S-fibrations and Calculus Left Fractions

Akrur Behera and Sandhya Rani Mohapatra

Department of Mathematics

National Institute of Technology

Rourkela - 769 008 (India)

Abstract

Let \mathcal{C} be any small \mathcal{U} -category, where \mathcal{U} is a fixed Grothendeick universe. Let S be a set of morphisms in the category \mathcal{C} . Let $\mathcal{C}[S^{-1}]$ be the category of fractions of S and $F_S:\mathcal{C}\to\mathcal{C}[S^{-1}]$ be the canonical functor. For convenience we write $F_S=F$. Bauer and Dugundji [2] have introduced the concept of S-fibration, weak S-fibration, S-cofibration and weak S-cofibration in the category \mathcal{C} and have explored the properties of these concepts. There are some other advantages over the assumption that the set of morphisms S admits a calculus of left (right) fractions [4, 6]. In this note we study some cases showing how the assumption that S admits a calculus of left (right) fractions helps us to prove that weak S-fibration implies S-fibration and weak S-cofibration implies S-cofibration.

1. Calculus of left (right) fractions

The concepts of calculus of left fractions and right fraction play a crucial role in constructing the category of fractions $C[S^{-1}]$.

- **1.1 Definition**. ([6], p. 258) A family of morphisms S in the category C is said to admit a *calculus of left fractions* if
 - (a) S is closed under finite compositions and contains identities of C,
 - (b) any diagram

in C with $s \in S$ can be completed to a diagram

$$\begin{array}{ccc}
X & \xrightarrow{s} & Y \\
f \downarrow & & \downarrow g \\
Z & \xrightarrow{t} & W
\end{array}$$

with $t \in S$ and tf = gs,

(c) given

with $s \in S$ and fs = gs, there is a morphism $t: Z \to W$ in S such that tf = tg.

A simple characterization for a family of morphisms S to admit a calculus of left fractions is the following.

- **1.2 Theorem.** ([3], Theorem 1.3, p. 67) Let S be a closed family of morphisms of \mathcal{C} satisfying
 - (a) if $uv \in S$ and $v \in S$, then $u \in S$,
 - (b) every diagram

 $\begin{array}{ccc}
 & \stackrel{s}{\rightarrow} \\
f \downarrow & \\
\bullet & \\
\end{array}$

in C with $s \in S$ can be embedded in a weak push-out diagram

$$\begin{array}{ccc}
 & \stackrel{s}{\rightarrow} & \bullet \\
f \downarrow & & \downarrow g \\
 & \stackrel{\rightarrow}{\bullet} & \bullet
\end{array}$$

with $t \in S$.

Then S admits a calculus of left fractions.

The notion of a set of morphisms admitting a calculus of right fractions is defined dually.

- **1.3 Definition.** ([6], p. 267) A family *S* of morphisms in a category \mathcal{C} is said to admit a *calculus of right fractions* if
 - (a) any diagram

$$Z \xrightarrow{S} Y$$

in C with $s \in S$ can be completed to a diagram

$$\begin{array}{ccc}
W & \stackrel{t}{\rightarrow} & X \\
g \downarrow & & \downarrow f \\
Z & \xrightarrow{s} & Y
\end{array}$$

with $t \in S$ and ft = sg,

(b) given

with $s \in S$ and sf = sg, there is a morphism $t : W \to X$ in S such that ft = gt.

The analog of Theorem 1.2 follows immediately by duality.

- **1.4 Theorem.** ([3], Theorem1.3*, p. 70) Let S be a closed family of morphisms of \mathcal{C} satisfying
 - (a) if $vu \in S$ and $v \in S$, then $u \in S$,
 - (b) any diagram

 $\downarrow f$ $\stackrel{\bullet}{\underset{s}{\longrightarrow}}$

in C with $s \in S$, can be embedded in a weak pull-back diagram

$$\begin{array}{ccc}
\bullet & \xrightarrow{t} & \bullet \\
g \downarrow & & \downarrow f \\
\bullet & \xrightarrow{s} & \bullet
\end{array}$$

with $t \in S$.

Then S admits a calculus of right fractions.

We recall the definitions of Adams completion and cocompletion.

1.5. Definition. [4] Let \mathcal{C} be an arbitrary category and S a set of morphisms of \mathcal{C} . Let $\mathcal{C}[S^{-1}]$ denote the category of fractions of \mathcal{C} with respect to S and $F: \mathcal{C} \to \mathcal{C}[S^{-1}]$ be the canonical functor. Let S denote the category of sets and functions. Then for a given object Y of \mathcal{C} , $\mathcal{C}[S^{-1}](-,Y): \mathcal{C} \to S$ defines a contravariant functor. If this functor is representable by an object Y_S of \mathcal{C} , i.e., $\mathcal{C}[S^{-1}](-,Y)\cong \mathcal{C}(-,Y_S)$ then Y_S is called the

(*generalized*) *Adams completion of* Y with respect to the set of morphisms S or simply the S-completion of Y. We shall often refer to Y_S as the *completion* of Y [4].

The above definition can be dualized as follows:

1.6. Definition. [3] Let \mathcal{C} be an arbitrary category and S a set of morphisms of \mathcal{C} . Let $\mathcal{C}[S^{-1}]$ denote the category of fractions of \mathcal{C} with respect S and $F: \mathcal{C} \to \mathcal{C}[S^{-1}]$ be the canonical functor. Let S denote the category of sets and functions. Then for a given object Y of \mathcal{C} , $\mathcal{C}[S^{-1}](Y,-): \mathcal{C} \to S$ defines a covariant functor. If this functor is representable by an object Y_S of \mathcal{C} , i.e., $\mathcal{C}[S^{-1}](Y,-)\cong \mathcal{C}(Y_S,-)$ then Y_S is called the (*generalized*) *Adams cocompletion* of Y with respect to the set of morphisms S or simply the S-cocompletion of Y. We shall often refer to Y_S as the cocompletion of Y [3].

The following results will be used in the sequel.

- **1.7 Theorem.** ([3], Theorem 2.10, p. 76) *Let S be a saturated family of morphisms of the category C. Then the following three statements are equivalent*:
 - (a) Every object Y in C admits an S-completion.
 - (b) S admits a calculus of left fractions, $\lim_{\to} P_Y$ exists for all Y, where $P_Y : C(Y;S) \to C$, and F_S commutes with $\lim_{\to} P_Y$.
 - (c) S admits a calculus of left fractions, $\lim_{\longrightarrow} P_Y$ exists for all Y and F_S commutes with all colimits in C.
- **1.8 Theorem.** ([6], Lemma 19.2.6, p. 261) Let C be an arbitrary category and S a set of morphisms of C. Let $C[S^{-1}]$ denote the category of fractions of C with respect to S and $F_S: C \to C[S^{-1}]$ be the canonical functor. Let the following hold:
 - (a) S consists of monomorphisms.
 - (b) S admits a calculus of left fractions.

Then F_S is faithful.

2. S-fibrations

Each class S of morphisms in a category C determines a concept of fibration (and cofibration) in C. We recall the concepts of S-fibration and weak S-fibration from [2].

2.1 Definition. [2] Let S be a subset of morphisms of C. A morphism $p:E\to B$ in C is called an S-fibration [2] if for each diagram

$$W \xrightarrow{S} X \xrightarrow{g} E$$

$$f \searrow \qquad \downarrow p$$

$$B$$

with $s \in S$ and pgs = fs, there exists a morphism $g' : X \rightarrow E$ in C

$$W \xrightarrow{S} X \xrightarrow{g'} E$$

$$f \searrow \qquad \downarrow p$$

$$B$$

such that gs = g's and pg' = f.

2.2 Definition. [2] Let *S* be a subset of morphisms of \mathcal{C} . A morphism $p: E \to B$ in \mathcal{C} is called a *weak S-fibration* [2] if for each diagram

$$W \xrightarrow{s} X \xrightarrow{g} E$$

$$f \searrow \qquad \downarrow p$$

$$B$$

with $s \in S$ and pgs = fs, there exists a morphism $g': X \to E$ in \mathcal{C} and a morphism $t: X \to X$ with $t \in S$

$$W \xrightarrow{s} X \xrightarrow{t} X \xrightarrow{y'} E$$

$$f \searrow \qquad \downarrow p$$

$$B$$

such that gs = g's, ts = s and pg' = ft.

The following result is elementary in nature.

2.3 Proposition. *S-fibration implies weak S-fibration.*

Proof: Let $p: E \to B$ be an S-fibration in the category C. In order to show that $p: E \to B$ is also a weak S-fibration consider an arbitrary diagram

$$W \xrightarrow{s} X \qquad \xrightarrow{g} E$$

$$f \searrow \qquad \downarrow p$$

$$B$$

with $s \in S$ and pgs = fs. Since $p : E \rightarrow B$ is a S-fibration, there exists a morphism $g' : X \rightarrow E$ in C,

$$W \stackrel{s}{\rightarrow} X \qquad \qquad g' \\ \stackrel{\cdots}{\rightarrow} E \\ \stackrel{g}{\rightarrow} g \qquad \downarrow p$$

$$B$$

such that gs = g's and pg' = f. Considering $t = 1_X : X \to X$, we can have gs = g's and $pg' = f1_X = ft$. This completes the proof of the Proposition 2.3.

Under some moderate assumptions on the set S, it can be proved that weak Sfibration always implies S-fibration.

- **2.4 Proposition.** *Let* S *be the set of morphisms in* C. *Let* $F: C \to C[S^{-1}]$ *be the canonical functor. Suppose the following conditions hold:*
 - (a) $p: E \rightarrow B$ is a weak S-fibration.
 - (b) S admits a calculus of left fractions.
 - (c) S consists of monomorphisms.

Then $p : E \rightarrow B$ is an S-fibration.

Proof: For showing that $p: E \to B$ is a fibration consider the diagram

$$W \xrightarrow{s} X \qquad \xrightarrow{g} E$$

$$f \searrow \qquad \downarrow \gamma$$

$$B$$

with $s \in S$ and pgs = fs. Since $s \in S$, pgs = fs and $p : E \to B$ is a weak fibration, there exist a morphism $g' : X \to E$ and $t : X \to X$ with $t \in S$ such that the following diagram commutes

$$W \xrightarrow{S} X \xrightarrow{t} X \qquad g' \xrightarrow{\longrightarrow} E$$

$$f \searrow \qquad \downarrow p$$

$$B$$

i.e., g's = gs, ts = s and pg' = ft. It is enough to prove that pg' = f. Since pg' = ft we have pg's = fts = fs. Since F is a covariant functor, we have F(pg's) = F(fs), i.e.,

F(p)F(g')F(s) = F(f)F(s). Since F(s) is an isomorphism in $\mathcal{C}[S^{-1}]$ we have F(p)F(g') = F(f), i.e., F(pg') = F(f). By Theorem 1.8, F is faithful. Hence we have pg' = f. This completes the proof of the Proposition 2.4.

3. S-cofibrations

The dual concepts of *S*-fibration and weak *S*-fibration are respectfully *S*-cofibration and weak *S*-cofibration. We recall these concepts from [2].

3.1 Definition. [2] Let *S* be an arbitrary set of morphisms in a category \mathcal{C} . A morphism $j: B \to E \in \mathcal{C}$ is called an *S-cofibration* if for each diagram

$$E \xrightarrow{g} X \xrightarrow{s} W$$

$$j \uparrow \nearrow f$$

$$B$$

with $s \in S$ and sgj = sf there exists a morphism $g' : E \rightarrow X$

in C such that g'j = f and sg = sg'.

3.2 Definition. [2] A morphism $j: B \to E \in \mathcal{C}$ is called a *weak S-cofibration* if for each diagram

$$E \xrightarrow{g} X \xrightarrow{s} W$$

$$j \uparrow \nearrow f$$

$$B$$

with $s \in S$ and sgj = sf there exists a morphism $g' : E \rightarrow X$ and $t : X \rightarrow X$ with $t \in S$

such that st = s, g'j = tf and sg = sg'.

The following result is elementary in nature.

3.3 Proposition. *S-cofibration implies weak S-cofibration.*

Proof. Let $j: B \to E$ be an S-cofibration in the category C. In order to show that $j: B \to E$ is also a weak S-cofibration consider an arbitrary diagram

$$E \xrightarrow{g} X \xrightarrow{s} W$$

$$j \uparrow \nearrow f$$

$$B$$

with $s \in S$ and sgj = sf. Since $j: B \to E$ is an S-cofibration, there exists a morphism $g': E \to X$

$$\begin{array}{cccc}
g' \\
E & \xrightarrow{\cdots} & X & \xrightarrow{S} & W \\
g & & & & & \\
j \uparrow & \nearrow f & & & \\
B & & & & & \\
\end{array}$$

in $\mathcal C$ such that g'j=f and sg=sg'. Considering $t=1_X:X\to X$, we can have st=s, g'j=tf and sg=sg'.

Under some moderate assumptions on the set *S*, it can be proved that weak *S*-cofibration always implies *S*-cofibration.

- **3.4** Proposition. Let S be the set of morphisms in C. Let $F_S = F : C \to C[S^{-1}]$ be the canonical functor. Suppose the following conditions hold:
 - (a) $j: B \to E$ is a weak S-cofibration.
 - (b) S admits a calculus of left fractions.
 - (c) S consists of monomorphisms.

Then $j : B \rightarrow E$ is an S-cofibration.

Proof. For showing that $j : B \rightarrow E$ is an *S*-cofibration, consider an arbitrary diagram

$$E \xrightarrow{g} X \xrightarrow{s} W$$

$$j \uparrow \nearrow f$$

$$B$$

with $s \in S$ and sgj = sf. Since $s \in S$ and sgj = sf and $j : B \to E$ is a weak S-cofibration, there exist a morphism $g' : E \to X$ and $t : X \to X$ with $t \in S$ such that the following diagram commotes

i.e., st = s, g'j = tf and sg = sg'. It is enough to prove that g'j = f. Since g'j = tf we have sg'j = stf = sf. Since F is a covariant functor we have F(sg'j) = F(sf), i.e., F(s)F(g')F(j) = F(s)F(f). Since F(s) is an isomorphism in in $C[S^{-1}]$ we have F(g')F(j) = F(f), i.e., F(g'j) = F(f). By Theorem 1.8, F is faithful. Hence we have g'j = f. This completes the proof of the Proposition 3.4.

4. Adams completion and S-fibrations

In [2], Bauer and Dugundji have examined the notion of S-fibration in the category \mathcal{T} , the category of topological spaces and continuous functions; under suitable choice of the set S they have shown that a map $p:E\to B$ is an S-fibration if and only if it is a Hurewicz fibration. In this note, under reasonable assumptions we show that a morphism $p:E\to B$ in a category \mathcal{C} is an S-fibration if and only if it is a weak S-fibration.

4.1 Theorem. Let S be a saturated family of morhpisms of a category C and let every object in C admit an Adams completion. Let S consist of monomorphisms. Then $\{weak\ S-fibrations\} = \{S-fibrations\}$.

Proof. The proof follows from Theorem 1.7, Propositions 2.3 and 2.4.

The following is a direct consequence of Theorem 4.1.

- **4.2 Corollary.** Let \bar{S} be the saturation of a family of morhpisms of a category C and let every object in C admit an \bar{S} -completion. Let S consist of monomorphisms. Then $\{weak\ \bar{S}$ -fibrations $\} = \{\bar{S}$ -fibrations $\}$.
- **4.3 Note.** In the presence of the conditions of Proposition 2.4, we have {weak S-fibrations} = {S-fibrations}.
- **4.4 Note.** If S contains only the identities of the category C, then {weak S-fibrations} = {S-fibrations} ([2], Remark 1); this is so because S satisfies the conditions of Propositions 2.4.
- **4.5 Remark.** Everything which has been obtained for *S*-fibration and weak *S*-fibration can be dualized in the usual fashion to yield the corresponding results for *S*-cofibration and weak *S*-cofibration [2].

References

- [1] Adams J.F.: *Localization and Completion*: Lecture Notes in Mathematics, Univ. of Chicago (1975).
- [2] Bauer F.W. and Dugundji J.: *Categorical Homotopy and Fibrations*: Trans. Amer. Math. Soc. 140 (1969), 239 256.
- [3] Deleanu A., Frei A. and Hilton P.J.: *Generalized Adams completion*: Cahiers de Top. et Geom. Diff. 15 (1974), 61 82.
- [4] Gabriel P. and Zisman M.: *Calculus of Fractions and Homotopy Theory*: Springer-Verlag, New York (1967).
- [5] Mac Lane S.: *Categories for the working Mathematicians*: Springer-Verlag, New York (1971).
- [6] Schubert H.: *Categories*: Springer-Verlag, New York (1972).