

Optimal controller selection in Software Defined

Network using a Greedy-SA algorithm
Kshira Sagar Sahoo, Bibhudatta Sahoo, Ratnakar Dash, Nachiketa Jena

Department of Computer Science and Engineering.

National Institute of Technology

Rourkela, India, 769008

{kshirasagar12@gmail.com, bibhudatta.sahoo@gmail.com, ratnakar@nitrkl.ac.in, nachiketa.jena@gmail.com}

Abstract – Software Defined Network is one of the most

recent Internet technology that manages the large scale network.

Both from implementation and performance point of view SDN

will improve the next generation networking services. It is

important to find a solution to the controller placement problem is

remaining a key issue in SDN based architecture. It decides where

to place the controllers with a limited amount of resources within

the network. This paper illustrates a preliminary work on the

controller placement in SDN environment using an existing

heuristic technique. More formally, a network is given by a set of

elements (either switches or routers) they must be managed by the

controller(s), the algorithm finds the number controller(s) require

to cover all the network elements within the network in a optimal

way. The primary criteria is the distance between all nodes and

selected controllers is minimized. Controller's capacity is a

constraint of the controller, that restricts a controller to manage

an unlimited number of data plane devices. We have proposed

and implemented simulated annealing algorithm with greedy

heuristic to solve the controller placement problem.

Keywords –SDN, Controller placement, Greedy-SA

NOMENCLATURE

 Simulated Annealing (SA), Software Defined Network (SDN),

Optimal Controller Placement Problem (OCLP)

I. INTRODUCTION

Software Defined Network (SDN) is one of the new

revolutions in the networking field that makes the behavior of

the network of the network devices (such as router /switches)

programmable and allows them to be controlled by a central

element, thus offering advanced customizability of network

control and forwarding behavior [1][12]. This new paradigm

has created the interest from both industry and academia since

last couple of years. It is an approach to computer networking

in which network control is decoupled from the hardware and

given to a software application called a software controller. In

other words, this architecture decouples the control function

and forwarding function and enables the network control to

become directly programmable and the underlying

infrastructure to be abstracted from applications.

The key elements of SDN incorporate isolated

control and information planes, intelligently unified system

controller, programmability of the control plane, and standard

application programming interfaces (APIs). SDN is relied

upon to significantly affect future systems administration

through empowering an open programmable network platform

that gives awesome flexibility to supporting different

applications. Partition of control and data planes and unified

controller in SDN additionally offer a promising way to

facilitating inter-domain end-to-end QoS provisioning in the

future Internet. The split of data and control planes permits

making the forwarding (data) platform more simple, and

brings system's intelligence into various controllers that

manage the switches. Because of a few reasons arrangement

of SDN in large system may divide into smaller regions. These

reasons might require protection, adaptability, security, etc.

[2]. Every small SDN region keeps running by one or more

controllers, for example, NOX, Floodlight, POX and so forth.

Placing of the controller(s) in a network affect the

performance and the expense of the system, whether the SDN

environment is having single or multiple controllers. So we

have discussed a complete model that will locate the best

position of the controller(s) and interconnect the nodes for

better execution with least cost [3].

The controller placement problem in SDN scenario

was discussed in [10]. In this paper optimization is carried out

regarding latency from assigned controller to switch. This

optimization problem is an NP-hard problem.

The objective of this article is to minimize the cost of

the SDN in terms of minimizing the global latency while

placing a controller by considering the distance of the node to

the controller as a constraint.

The remainder of the paper is organized as follows.

Section II, discussed on various works done on the controller

placement problem so far. The problem statement and

proposed model are introduced in section III, followed by a

greedy simulated annealing algorithm for the controller

section in Section IV and simulation results is also discussed

in this section. The conclusion and future work are presented

in Section V.

mailto:ratnakar@nitrkl.ac.in

II. RELATED WORK

To set up an SDN environment requires proper

planning. Various papers have already been dealing with this

issue. They have tackled the problem in different aspect

compared to different parameter. In [4], the authors have

addressed the issues of the controller placement. The authors in

[14], have used k-critical algorithm to solve the placement

problem where the used metric is the average latency between

the network devices.

The proposed mathematical formulation of the said

problem, determines the optimal number of controllers. More

constraints like cost of the link, cost of equipments, latency of

path setup, and pattern of the network traffic will be considered

as the future work of this paper.

III. PROBLEM STATEMEMNT

Many algorithms have proposed earlier on Optimal

Controller Placement Problem (OCLP) in a wireless network,

which was an important problem in designing the cellular

network. Our proposed method somehow mimics the said

problem discussed in [8], [5]. Considering M nodes in an SDN

environment, a set of N controllers must be placed in order to

manage the network traffic. The constraint that is N<M must be

followed while considering the placement problem. Before

discussing the following information are required to know to

formulate the mathematical model.

 • The location of all the network elements in the

network must know along with from each switch how much

traffic goes to the controller.

 • The behavior of various types of controllers.

 • The length and the bandwidth available from each

switch and the controllers.

A. Notations:

For a given network represented in a graph G(V, E), where V is

the set of network elements, E the set of available links. Let n

be the number of nodes where n=|V|. Let k denotes the number

of controllers to be placed in the network.

},...,{= 21 nsssS and VS  ,set of switches present

in the data plane. },...,,{= 21 ncccC and VC  set of

controller in the control plane. },...,{= 21 nlllL and VL  ,

set of possible links between the controllers and switch. P, set

of possible locations for the controller.
c , is the price for the controller of type Cc .
c , is the available controller of type Cc . cpx , is

a binary variable. cpx =1 if controller of type Cc at position

Pp

The possible controller to controller paths denoted by

cn . Let)(cE denote the forwarding devices controlled by the

controller c and)(cL is the capacity of the controller c.

B. Proposed Model:

Minimization of the global latency to manage the

SDN enable network by choosing a suitable place for the

controller is the objective of this paper. It might include

)(xCc cost to setup the controller.)(vCl the cost related to

connecting the controllers to the switches and the cost related

to inter controller connection i.e.)(zCt .

cp

c

c xxC =)((1)

),(=)(csdistxC
PpSs

v 


 (2)

),(csdist , is the Euclidean distance between the

switch)(s and its corresponding controller)(c .

The controller placement problem can be modeled

such that the following cost function must satisfy:

))()()((xCxCxCmin tlc  (3)

subject to constraint

1 cpCc
x



But prior to minimizing the above cost function we

are minimizing the global latency of the network considering

the distance between switch and controller as a parameter

which has given in the equation 4. Available ports of a

controller should be less than the connected switches.







Ccc

ji

cVv
Cc

ji

ccd
n

csd
n

CG
,

),(
1

),(min
1

)((4)

Global Latency of the SDN controller must be

minimize i.e.

)(min cG
 (5)

In this article we have done half of the work i.e we

have implemented and tested a greedy-simulated annealing

algorithm to solve the said problem on different topologies

and tried to minimize the global latency and comparing its

results with the K-median algorithm [7].

IV. A GREDDY-SA ALGORITHM

A. SA Algorithm

SA has been used to solve many optimization problems for a

long time [6]. Annealing method is a physical process where

metals are gradually cooled to reach a stage to become a

strong one. SA is an analogous method used for optimization

problem; by approximating the global optimum of a given

function. This probabilistic technique is a process where the

Optimal controller selection in Software Defined Network using a Greedy-SA algorithm

temperature is reduced slowly, starting from a random search at

high temperature.

Initial temperature lowering down to a moderate stage

until the system comes to a balance point, where no more

changes required. In each stage changing has happened several

times, until reaches to a thermal equilibrium point. Next stage

begin with a lower temperature. SA keep the current

assignment values to variables. In the subsequent step it take a

variable along with value.

The Standard SA algorithm follows the below

procedure for the outcome: A new arrangement is formed by

the random movement of the present one. If new arrangement

is better than the previous one immediately replaces the present

one, otherwise it might replace the present one

probabilistically. This possibility of replacement is high at the

beginning of the algorithm, and reduces at each stage. This

probabilistic technique allows the framework to move toward

the best solution. Despite the fact that SA is not ensured to

discover the global optima, it is still better from others

algorithm in getting away from local optima.

In this paper, we have applied the SA technique,

considering N number of nodes which will be considered as

controllers for the system. The encoding of the designs is

accomplished by a method for twofold strings, in such a way

that number of 1's in the string implies that the number of

controller has been chosen, whereas a 0 implies that the

corresponding network element is not a controller, but rather

serve as a switch. Because we must choose N nodes to be the

controllers, SA looks for the strings with exactly N 1s on them.

Standard SA can't deal with the fixed set of 1s from the string,

for this an additional operator (op) must be added to the

standard SA. The additional operation will act like this.

 if (k<N) then, place (N-k) number of 1’s randomly

op(x)= otherwise remove (k-N) number of 1’s randomly

After the random process in the SA, the individual

string z will have k number of 1s which might be different from

the actual number of 1s in z i.e N. If Nk < the search

operator adds)(kN  number of 1s in random positions. In

other sense, if Nk > , the restricted search operator randomly

selects)(Nk  1s and removes them from the binary string.

With this method it is guaranteed that all the binary strings

managed by the SA has exactly N . This method is called

restricted search.

Table 1: Notation used in the algorithm

Notation Description

0T Initial temperature

)(Ts Binary string

changestempMaximum __ maximum temperature

changes

mutationsMax_ maximum number of

mutation in each iteration

ijC distance from a node i to

the closest controller j

 The pseudo-code of the standard SA algorithm is

described here. The initial temperature of the system 0T is

chosen in such a way that the initial probability of acceptance

worse solutions is 0.8, a standard value for the SA. This

probability value decreases with the temperature of the

system. Objective function decides the states of)(TS and

)(TSmut , will be better or worse than the other. We use a

Greedy algorithm to obtain the objective function in equation

2.

Algorithm 1. Standard simulated Annealing Algorithm

Set initial temperature of the system 0T which is very high.

Generate initial state)(0TS randomly

0i

for ChangeTempMaximumi __= do

1

= 0

i

T
Ti

 for Maximum_Mutation do

 Apply mutation to the current state)(iTS

 find fitness value of the current state ()(iTS)

 if)(imut TS is better than)(iTS then

)(=)(imuti TSTS

 else

 Generate a random number u ,  1,0u

 endif

 if
i

TE
e

/

> u then

)(=)(imuti TSTS

 else

 Discard mutated Solution)(imut TS

 endif

 end for

 1= ii

end for

B. GREEDY ALGORITHM

Greedy algorithm always takes the best immediate, or

local solution while finding an answer. In [8] author had used a

Greedy method for tackling terminal assignment (TA) problem.

We use this method for solving the controller placement

problem. This approach begins from a random permutation of

)(NMK  . Then, the cost function ijl CC  is the

Euclidean distance between switch i and controller j is

calculate and the nodes are allocated to the closest controller. If

the controller do not have the capacity to handle the node, the

algorithm searches for the following nearest controller and

carry out the same operation. This process will continue until

an controller found and allocate rest of the node to the

controller. The greedy solution provide by the algorithm fails

when no controller can accommodate the required capacity,

that case is considered as the worse case.

Algorithm 2. Greedy Heuristic Algorithm for controller

selection

for each Binary string z of SA

Choose N number of 1 as controllers

Choose NM  number of 0 as the nodes

Select a permutation)(NMK  at random

for for every terminal)(iK do

Determine ijC = distance from)(iK to the closest

controller jc

)(ij Kc 

 ijl CC 

 Find lCzF =)(

end for

V. RESULT AND FUTURE SCOPE

In order to test our approach, we have taken several instances

of network topology. To generate the network, we have used

Gephi software as it is described in [9]. The load of the

controller, which is generated by the switch has been traced.

The proposed algorithm is written in python version 2.7 and

execute the programs on a machine equipped with Intel Core i3

4-Core processors and 8 GB RAM. We have the average

solution by executing the algorithms for 50 times on every

randomly generated topology.

For evaluation and measure the performance of the proposed

algorithm, we run two other algorithms simultaneously, for

comparison purpose. The two algorithms are integer linear

programming algorithm (ILP) in [13] and random placement

algorithm respectively. For solving ILP we have used IBM

ILOG CPLEX. Most of the time the linear programming

algorithms are considered as the optimal solution for

reference. So in our simulation, we mainly consider the ILP

algorithm as a reference. We execute all three algorithms on

various topologies, based on the selected locations, for 50

times, and select the placement that produces the best

performance. In the simulation we characterize the latency and

computing time against the number of controllers.

 Figure 1 shows the result of average latency while the

number of the controllers are gradually increasing under the

same topology in each strategy. The result shows that the

average delay gained by Greedy –SA algorithm is always

relatively stable compared to other two.

Figure 2 assesses computational time with increasing

controllers in a given topology while the size of the network is

the same. It has seen that, deploying more number of

controllers, the convergence of time becomes larger. When the

number of controllers increases the growth rate of

computation also increase.

Figure 1: Number of controllers and impact on average latency

Figure 2: Number of controllers and impact on computation time

Optimal controller selection in Software Defined Network using a Greedy-SA algorithm

VI. CONCLUSION AND FUTURE WORK

Designing the control plane is a major challenge in

SDN based architecture. Though the total number of controllers

in the control plane has been known before, but their positions

have a major impact on many real time issues. We have

addressed the issue and presented a mathematical model this

problem. Brute force approach to this problem is practically

feasible for small and medium size network, an alternative

mechanism is required for large instance of networks. Usually

heuristic approach involves to meet the time and resource

demand.

This paper must be considered as the first step towards

solving controller placement problem where distance is the

metric. However, in the future work we will consider it as a

multi objective problem where latency and load distribution to

be considered as different metrics. In future work we will

consider the arrival and execution of real time task as aother

important metric for the said problem [13] and implement the

cost function on a real time environment.

.

REFERENCES

[1] Hu, Fei, Qi Hao, and Ke Bao. "A survey on software-

defined network and openflow: from concept to implementation."

Communications Surveys & Tutorials, IEEE 16.4 (2014): 2181-2206.

[2] Y.-N. Hu, W.-D. Wang, X.-Y. Gong, X.-R. Que, and S.-

D. Cheng, On the placement of controllers in software-defined

networks,J. China Univ. Posts Telecommun., vol. 19, no. S2, pp.

92171, Oct. 2012.

[3] Sallahi, Afrim, and Marc St-Hilaire. "Optimal Model for

the Controller Placement Problem in Software Defined Networks."

Communications Letters, IEEE 19.1 (2015): 30-33.

[4] B. Heller, R. Sherwood, and N. McKeown, â€œThe

controller placement problem,in Proc. 1st Workshop Hot Topics

Softw. Defined Netw., 2012, pp. 712.

[5] Salcedo-Sanz, S., et al. "A Hybrid Greedy-Simulated

Annealing algorithm for the optimal location of controllers in wireless

networks." Proceedings of the 5th WSEAS Int. Conf. on Artificial

Intelligence, Knowledge Engineering and Databases, Madrid, Spain.

2006.

[6] Kirkpatrick, Scott, C. Daniel Gelatt, and Mario P.

Vecchi. "Optimization by simulated annealing." science 220.4598

(1983): 671-680.

[7] Cervello-Pastor, Cristina, and Aurelio J. Garcia.

"Defining a network management architecture." Network Protocols

(ICNP), 2013 21st IEEE International Conference on. IEEE, 2013.

[8] Abuali, Faris N., Dale A. Schoenefeld, and Roger L.

Wainwright. "Terminal assignment in a communications network

using genetic algorithms." Proceedings of the 22nd annual ACM

computer science conference on Scaling up: meeting the challenge of

complexity in real-world computing applications: meeting the

challenge of complexity in real-world computing applications. ACM,

1994.

[9] M. Bastian, S. Heymann, and M. Jacomy Gephi: an

open source software for exploring and manipulating

networks,Proceedings of International AAAI Conference on Weblogs

and Social Media (ICWSM).,pp. 361-362. California, USA, 2009

[10] Heller, Brandon, Rob Sherwood, and Nick McKeown.

"The controller placement problem." Proceedings of the first

workshop on Hot topics in software defined networks. ACM, 2012.

[11] Cervello-Pastor, Cristina, and Aurelio J. Garcia. "On

the controller placement for designing a distributed SDN control

layer." Networking Conference, 2014 IFIP. IEEE, 2014.

[12] Sahoo Kshira Sagar, Sahoo Bibhudatta , and Panda

Abinas. "A secured SDN framework for IoT." Man and Machine

Interface Conference, IEEE, 2015.

[13] Sahoo, Sampa et la. “Execution of real time task on

cloud environment.” 12th IEEE India International Conference

(INDICON 2015).

[14] Yao, Guang, et al. "On the capacitated controller

placement problem in software defined networks." Communications

Letters, IEEE 18.8 (2014): 1339-1342.

