S-fibrations and Calculus Left Fractions

Akrur Behera and Sandhya Rani Mohapatra
Department of Mathematics
National Institute of Technology
Rourkela - 769 008 (India)

Abstract

Let C be any small U-category, where U is a fixed Grothendeick universe. Let S
be a set of morphisms in the category C.Let C[S™!] be the category of fractions of S and
Fg: € — C[S7!] be the canonical functor. For convenience we write F; = F. Bauer
and Dugundji [2] have introduced the concept of S-fibration, weak S-fibration, S-cofibration
and weak S-cofibration in the category C and have explored the properties of these
concepts. There are some other advantages over the assumption that the set of morphisms
S admits a calculus of left (right) fractions [4, 6]. In this note we study some cases showing
how the assumption that S admits a calculus of left (right) fractions helps us to prove that

weak S-fibration implies S-fibration and weak S-cofibration implies S-cofibration.
1. Calculus of left (right) fractions

The concepts of calculus of left fractions and right fraction play a crucial role in

constructing the category of fractions C[ S™1].

1.1 Definition. ([6], p. 258) A family of morphisms S inthe category C is said to admita
calculus of left fractions if
(a) S is closed under finite compositions and contains identities of C,

(b) any diagram



S
X - Y
fl
Z
in C with s €S canbe completed to a diagram
X 5 Y
fil lyg
Z - w
t
with t € S and tf = gs,
(c) given
s f t
X » Y 3 Z - W
g
with s €S and fs =gs, thereisamorphism t : Z - W in S such that
tf =tg.

A simple characterization for a family of morphisms S to admit a calculus of left

fractions is the following.

1.2 Theorem. ([3], Theorem 1.3, p.67) Let S be a closed family of morphisms of C satistying
(@ if uww €S and veS, then ueSs,

(b) everydiagram

Fl

in C with s €S canbe embedded in a weak push-out diagram



[ ) - [
fi lg
[ - [ )

with t € S.

Then S admits a calculus of left fractions.

The notion of a set of morphisms admitting a calculus of right fractions is defined

dually.

1.3 Definition. ([6], p. 267) A family S of morphismsinacategory C is said to admita

calculus of right fractions if

(a) anydiagram

Vf

Z - Y
S

in C with s €S canbe completed to a diagram

w - X
gl Lf
Z - Y
S

with t €S and ft=sg,
(b) given

S

S
Q ||~

~

l

N



with s €S and sf = sg, there is a morphism ¢t : W — X in § such that

ft = gt.
The analog of Theorem 1.2 follows immediately by duality.

1.4 Theorem. ([3], Theorem1.3%,p.70) Let S be a closed family of morphisms of C satistying
(@) if vu €S and veES, thenue€Ss,

(b) anydiagram

Vf

in C with s €S, can be embedded in a weak pull-back diagram

[ ] e [ ]
gl Lf
[ ] - [ ]

with t € S.

Then S admits a calculus of right fractions.
We recall the definitions of Adams completion and cocompletion.

1.5. Definition. [4] Let C be an arbitrary category and S a set of morphisms of C. Let
C[S™!] denote the category of fractions of C with respectto S and F: C - C[S™!] be
the canonical functor. Let § denote the category of sets and functions. Then for a given
object Y of ¢, C[S7!](-,Y) : C » S defines a contravariant functor. If this functor is

representable by an object Y of C, ie, C[S7!](-,Y) = C(-,Y) then Ys is called the



(generalized) Adams completion of 'Y with respect to the set of morphisms S or simply

the S-completionof Y. We shall oftenreferto Ys asthe completion of Y [4].
The above definition can be dualized as follows:

1.6. Definition. [3] Let C be an arbitrary category and S a set of morphisms of C. Let
C[S™!] denote the category of fractions of C with respect S and F:C — C[S™!] be the
canonical functor. Let § denote the category of sets and functions. Then for a given object
Y of G, C[S7!](Y,—): C — § defines a covariant functor. If this functor is representable
by an object Ys of C,i.e, C[S™](Y,—) = C(Ys,—) then Ys is called the (generalized) Adams
cocompletion of Y with respect to the set of morphisms S or simply the S-cocompletion

of Y.We shall often referto Ys; asthe cocompletionof Y [3].
The following results will be used in the sequel.

1.7 Theorem. ([3], Theorem 2.10, p. 76) Let S be a saturated family of morphisms of the
category C. Then the following three statements are equivalent :
(@) EveryobjectY in C admits an S-completion.

(b) S admits a calculus of left fractions, lim Py exists forall Y, where Py : C(Y;S) —
C, and Fs commutes with lim Py.
(c) S admits a calculus of left fractions, lim Py exists forall Y and Fs commutes

with all colimits in C.

1.8 Theorem. ([6], Lemma 19.2.6, p. 261) Let C be an arbitrary category and S a set of
morphisms of C. Let C[S™'] denote the category of fractions of C with respect to S
and Fs: C - C[S™] be the canonical functor. Let the following hold:

(@) S consists of monomorphismes.

(b) S admits a calculus of left fractions.

Then Fs Iis faithful.



2. S-fibrations

Each class S of morphisms in a category C determines a concept of fibration (and

cofibration) in C. We recall the concepts of S-fibration and weak S-fibration from [2].

2.1 Definition. [2] Let S be a subset of morphisms of C. A morphism p : E — B in

C iscalled an S-fibration 2] if for each diagram

with s € Sand pgs = fs, there exists a morphismg’ : X - E in C

s g
w S X = E
_)
g
[N Ip
B

such that gs = g'sandpg’ = f.

2.2 Definition. [2] Let S be a subset of morphisms of €. Amorphism p : E — Bin

C iscalled a weak S-fibration |[2] if for each diagram

w S X 9, E
fN Ip

B



with s €S and pgs = fs, there exists a morphism g’ : X — E in C and a morphism

t : X > X with t€eS

N t 9
w - X - X > E
_)
9
f lp
B

such thatgs =g’'s, ts =sand pg' = ft.

The following result is elementary in nature.

2.3 Proposition. S-fibration implies weak S-fibration.

Proof: Let p : E - B bean S-fibration in the category C. Inorder to show that p

E — B isalsoaweak S-fibration consider an arbitrary diagram

w S X 5 E
f ip
B

with s € S and pgs = fs.Since p : E — B isa S-fibration, there exists a morphism

g X - Ein C,



such thatgs = g's and pg’' = f. Considering t =14 : X — X, we can have gs = g's and

pg’' = flx = ft. This completes the proof of the Proposition 2.3. [ ]

Under some moderate assumptions on the set S, it can be proved that weak S-

fibration always implies S-fibration.

2.4  Proposition. Let S be the set of morphismsin C. Let F : C - C[S™!] be the
canonical functor. Suppose the following conditions hold:

(@) p: E —= B isaweak S-fibration.

(b) S admits a calculus of left fractions.

(c) S consists of monomorphisms.

Then p : E —- B isan S-fibration.

Proof: For showingthat p : E — B isa fibration consider the diagram

w oS x 5 E
fN Ip
B
with s € Sand pgs = fs. Since s €S, pgs=fsand p : E = B isa weak fibration,

there existamorphismg’ : X - E andt : X — X witht € S such that the following

diagram commutes

S t g
w - X - X - E
—_
g
f ip
B

ie, g's=gs, ts=s and pg’ = ft. It is enough to prove that pg’ = f. Since pg’ = ft we

have pg's = fts = fs. Since F is a covariant functor, we have F(pg's) = F(fs), i.e,



F(p)F(g')F(s) = F(f)F(s). Since F(s) is an isomorphism in C[S™'] we have
F(p)F(g') = F(f),ie, F(pg') = F(f). By Theorem 1.8, F is faithful. Hence we have
pg' = f. This completes the proof of the Proposition 2.4. [

3. S-cofibrations

The dual concepts of S-fibration and weak S-fibration are respectfully  S-cofibration

and weak S-cofibration. We recall these concepts from [2].

3.1 Definition. [2] Let S be an arbitrary set of morphisms in a category C. A morphism

j: B> E € C iscalled an S-cofibration if for each diagram

E 3 X S5 w
T 2 f

B

with s €S and sgj = sf there existsamorphism g’ : E - X

g

E 7 x 2
- - W
g

j1 7 f

in € suchthat g'j = fand sg =sg’.

3.2 Definition. [2] Amorphism j : B —» E € C iscalled a weak S-cofibration if for each

diagram



10

with s € S and sgj = sf there existsamorphismg’': E - Xand t: X - Xwitht €S

‘.?) t S
E_) X -» X - W
g
j1 7 f

such thatst =s, g'j = tf and sg = sg'.

The following result is elementary in nature.

3.3 Proposition. S-cofibration implies weak S-cofibration.

Proof. Let j: B — E be an S-cofibration in the category C. In order to showthatj: B —

E is also a weak S-cofibration consider an arbitrary diagram

E 5 X 5> w

with s €S and sgj = sf.Since j: B— E isan S-cofibration, there exists a morphism

g +E - X



11

g
S

E 7 X > w
g

j1 7 f

in C suchthat g'j =f and sg = sg’. Considering t = 1y : X — X, we can have st = s,

g'j =tfandsg =sg'. ]

Under some moderate assumptions on the set S, it can be proved that weak S-

cofibration always implies S-cofibration.

3.4 Proposition. Let S be the set of morphismsin C.Let Fs=F : C — C[S71] be
the canonical functor. Suppose the following conditions hold:

(@) j:B—>E isaweak S-cofibration.

(b) S admits a calculus of left fractions.

(c) S consists of monomorphisms.

Then j : B - E isan S-cofibration.

Proof. For showingthat j : B — E isan S-cofibration, consider an arbitrary diagram

E 5 X > w

with s €S and sgj = sf. Since s€S and sgj =sf and j + B - E isaweak S-
cofibration, there exista morphism g’': F - Xand t: X — X with t € S such that the

following diagram commotes



?) t S
E X -» X - W
9
j1 i

ie, st =5, g'j=tfandsg = sg’. Itis enough to prove that g'j = f. Since g'j = tf we have
sg'j =stf = sf. Since F is a covariant functor we have F(sg'j) = F(sf), ie,
F(s)F(g')F(j) = F(s)F(f). Since F(s) is an isomorphism in in C[S™!] we have
F(g")F(j) =F(f), ie,F(g'j) = F(f). ByTheorem 1.8, F is faithful. Hence we have g'j =
f. This completes the proof of the Proposition 3.4. |

4. Adams completion and S-fibrations

In [2], Bauer and Dugundji have examined the notion of S-fibration in the category T,
the category of topological spaces and continuous functions; under suitable choice of the set
S they have shown thatamap p : E — B is an S-fibration if and only if it is a Hurewicz
fibration. In this note, under reasonable assumptions we show that a morphism p: E - B

in a category C isan S-fibration if and only if it is a weak S-fibration.

4.1 Theorem. Let S bea saturated family of morhpisms ofa category C and let every object
in C admit an Adams completion. Let S consist of monomorphisms. Then {weak S-
fibrations} = {S-fibrations}.

Proof. The proof follows from Theorem 1.7, Propositions 2.3 and 2.4. ]

The following is a direct consequence of Theorem 4.1.
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4.2 Corollary. Let S be the saturation of a family of morhpisms of a category C and let every
objectin C admitan S-completion. Let S consist of monomorphisms. Then {weak S-

fibrations} = {S-fibrations).

4.3 Note. In the presence of the conditions of Proposition 2.4, we have {weak S-fibrations}

= {S-fibrations}.

4.4 Note. If S contains only the identities of the category C, then {weak S-fibrations} =
{S-fibrations} ([2], Remark 1); this is so because S satisfies the conditions of Propositions

2.4

4.5 Remark. Everything which has been obtained for S-fibration and weak S-fibration can be
dualized in the usual fashion to yield the corresponding results for S-cofibration and weak

S-cofibration [2].

References

[1]  Adams ].F.: Localization and Completion : Lecture Notes in Mathematics, Univ.
of Chicago (1975).

[2]  Bauer F.W. and Dugundji].: Categorical Homotopy and Fibrations : Trans. Amer.
Math. Soc. 140 (1969), 239 - 256.

[3] Deleanu A, Frei A.and Hilton P.J.: Generalized Adams completion: Cahiers de Top.
et Geom. Diff. 15 (1974), 61 - 82.

[4] Gabriel P. and Zisman M.: Calculus of Fractions and Homotopy Theory : Springer-
Verlag, New York (1967).

[5] Mac Lane S. : Categories for the working Mathematicians : Springer-Verlag, New York
(1971).

[6]  Schubert H.: Categories: Springer-Verlag, New York (1972).

-X0X-



