They
have used an ACM plate element with three de-

grees of freedom (w,
∂w

∂x
,
∂w

∂y
) to represent the dis-

placement function and cubic serendipity function
to define the geometry. In the present paper, the
above element is considered for buckling analysis
of complex geometries. Elliptical and right angled
triangular plate examples are validated with pub-
lished results. New results for semicircular semiel-
liptical and diamond shaped plates under different
boundary conditions and loadings are included.

2 MAPPING OF THE PLATE

The formulation developed in Barik and
Mukhopadhyay (1998) is followed here. The
arbitrary shape of the whole plate is mapped
approximately into a [−1,+1] region in the s − t
plane with the help of the cubic serendipity shape
function. Then the mapped square plate in s − t
plane is discretized into a number of elements and
each element is again mapped with the same cubic
serendipity shape function to a natural coordinate
element of domain [−1,+1] in ξ − η plane.
From the mapping we have,
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3 DISPLACEMENT INTERPOLATION
FUNCTION

The ACM plate bending element with three de-

grees of freedom (w,
∂w

∂x
,
∂w

∂y
) at each node is con-

sidered for the present investigation. The interpo-
lation functions for the bending are mentioned in
detail in Barik and Mukhopadhyay (1998).

4 ELEMENT MATRICES AND EQUATIONS
OF EQUILIBRIUM

The equilibrium equation for buckling analysis of
an elastic system undergoing small displacement is

given by

[Ke] {δ} − λ[KG] {δ} = {0} (3)

where [Ke] is the global elastic stiffness matrix,
[KG] is the geometric stiffness matrix and {δ} is
the displacement vector in the global coordinate
system.
The stiffness matrix of the plate element is given

by

{Ke} =

∫ ∫

[B]T [D] [B] |J | dξ dη (4)

The geometric stiffness matrix of the plate ele-
ment is given by

{KG} =

∫ ∫

[BG]
T [σ] [BG] |J | dξ dη (5)

where

[BG] = J−1

[[

∂Nw

∂ξ

] [

∂Nw

∂η

]]T

(6)

[σ] =

[

σx τxy
τxy σy

]

(7)

5 BOUNDARY CONDITIONS

As a general case, the stiffness matrix for a curved
boundary supported on elastic springs continu-
ously spread along the boundary line can be ob-
tained as

[Kb] =

∫

[Nb]
T [Nk]|Jb| dλ1 (8)

where λ1 is the direction of the boundary line in
the ξ − η plane and Jb =Jacobian = ds1/dλ1. The
jacobian is the ratio of actual length to the length
of mapped domain at any segment of boundary
length. For details refer Barik and Mukhopadhyay
(1998).

6 RESULTS AND DISCUSSION

6.1 Elliptical plate

Buckling analysis of an elliptical plate with a =
semi-major axis and b = semi minor axis is vali-
dated with Rao et al. (1992) shown in figure 1 and
2 respectively.
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Figure 1: Comparison of buckling load parameter (λb2/D)
with aspect ratio (a/b) for uniformly compressed all edges
clamped elliptical plate
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Figure 2: Comparison of buckling load parameter (λb2/D)
with aspect ratio (a/b) for uniformly compressed all edges
simply supported elliptical plate
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Figure 3: Comparison of buckling load parameter
(λb2/π2D) with Angle α0 for simply supported right an-
gled triangular plate

Table 2: Different parameters used

Thickness h 6.5 cm
Poisson’s ratio ν 0.33
Young’s modulus of elasticity E 7× 108 N/cm2

Rigidity Modulus D Eh3/12(1− ν2)
Semi-major axis length a
Radius of semicircle r 200 cm

6.2 Right angeled triangle

Right angeled triangle plate is analyzed for dif-
ferent boundary conditions by Xiang (2002). The
present formulation is applied for the and the re-
sults are compared. The figure 3 presents for the
simply supported case and the table 1 shows case-5
with angle α0 = 15◦, 30◦ for different translational
(Sw) and rotational (Sr) elastic restraints.

6.3 Semicircular Semielliptical Plate

The buckling load for a simply supported (SSSS)
and clamped (CCCC) plate shown in figure 4
which is a combination of semicircular (left part)
and semielliptical (right part) shape is presented
for aspect ratio 1.125 and 1.25 for all edges com-
pressive load λ in table 3. The different parameters
used for the problem is given in table 2.

6.4 Diamond-shaped Plate

The buckling load for a diamond-shaped plate
shown in figure 5 is presented for aspect ratio 1.0
and 1.5 and different boundary conditions (BC)



Table 1: Comparison of buckling load parameter (λb2/π2D) with Angle α◦

0
for different elastic restrained right angled

triangular plate

Angle (Sw, Sr)

α0 (0, 0) (103, 0) (0, 103) (103, 103) (106, 0) (0, 106) (106, 106)

15◦
Xiang (2002) 0.8257 3.7706 2.0324 5.9114 3.7886 1.8593 6.0123
Present 0.8330 3.6226 2.4398 5.2031 3.6286 2.4404 5.5781

30◦
Xiang (2002) 1.8088 6.0491 3.7018 8.6851 6.1109 3.7079 8.9190
Present 1.9718 5.9662 4.6734 8.6836 5.9589 4.6749 8.7253
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Figure 4: A typical 8×8 mesh discretization with boundary
nodes of Semi-circular Semi-elliptical Plate

Table 3: Comparison of buckling load parameter (λr2/D)
with aspect ratio (a/r) of Semi-circular Semi-elliptical Plate

(a/r) BC Buckling load parameter

1.125
SSSS 4.0546
CCCC 13.8679

1.25
SSSS 3.9072
CCCC 13.2325
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Figure 5: A typical 8×8 mesh discretization with boundary
nodes of Diamond Shaped Plate for r2/r1 = 1.0

for all edges compressive load λ in table 4. The
different parameters used for the problem is given
in table 2. The mixed boundary condition SCSC
represents top and bottom edge simple supports
and other two as clamped edges.

6.5 Spinning-top shaped Plate

The buckling load for a spinning-top shaped plate
shown in figure 6 is presented for aspect ratio 1.0

Table 4: Comparison of buckling load parameter (λr2/D)
with aspect ratio (a/r) of Diamond-shaped Plate

(a/r) BC Buckling load parameter

1.0
SSSS 41.0438
CCCC 98.5689
SCSC 72.4925

1.5
SSSS 36.8487
CCCC 109.7127
SCSC 94.5842



Figure 6: A typical 8×8 mesh discretization with boundary
nodes of Spinning-top shaped plate for θ = 60◦

Table 5: Comparison of buckling load parameter (λr2/D)
with angle θ of Spinning-top shaped plate

θ BC Buckling load parameter

45◦
SSSS 22.1538
CCCC 33.9273
SCSC 22.3933

60◦
SSSS 17.1595
CCCC 33.4403
SCSC 19.2625

and 1.5 and different boundary conditions for all
edges compressive load λ in table 5. The different
parameters used for the problem is given in table
2.

7 CONCLUSIONS

Different authors have investigated on the buck-
ling behavior of plates. It is observed that most
of them developed or used methods that can solve
only a particular type of geometry. Kirchoff theory
can not handle arbitrary thin plates. Thus isopara-
metric element which is based on Mindlin’s theory
is often used by authors while using finite element
method. But, when this element is used to ana-
lyze this plates, inconsistency in results are seen
due to shear locking problems, even after applying

reduced/selective integration. Therefore, the ele-
ment used in this present paper may be preferred
for the analyses of thin plates as no such above
problems are faced and is capable to accommodate
different general and complex geometries.
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