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Abstract 

In this article, the Jacobi elliptic function method viz. mixed dn-sn method has been presented for finding the 
travelling wave solutions of the Davey-Stewartson Equations. As a result, some solitary wave solutions and 
doubly periodic solutions are obtained in terms of Jacobi elliptic functions. Moreover, solitary wave solutions 
are obtained as simple limits of doubly periodic functions. These solutions can be useful to explain some 
physical phenomena. The proposed Jacobi elliptic function method is efficient, powerful and can be used in 
order to establish more newly exact solutions for other kinds of nonlinear fractional partial differential equations 
arising in mathematical physics.     
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1. Introduction 

In this paper, we present the travelling wave solutions of the fractional (2+1)-dimensional Davey-Stewartson 
equation and doubly periodic solutions of new integrable Davey-Stewartson type equation. We employ the 
mixed dn-sn method [1] approach via fractional complex transform in order to obtain exact solutions to the 
fractional (2+1)-dimensional Davey-Stewartson equation and new integrable Davey-Stewartson type equation. 
Davey-Stewartson (DS) equations have been used for various applications in fluid dynamics. Davey-Stewartson 
equations were proposed initially for the evolution of weakly nonlinear pockets of water waves in the finite 
depth by Davey and Stewartson [2].  
 
2. Algorithm of the mixed dn-sn method with fractional complex transform 

In this present analysis, we deal with the determination of explicit solutions of fractional (2+1)-dimensional 
Davey-Stewartson equation by using the mixed dn-sn method. The main steps of this method are described as 
follows: 

Step 1: Suppose that coupled nonlinear FPDEs, say in three independent variables x , y  and t  is given by 
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where ),,( tyxuu   and ),,( tyxvv  are unknown functions, F  and G  are polynomials in u, v and its various 

partial derivatives in which the highest order derivatives and nonlinear terms are involved. 

Step 2: We use the fractional complex transform [3-6]: 
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where 1 , 2 , 3 , 1 , 2  and 3  are real constants to be determined later. 

 
By using the chain rule in [3, 6], we have  
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where t , x  and y  are the fractal indexes [5, 6], without loss of generality we can take   yxt , 

where   is a constant. 
 

Using fractional complex transform eq. (2.2), the FPDE (2.1) can be converted to couple nonlinear ordinary 
differential equations (ODEs) involving ),,()( tyxu   and ),,()( tyxv  . Then eliminating )(  

between the resultant coupled ODEs, the following ODE for )(  is obtained 
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where prime denotes the derivative with respect to  . 

Step 3:   
Let us assume that the exact solution of eq. (2.3) is to be defined in the polynomial )( of the following form: 
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where  )( satisfies the following elliptic equation: 

))1()(( 2222 mkk   .       (2.5) 

The solutions of eq. (2.5) are given by 
)()( mkkdn   , 

                                                  )(1)( mkndmk   ,                                           (2.6)   

where )( mkdn   and 
)(

1
)(

mkdn
mknd


   are the Jacobi elliptic functions with modulus m )10(  m . 

Step 4:  

According to the proposed method, we substitute p  )(  in all terms of eq. (2.3) for determining the 

highest order singularity. Then the degree of all terms of eq. (2.3) has been taken into study and consequently 
the two or more terms of lower degree are chosen. The maximum value of p is known as the pole and it is 

denoted as “ N ”.  If “ N ” is an integer then the method only can be implemented and otherwise if “ N ” is a 
non-integer, the above eq. (2.3) may be transferred and the above procedure is to be repeated. 
 
Step 5: 
Substituting eq. (2.4) into eq. (2.3) yields the following algebraic equation 

                                                   0)()( 22   QkP                                     (2.7) 

where )(P  and )(Q  are the polynomials in )( . Setting the coefficients of the various powers of   in )(P  

and )(Q  to zero will yield a system of algebraic equations in the unknowns ic , id , k  and m . Solving this 

system, we can determine the value of these unknowns. Therefore, we can obtain several classes of exact 
solutions involving the Jacobi elliptic functions sn, dn, nd and cd functions.  
 
3. Implementation of the Jacobi elliptic function method  
 
In this section, the new exact analytical solutions of fractional (2+1)-dimensional Davey-Stewartson equation 
and new integrable Davey-Stewartson type equation have been obtained using the mixed dn-sn method. 

 
3.1 Exact solutions of fractional (2+1)-dimensional Davey-Stewartson equation 
 
Let us consider the fractional (2+1)-dimensional Davey-Stewartson equation [7] 
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where 1,,0   , ),,( tyxqq   and ),,( tyxrr  . Also a , b ,   and  are all constant coefficients. The 

exponent n  is the power law parameter. It is necessary to have 0n . In eqs. (3.1) and (3.2), ),,( tyxq  is a 

complex valued function which stands for wave-amplitude, while ),,( tyxr is a real valued function which 
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stands for mean-flow. This system of equations is completely integrable and is often used to describe the long-
time evolution of a two-dimensional wave packet [8-10]. 
 
We first transform the fractional (2+1)-dimensional Davey-Stewartson equations (3.1)-(3.2) to a system of 
nonlinear ordinary differential equations in order to derive its exact solutions. 
By applying the following fractional complex transform  
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eqs. (3.1) and (3.2) can be reduced to the following couple nonlinear ODEs: 
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where 3  has been set to 2211 22  aa  . Eq. (3.4) is then integrated term by term twice with respect to   

where integration constants are considered zero. Thus we obtain 
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Substituting eq. (3.5) into eq. (3.3) yields 
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Using the transformation  
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eq. (3.6) further reduces to 
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By balancing the terms  and 4 in eq. (3.7), the value of N  can be determined, which is 1N  in this 

problem. 
 
Therefore the solution of eq. (3.7) can be written in the following ansatz as 

                                             )()()( 22
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where 0c , 1c  and 0d are constants to be determined later and )(  satisfies eq. (2.5).  

 
Now substituting eq. (3.8) alongwith eq. (2.5) into eq. (3.7) and then equating each coefficients of  )( i , i = 

0,1,2,...  to zero, we can get a set of algebraic equations for 0c , 1c  , 0d , 3  and m  and solving the algebraic 

equations, we have the set of coefficients for the non-trivial solutions of eq. (3.7) as given below: 
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where 22113 22  aa  and k  is the free parameter.  

 
Substituting eqs.(3.9) into eq.(2.4) and using the special solutions (2.6) of eq. (2.5), we obtain  
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which yields the following solitary wave solutions of eqs. (3.1) and (3.2): 
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where 22113 22  aa  and k  is the free parameter.  

 
Substituting eqs.(3.11) and using the special solutions (2.6) of eq.(2.5), we obtain  
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which yields the following solitary wave solutions of eqs. (3.1) and (3.2): 
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3.2 Exact solutions of the fractional (2+1)-dimensional new integrable Davey–Stewartson-type 
equation 

 
Let us consider the fractional (2+1)-dimensional new integrable Davey–Stewartson-type equation 
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where ),,(   is complex while ),,(  , ),,(    are real and a , b  are real parameters. 

The above equation in integer order was devised firstly by Maccari [11] from the Konopelchenko-Dubrovsky 
(KD) equation [12].  
 
According to algorithm discussed in Section 3, let us consider the following fractional complex transform  
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where k , l ,  , 1 , 2  and 3  are constants. 

 
By applying the fractional complex transform (3.14), eq. (3.13) can be reduced to the following couple 
nonlinear ODEs: 
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Now, eqs. (3.17) and (3.16) are integrated once and twice term by term with respect to X  where integration 
constants are considered zero. Thus we obtain 
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Therefore the solution of eq. (3.19) can be written in the following ansatz as 
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Now substituting eq. (3.20) alongwith eq. (3.21) into eq. (3.19) and then equating each coefficients of  )(Xi , i 

= 0,1,2,...  to zero, we can get a set of algebraic equations for 0c , 1c  , 0d , p  and m  and solving the algebraic 

equations, we have the set of coefficients for the non-trivial travelling wave solutions of eq. (3.19) as given 
below: 
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4. Conclusion 
 
In this paper, the Jacobi elliptic function method has been used to determine the exact solutions of time 
fractional (2+1)-dimensional Davey-Stewartson equation and new integrable Davey-Stewartson type equation. 
In both the problems, with the help of fractional complex transform, the Davey-Stewartson system was first 
transformed to a system of nonlinear ordinary differential equations, which were then solved to obtain the exact 
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solutions. In this paper, the fractional complex transform has been considered which is derived from the local 
fractional calculus defined on fractals. Using this proposed method, some new solitary wave solutions and 
double-periodic solutions have been obtained. To the best information of the author, these solitary wave 
solutions of the fractional Davey-Stewartson equation are new exact solutions which are not reported earlier. 
Being concise and powerful, this current method can also be extended to solve many other fractional partial 
differential equations arising in mathematical physics. 
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