-fibrations and Calculus Left Fractions

Akrur Behera and Sandhya Rani Mohapatra Department of Mathematics National Institute of Technology Rourkela - 769 008 (India)

Abstract

Let $\mathcal C$ be any small $\mathcal U$ -category, where $\mathcal U$ is a fixed Grothendeick universe. Let S be a set of morphisms in the category C. Let $C[S^{-1}]$ be the category of fractions of S and $F_S: C \to C[S^{-1}]$ be the canonical functor. For convenience we write $F_S = F$. Bauer and Dugundji [2] have introduced the concept of S -fibration, weak S -fibration, S -cofibration and weak S -cofibration in the category C and have explored the properties of these concepts. There are some other advantages over the assumption that the set of morphisms S admits a calculus of left (right) fractions $[4, 6]$. In this note we study some cases showing how the assumption that S admits a calculus of left (right) fractions helps us to prove that weak S -fibration implies S -fibration and weak S -cofibration implies S -cofibration.

1. Calculus of left (right) fractions

The concepts of calculus of left fractions and right fraction play a crucial role in constructing the category of fractions $C[S^{-1}]$.

1.1 Definition. ([6], p. 258) A family of morphisms S in the category C is said to admit a calculus of left fractions if

- (a) S is closed under finite compositions and contains identities of C ,
- (b) any diagram

 $X \longrightarrow^S Y$ $f \downarrow$ Z in C with $s \in S$ can be completed to a diagram $X \longrightarrow \begin{array}{c} S \\ \rightarrow \end{array} Y$ $f \downarrow \qquad \qquad \downarrow g$ Z \rightarrow W

with $t \in S$ and $tf = gs$,

(c) given

$$
\begin{array}{rcl}\nS & f & t \\
X & \to & Y & \Rightarrow & Z & \xrightarrow{\longrightarrow} & W \\
\hline\n\end{array}
$$

with $s \in S$ and $fs = gs$, there is a morphism $t : Z \rightarrow W$ in S such that $tf = tg.$

A simple characterization for a family of morphisms S to admit a calculus of left fractions is the following.

1.2 Theorem. ([3], Theorem 1.3, p. 67) Let S be a closed family of morphisms of C satisfying

- (a) if $uv \in S$ and $v \in S$, then $u \in S$,
- (b) every diagram

in C with $s \in S$ can be embedded in a weak push-out diagram

with $t \in S$.

Then S admits a calculus of left fractions.

The notion of a set of morphisms admitting a calculus of right fractions is defined dually.

1.3 Definition. ([6], p. 267) A family S of morphisms in a category C is said to admit a calculus of right fractions if

(a) any diagram

in C with $s \in S$ can be completed to a diagram

$$
W \xrightarrow{t} X
$$

$$
g \downarrow \qquad \qquad \downarrow f
$$

$$
Z \xrightarrow{s} Y
$$

with $t \in S$ and $ft = sg$,

(b) given

$$
\begin{array}{cccc}\n & t & f & s \\
W & \rightarrow & X & \Rightarrow & Y & \rightarrow & Z \\
& g & & & \n\end{array}
$$

with $s \in S$ and $sf = sg$, there is a morphism $t : W \rightarrow X$ in S such that $ft = gt.$

The analog of Theorem 1.2 follows immediately by duality.

1.4 Theorem. ([3], Theorem1.3*, p. 70) Let S be a closed family of morphisms of C satisfying

- (a) if $vu \in S$ and $v \in S$, then $u \in S$,
- (b) any diagram

in C with $s \in S$, can be embedded in a weak pull-back diagram

with $t \in S$.

Then S admits a calculus of right fractions.

We recall the definitions of Adams completion and cocompletion.

1.5. Definition. [4] Let $\mathcal C$ be an arbitrary category and $\mathcal S$ a set of morphisms of $\mathcal C$. Let $C[S^{-1}]$ denote the category of fractions of C with respect to S and $F: C \to C[S^{-1}]$ be the canonical functor. Let δ denote the category of sets and functions. Then for a given object Y of C, $C[S^{-1}](-, Y) : C \rightarrow S$ defines a contravariant functor. If this functor is representable by an object Y_S of C, i.e., $C[S^{-1}](-, Y) \cong C(-, Y_S)$ then Y_S is called the (generalized) Adams completion of Y with respect to the set of morphisms S or simply the S-completion of Y. We shall often refer to Y_S as the completion of Y [4].

The above definition can be dualized as follows:

1.6. Definition. [3] Let \mathcal{C} be an arbitrary category and \mathcal{S} a set of morphisms of \mathcal{C} . Let $\mathcal{C}[S^{-1}]$ denote the category of fractions of C with respect S and $F: \mathcal{C} \to \mathcal{C}[S^{-1}]$ be the canonical functor. Let δ denote the category of sets and functions. Then for a given object *Y* of C, $C[S^{-1}](Y, -) : C \rightarrow S$ defines a covariant functor. If this functor is representable by an object Y_s of C, i.e., $C[S^{-1}](Y, -) \cong C(Y_s, -)$ then Y_s is called the (*generalized*) Adams *cocompletion* of Y with respect to the set of morphisms S or simply the S -cocompletion *of Y*. We shall often refer to Y_s as the cocompletion of Y [3].

The following results will be used in the sequel.

1.7 Theorem. ([3], Theorem 2.10, p. 76) Let S be a saturated family of morphisms of the $category C.$ Then the following three statements are equivalent:

- (a) Every object Y in $\mathcal C$ admits an S-completion.
- (b) S admits a calculus of left fractions, $\lim_{\longrightarrow} P_Y$ exists for all Y, where $P_Y : C(Y;S) \to C(Y;S)$ C, and F_S commutes with $\lim\limits_{\longrightarrow}P_Y.$
- (c) S admits a calculus of left fractions, $\lim_{\longrightarrow} P_Y$ exists for all Y and F_S commutes with all colimits in C .

1.8 Theorem. ([6], Lemma 19.2.6, p. 261) Let C be an arbitrary category and S a set of morphisms of C . Let $C[S^{-1}]$ denote the category of fractions of C with respect to S and $F_S: \mathcal{C} \to \mathcal{C}[S^{-1}]$ be the canonical functor. Let the following hold:

- (a) S consists of monomorphisms.
- (b) S admits a calculus of left fractions.

Then F_S is faithful.

2. S-fibrations

Each class S of morphisms in a category C determines a concept of fibration (and cofibration) in C . We recall the concepts of S-fibration and weak S-fibration from [2].

2.1 Definition. [2] Let *S* be a subset of morphisms of *C*. A morphism $p : E \rightarrow B$ in C is called an *S-fibration* [2] if for each diagram

$$
W \xrightarrow{s} X \xrightarrow{g} E
$$

 $f \searrow \qquad \downarrow p$
 B

with $s \in S$ and $pgs = fs$, there exists a morphism $g' : X \rightarrow E$ in C

$$
W \stackrel{s}{\rightarrow} X \stackrel{g'}{\rightarrow} E
$$

$$
f \searrow \qquad \downarrow p
$$

$$
B
$$

such that $gs = g's$ and $pg' = f$.

2.2 Definition. [2] Let *S* be a subset of morphisms of *C*. A morphism $p : E \rightarrow B$ in C is called a *weak S-fibration* [2] if for each diagram

$$
W \xrightarrow{s} X \xrightarrow{g} E
$$

$$
f \searrow \qquad \downarrow p
$$

$$
B
$$

$$
W \stackrel{s}{\rightarrow} X \stackrel{t}{\rightarrow} X \stackrel{g'}{\rightarrow} E
$$

$$
f \searrow \qquad \downarrow p
$$

$$
B
$$

such that $gs = g's$, $ts = s$ and $pg' = ft$.

The following result is elementary in nature.

2.3 Proposition. S-fibration implies weak S-fibration.

Proof: Let $p : E \rightarrow B$ be an S -fibration in the category C . In order to show that $p : E \rightarrow B$ be an S -fibration in the category C . In order to show that $p : E \rightarrow B$ $E \rightarrow B$ is also a weak S-fibration consider an arbitrary diagram

$$
W \stackrel{s}{\rightarrow} X \stackrel{g}{\rightarrow} E
$$

$$
f \searrow \qquad \downarrow p
$$

$$
B
$$

with $s \in S$ and $pgs = fs$. Since $p : E \rightarrow B$ is a S-fibration, there exists a morphism $g' : X \to E$ in C,

$$
W \xrightarrow{s} X \xrightarrow{g'} E
$$

\n
$$
f \searrow \qquad \downarrow p
$$

\n
$$
B
$$

such that $gs = g's$ and $pg' = f$. Considering $t = 1_X : X \to X$, we can have $gs = g's$ and $pg' = f1_X = ft$. This completes the proof of the Proposition 2.3. ■

Under some moderate assumptions on the set S , it can be proved that weak S fibration always implies S -fibration.

2.4 Proposition. Let S be the set of morphisms in C. Let $F : C \rightarrow C[S^{-1}]$ be the canonical functor. Suppose the following conditions hold :

- (a) $p: E \rightarrow B$ is a weak S-fibration.
- (b) S admits a calculus of left fractions.
- (c) consists of monomorphisms.

Then $p : E \rightarrow B$ is an S-fibration.

Proof: For showing that $p : E \rightarrow B$ is a fibration consider the diagram

$$
W \stackrel{s}{\rightarrow} X \stackrel{g}{\rightarrow} E
$$

$$
f \searrow \qquad \downarrow p
$$

$$
B
$$

with $s \in S$ and $pgs = fs$. Since $s \in S$, $pgs = fs$ and $p : E \rightarrow B$ is a weak fibration, there exist a morphism $g' : X \to E$ and $t : X \to X$ with $t \in S$ such that the following diagram commutes

$$
W \stackrel{s}{\rightarrow} X \stackrel{t}{\rightarrow} X \stackrel{g'}{\rightarrow} E
$$

$$
f \searrow \qquad \downarrow p
$$

$$
B
$$

i.e., $g's = gs$, $ts = s$ and $pg' = ft$. It is enough to prove that $pg' = f$. Since $pg' = ft$ we have $pg's = fts = fs$. Since F is a covariant functor, we have $F(pg's) = F(fs)$, i.e., $F(p)F(g')F(s) = F(f)F(s)$. Since $F(s)$ is an isomorphism in $C[S^{-1}]$ we have $F(p)F(g') = F(f)$, i.e., $F(pg') = F(f)$. By Theorem 1.8, F is faithful. Hence we have $pg' = f$. This completes the proof of the Proposition 2.4. ■

3. S-cofibrations

The dual concepts of S-fibration and weak S-fibration are respectfully S -cofibration and weak S -cofibration. We recall these concepts from [2].

3.1 Definition. [2] Let S be an arbitrary set of morphisms in a category C. A morphism *j* : *B* → *E* ∈ *C* is called an *S-cofibration* if for each diagram

> $E \stackrel{g}{\rightarrow} X \stackrel{s}{\rightarrow} W$ $j \uparrow$ \uparrow \uparrow \boldsymbol{B}

with $s \in S$ and $sgj = sf$ there exists a morphism $g' : E \rightarrow X$

$$
\begin{array}{ccc}\ng' & & & g' \\
E & \to & X & \to & W \\
g & & & \\
j \uparrow & & \nearrow f \\
B\n\end{array}
$$

in C such that $g'j = f$ and $sg = sg'$.

3.2 Definition. [2] A morphism $j : B \rightarrow E \in C$ is called a *weak S-cofibration* if for each diagram

with $s \in S$ and $sgj = sf$ there exists a morphism $g' : E \to X$ and $t : X \to X$ with $t \in S$

$$
g'
$$
\n
$$
E \xrightarrow{\rightarrow} X \xrightarrow{t} X \xrightarrow{S} W
$$
\n
$$
g
$$
\n
$$
j \uparrow \nearrow f
$$
\n
$$
B
$$
\n
$$
g'j = tf \text{ and } sg = sg'.
$$

such that $st = s$, $g'j = tf$ and $sg = sg$

The following result is elementary in nature.

3.3 Proposition. S-cofibration implies weak S-cofibration.

Proof. Let $j : B \to E$ be an S-cofibration in the category C . In order to show that $j : B \to E$ E is also a weak S -cofibration consider an arbitrary diagram

$$
E \stackrel{g}{\rightarrow} X \stackrel{s}{\rightarrow} W
$$

$$
j \uparrow \qquad \nearrow f
$$

$$
B
$$

with $s \in S$ and $sgj = sf$. Since $j : B \rightarrow E$ is an S -cofibration, there exists a morphism $g' : E \rightarrow X$

in C such that $g'j = f$ and $sg = sg'$. Considering $t = 1_X : X \to X$, we can have $st = s$, $g'j = tf$ and $sg = sg'$. ∎

Under some moderate assumptions on the set S , it can be proved that weak S $cofibration$ always implies S -cofibration.

3.4 Proposition. Let S be the set of morphisms in C. Let $F_S = F : C \rightarrow C[S^{-1}]$ be the canonical functor. Suppose the following conditions hold :

- (a) $j : B \rightarrow E$ is a weak S-cofibration.
- (b) S admits a calculus of left fractions.
- (c) consists of monomorphisms.

Then $j : B \rightarrow E$ is an S-cofibration.

Proof. For showing that $j : B \rightarrow E$ is an S-cofibration, consider an arbitrary diagram

$$
E \xrightarrow{g} X \xrightarrow{s} W
$$

$$
j \uparrow \qquad \nearrow f
$$

$$
B
$$

with $s \in S$ and $sgj = sf$. Since $s \in S$ and $sgj = sf$ and $j : B \rightarrow E$ is a weak Scofibration, there exist a morphism $g' : E \to X$ and $t : X \to X$ with $t \in S$ such that the following diagram commotes

i.e., $st = s$, $g'j = tf$ and $sg = sg'$. It is enough to prove that $g'j = f$. Since $g'j = tf$ we have $sg'j = stf = sf$. Since F is a covariant functor we have $F(sg'j) = F(sf)$, i.e., $F(s)F(g')F(j) = F(s)F(f)$. Since $F(s)$ is an isomorphism in in $C[S^{-1}]$ we have $F(g')F(j) = F(f)$, i.e., $F(g'j) = F(f)$. By Theorem 1.8, F is faithful. Hence we have $g'j =$ f. This completes the proof of the Proposition 3.4.

4. Adams completion and S -fibrations

In [2], Bauer and Dugundji have examined the notion of S-fibration in the category T , the category of topological spaces and continuous functions; under suitable choice of the set S they have shown that a map $p : E \to B$ is an S-fibration if and only if it is a Hurewicz fibration. In this note, under reasonable assumptions we show that a morphism $p : E \rightarrow B$ in a category $\mathcal C$ is an S-fibration if and only if it is a weak S-fibration.

4.1 Theorem. Let S be a saturated family of morhpisms of a category C and let every object in C admit an Adams completion. Let S consist of monomorphisms. Then {weak S $fibrations$ } = {S-fibrations}.

Proof. The proof follows from Theorem 1.7, Propositions 2.3 and 2.4.

The following is a direct consequence of Theorem 4.1.

4.2 Corollary. Let \bar{S} be the saturation of a family of morhpisms of a category $\mathcal C$ and let every object in C admit an \bar{S} -completion. Let S consist of monomorphisms. Then {weak \bar{S} fibrations $=\{\bar{S}\text{-}fibrations\}.$

4.3 Note. In the presence of the conditions of Proposition 2.4, we have {weak S -fibrations} $=$ {S-fibrations}.

4.4 Note. If S contains only the identities of the category C, then {weak S-fibrations} = ${S-fibrations}$ ([2], Remark 1); this is so because S satisfies the conditions of Propositions 2.4.

4.5 Remark. Everything which has been obtained for S-fibration and weak S-fibration can be dualized in the usual fashion to yield the corresponding results for S-cofibration and weak S-cofibration [2].

References

- [1] Adams J.F. : *Localization and Completion* : Lecture Notes in Mathematics, Univ. of Chicago (1975).
- [2] Bauer F.W. and Dugundji J. : *Categorical Homotopy and Fibrations* : Trans. Amer. Math. Soc. 140 (1969), 239 - 256.
- [3] Deleanu A., Frei A. and Hilton P.J. : *Generalized Adams completion* : Cahiers de Top. et Geom. Diff. 15 (1974), 61 - 82.
- [4] Gabriel P. and Zisman M.: *Calculus of Fractions and Homotopy Theory* : Springer-Verlag, New York (1967).
- [5] Mac Lane S.: *Categories for the working Mathematicians*: Springer-Verlag, New York (1971).
- [6] Schubert H.: *Categories*: Springer-Verlag, New York (1972).

13