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Abstract 

 

Let   𝒞   be any small  𝒰-category, where  𝒰    is a fixed Grothendeick universe.  Let   𝑆    

be a set of morphisms in the category  𝒞. Let  𝒞[𝑆−1]  be the category of fractions of  𝑆   and  

𝐹𝑆 ∶  𝒞  →  𝒞[𝑆−1]      be the canonical functor.     For convenience we write    𝐹𝑆 = 𝐹.   Bauer 

and Dugundji [2] have introduced the concept of 𝑆-fibration, weak 𝑆-fibration,  𝑆-cofibration 

and  weak   𝑆-cofibration in the category  𝒞 and have explored the properties of these 

concepts.    There are some other advantages over the assumption that the set of morphisms  

𝑆  admits a calculus of left (right) fractions [4, 6].  In this note  we study some cases showing 

how the assumption that  𝑆  admits a calculus of left (right) fractions  helps us to prove that 

weak 𝑆-fibration implies 𝑆-fibration and weak 𝑆-cofibration implies 𝑆-cofibration. 

  

1. Calculus of left (right) fractions 

 

The concepts of calculus of left fractions and right fraction play a crucial role in 

constructing the category of fractions   𝒞[ 𝑆−1]. 

 

1.1 Definition. ([6], p.  258)  A family of morphisms    𝑆   in the category   𝒞   is said to admit a   

calculus of   left fractions   if   

(a) 𝑆   is  closed  under  finite compositions and contains identities  of   𝒞, 

(b) any diagram 
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𝑋
𝑠

→ 𝑌

𝑓 ↓

𝑍

 

           in  𝒞   with   𝑠 ∈ 𝑆   can be completed to a diagram   

𝑋
𝑠

→ 𝑌

𝑓 ↓ ↓ 𝑔

𝑍
𝑡

→ 𝑊

 

           with  𝑡 ∈  𝑆  and   𝑡𝑓 = 𝑔𝑠, 

(c) given         

𝑋
𝑠
→ 𝑌

𝑓
⇉
𝑔

𝑍
𝑡

⇢ 𝑊 

with  𝑠 ∈ 𝑆    and   𝑓𝑠 = 𝑔𝑠,   there is a morphism   𝑡 ∶   𝑍 →  𝑊  in   𝑆  such that   

𝑡𝑓 = 𝑡𝑔. 

 

 A simple characterization for a family of morphisms   𝑆  to admit a calculus of left 

fractions is the following. 

 

1.2 Theorem. ([3], Theorem 1.3, p. 67)   Let  𝑆  be a closed family of morphisms of   𝒞  satisfying  

(a) if   𝑢𝑣 ∈ 𝑆  and   𝑣 ∈ 𝑆,   then   𝑢 ∈ 𝑆, 

(b) every diagram  

•
𝑠

→ •

𝑓 ↓

•

 

 

           in  𝒞   with   𝑠 ∈ 𝑆   can be embedded in a weak   push-out   diagram    
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•
𝑠

→ •

𝑓 ↓ ↓ 𝑔

•
𝑡

→ •

 

           with   𝑡 ∈ 𝑆. 

Then   𝑆   admits a calculus of left fractions. 

 

The notion of a set of morphisms admitting a calculus of right fractions is defined 

dually. 

 

1.3 Definition. ([6], p. 267)   A   family    𝑆   of morphisms in a category    𝒞    is said to admit a 

calculus of right fractions   if   

(a) any diagram  

𝑋

↓ 𝑓

𝑍
𝑠

→ 𝑌

 

 

           in   𝒞  with    𝑠 ∈ 𝑆    can be completed to a diagram  

 

𝑊
𝑡

→ 𝑋

𝑔 ↓ ↓ 𝑓

𝑍
𝑠

→ 𝑌

 

          with   𝑡 ∈ 𝑆   and   𝑓𝑡 = 𝑠𝑔, 

(b) given  

 

𝑊
𝑡

⇢ 𝑋
𝑓
⇉
𝑔

𝑌
𝑠
→ 𝑍 
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           with  𝑠 ∈ 𝑆   and   𝑠𝑓 = 𝑠𝑔, there is a morphism  𝑡  ∶    𝑊 →   𝑋  in  𝑆 such that  

𝑓𝑡 = 𝑔𝑡. 

 

The analog of Theorem 1.2 follows immediately by duality. 

 

1.4 Theorem. ([3], Theorem1.3∗, p. 70) Let  𝑆  be a closed family of morphisms of   𝒞 satisfying   

(a) if    𝑣𝑢 ∈ 𝑆  and   𝑣 ∈ 𝑆,   then  𝑢 ∈ 𝑆, 

(b) any diagram 

•

↓ 𝑓

•
𝑠

→ •

 

 

           in   𝒞  with     𝑠 ∈ 𝑆,  can be embedded in a weak pull-back diagram 

 

•
𝑡

→ •

𝑔 ↓ ↓ 𝑓

•
𝑠

→ •

 

          with   𝑡 ∈  𝑆.  

Then     𝑆   admits a calculus of right fractions. 

 

We recall the definitions of Adams completion and cocompletion. 

 

1.5. Definition. [4]   Let  𝒞  be an arbitrary category and  𝑆  a set of morphisms of  𝒞.   Let   

𝒞[𝑆−1]   denote the category of fractions of  𝒞  with respect to   𝑆   and  𝐹 ∶  𝒞 → 𝒞[𝑆−1]  be 

the canonical functor.  Let   𝒮  denote the category of sets and functions. Then for a given 

object  𝑌  of  𝒞,   𝒞[𝑆−1](−, 𝑌)  ∶   𝒞 →   𝒮   defines a contravariant functor.   If this functor is 

representable by an object  𝑌𝑆   of    𝒞,   i.e.,   𝒞[𝑆−1](−, 𝑌)   ≅   𝒞(−, 𝑌𝑆)  then  𝑌𝑆  is called the 
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(generalized ) Adams completion of   𝑌  with respect to the set of morphisms   𝑆    or simply 

the   𝑆-completion of    𝑌.  We shall often refer to     𝑌𝑆    as the completion   of    𝑌  [4]. 

 

The above definition can be dualized as follows: 

 

1.6. Definition. [3] Let  𝒞   be an arbitrary category and   𝑆  a set of morphisms of  𝒞.  Let 

 𝒞[𝑆−1]   denote the category of fractions of  𝒞  with respect 𝑆 and  𝐹: 𝒞 →  𝒞[𝑆−1]  be the 

canonical functor.  Let  𝒮  denote the category of sets and functions. Then for a given object  

𝑌  of 𝒞,    𝒞[𝑆−1](𝑌, −) ∶  𝒞 →   𝒮  defines a covariant functor. If this functor is representable 

by an object   𝑌𝑆  of  𝒞, i.e.,  𝒞[𝑆−1](𝑌, −) ≅ 𝒞(𝑌𝑆, −)  then   𝑌𝑆  is called the (generalized) Adams 

cocompletion of   𝑌 with respect to the set of morphisms   𝑆    or simply the   𝑆-cocompletion 

of   𝑌. We shall often refer to     𝑌𝑆    as the cocompletion of     𝑌  [3]. 

 

The following results will be used in the sequel. 

 

1.7  Theorem.  ([3], Theorem 2.10, p. 76) Let   𝑆   be a saturated family of morphisms of the 

category   𝒞.  Then the following three statements are equivalent : 

(a) Every object  𝑌  in  𝒞  admits an  𝑆-completion. 

(b) 𝑆  admits a calculus of left fractions,  𝑙𝑖𝑚
⟶

𝑃𝑌  exists for all  𝑌,  where  𝑃𝑌 ∶  𝒞(𝑌; 𝑆)  →

 𝒞, and  𝐹𝑆   commutes with  𝑙𝑖𝑚
⟶

𝑃𝑌. 

(c) 𝑆  admits a calculus of left fractions,  𝑙𝑖𝑚
⟶

𝑃𝑌  exists for all     𝑌   and    𝐹𝑆   commutes 

with  all colimits in  𝒞. 

 

1.8  Theorem. ([6], Lemma 19.2.6, p. 261) Let   𝒞  be an arbitrary category and  𝑆  a set of 

morphisms of    𝒞.   Let   𝒞[𝑆−1]   denote the category of fractions of  𝒞  with respect to   𝑆   

and    𝐹𝑆 ∶  𝒞 → 𝒞[𝑆−1]   be the canonical functor.  Let the following hold : 

(a) 𝑆   consists of monomorphisms. 

(b) 𝑆   admits a calculus of left fractions. 

Then   𝐹𝑆   is faithful. 
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2.    𝑺-fibrations  

 

Each class   𝑆  of morphisms in a category    𝒞   determines a concept of fibration  (and 

cofibration) in    𝒞.  We recall the concepts of  𝑆-fibration and weak 𝑆-fibration from [2].  

 

2.1 Definition.  [2] Let  𝑆  be a subset of morphisms of   𝒞.    A morphism  𝑝 ∶  𝐸 ⟶  𝐵  in     

𝒞   is called an   𝑆-fibration  [2]  if for each diagram 

 

𝑊
𝑠

→ 𝑋
𝑔
→ 𝐸

          𝑓 ↘       ↓ 𝑝

𝐵

 

 

with    𝑠 ∈ 𝑆 and  𝑝𝑔𝑠 = 𝑓𝑠,  there exists a morphism 𝑔′   ∶   𝑋  →   𝐸   in  𝒞  

 

𝑊
𝑠

→ 𝑋

𝑔′

⇢

𝑔
→

𝐸

𝑓 ↘        ↓ 𝑝

𝐵

 

such   that  𝑔𝑠 = 𝑔′𝑠 and 𝑝𝑔′ = 𝑓. 

 

2.2 Definition.  [2] Let  𝑆  be a subset of morphisms of    𝒞.   A morphism  𝑝  ∶   𝐸  ⟶   𝐵 in   

𝐶   is called a weak   𝑆-fibration     [2]  if for each diagram 

 

𝑊
𝑠

→ 𝑋
𝑔
→ 𝐸

𝑓 ↘           ↓ 𝑝

𝐵
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with  𝑠 ∈ 𝑆  and     𝑝𝑔𝑠 = 𝑓𝑠,   there exists a morphism 𝑔′  ∶    𝑋 → 𝐸  in  𝒞  and a morphism                 

𝑡   ∶   𝑋 →  𝑋    with   𝑡 ∈ 𝑆 

 

𝑊
𝑠

→ 𝑋
𝑡

→ 𝑋

𝑔′

⇢

𝑔
→

𝐸

𝑓 ↘          ↓ 𝑝

𝐵

 

such   that 𝑔𝑠 = 𝑔′𝑠 ,  𝑡𝑠 = 𝑠 and    𝑝𝑔′ = 𝑓𝑡. 

 

The following result is elementary in nature. 

 

2.3  Proposition.     S-fibration   implies weak    𝑆-fibration. 

 

Proof:   Let   𝑝 ∶   𝐸  →    𝐵   be an    𝑆-fibration in the category   𝒞.  In order to show that  𝑝  ∶

  𝐸  →   𝐵  is also a weak    𝑆-fibration consider an arbitrary diagram  

 

𝑊
𝑠

→ 𝑋
𝑔
→ 𝐸

𝑓 ↘ ↓ 𝑝

𝐵

 

 

with  𝑠 ∈ 𝑆  and 𝑝𝑔𝑠 = 𝑓𝑠. Since    𝑝 ∶  𝐸 →  𝐵  is a 𝑆-fibration, there exists a morphism 

𝑔′   ∶  𝑋 →  𝐸 in  𝒞,    

𝑊
𝑠

→ 𝑋

𝑔′

⇢

𝑔
→

𝐸

𝑓 ↘ ↓ 𝑝

𝐵
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such   that 𝑔𝑠 = 𝑔′𝑠  and  𝑝𝑔′ = 𝑓. Considering   𝑡 = 1𝑋 ∶  𝑋 →  𝑋, we can have 𝑔𝑠 = 𝑔′𝑠 and   

𝑝𝑔′ = 𝑓1𝑋 = 𝑓𝑡.    This completes the proof of the Proposition 2.3.                                               ∎ 

                                                                                                      

Under some moderate assumptions on the set  𝑆,  it can be  proved that  weak   𝑆-

fibration  always  implies  𝑆-fibration.  

 

2.4      Proposition.   Let    𝑆  be the set of morphisms in  𝒞. Let    𝐹 ∶   𝒞 →  𝒞[𝑆−1]  be the 

canonical functor.  Suppose the following conditions hold : 

(a) 𝑝 ∶   𝐸 →  𝐵  is a weak   𝑆-fibration. 

(b) 𝑆  admits a calculus of left fractions. 

(c) 𝑆   consists of monomorphisms. 

Then   𝑝  ∶   𝐸 →  𝐵   is an    𝑆-fibration. 

 

Proof:  For showing that   𝑝 ∶  𝐸 → 𝐵  is a fibration consider the diagram  

 

𝑊
𝑠

→ 𝑋
𝑔
→ 𝐸

𝑓 ↘   ↓ 𝑝

𝐵

 

 

with 𝑠 ∈ 𝑆 and  𝑝𝑔𝑠 = 𝑓𝑠.  Since   𝑠 ∈ 𝑆,   𝑝𝑔𝑠 = 𝑓𝑠 and  𝑝 ∶   𝐸 →  𝐵  is a weak fibration, 

there exist a morphism 𝑔′  ∶    𝑋 →  𝐸  and  𝑡  ∶   𝑋  →   𝑋  with 𝑡 ∈ 𝑆 such that the following 

diagram commutes 

𝑊
𝑠

→ 𝑋
𝑡

→ 𝑋

𝑔′

⇢

𝑔
→

𝐸

𝑓 ↘       ↓ 𝑝

𝐵

 

 

i.e.,  𝑔′𝑠 = 𝑔𝑠,  𝑡𝑠 = 𝑠  and 𝑝𝑔′ = 𝑓𝑡. It is enough to prove that 𝑝𝑔′ = 𝑓.  Since 𝑝𝑔′ = 𝑓𝑡 we 

have 𝑝𝑔′𝑠 = 𝑓𝑡𝑠 = 𝑓𝑠. Since 𝐹 is a covariant functor, we have  𝐹(𝑝𝑔′𝑠) = 𝐹(𝑓𝑠),   i.e., 
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𝐹(𝑝)𝐹(𝑔′)𝐹(𝑠) = 𝐹(𝑓)𝐹(𝑠). Since  𝐹(𝑠)  is an isomorphism in     𝒞[𝑆−1]   we have   

𝐹(𝑝)𝐹(𝑔′) = 𝐹(𝑓), i.e., 𝐹(𝑝𝑔′) = 𝐹(𝑓).    By Theorem   1.8,  𝐹 is faithful.   Hence we have   

𝑝𝑔′ = 𝑓.   This completes the proof of the Proposition 2.4.                                                                           ∎ 

 

3.   𝑺-cofibrations   

 

The dual concepts of 𝑆-fibration and weak 𝑆-fibration are   respectfully      𝑆-cofibration   

and weak 𝑆-cofibration. We recall these concepts from [2]. 

 

3.1 Definition.   [2]  Let  𝑆  be an arbitrary set of morphisms in a category  𝒞.   A morphism  

𝑗 ∶  𝐵 → 𝐸 ∈  𝒞  is called an 𝑆-cofibration  if for each diagram  

 

𝐸
𝑔
→ 𝑋

𝑠
→ 𝑊

𝑗 ↑ ↗ 𝑓

𝐵

 

 

with  𝑠 ∈ 𝑆  and  𝑠𝑔𝑗 = 𝑠𝑓  there exists a morphism  𝑔′  ∶  𝐸  →   𝑋 

 

𝐸

𝑔′

⇢
→
𝑔

𝑋
𝑠

→ 𝑊

𝑗 ↑ ↗ 𝑓

𝐵

 

 

in  𝒞  such that   𝑔′𝑗 = 𝑓 and  𝑠𝑔 = 𝑠𝑔′. 

 

3.2 Definition. [2]  A morphism   𝑗  ∶  𝐵 →  𝐸  ∈  𝒞  is called a weak   𝑆-cofibration  if for each 

diagram  
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𝐸
𝑔
→ 𝑋

𝑠
→ 𝑊

𝑗 ↑ ↗ 𝑓

𝐵

 

 

with 𝑠 ∈ 𝑆 and  𝑠𝑔𝑗 = 𝑠𝑓 there exists a morphism 𝑔′ ∶  𝐸 →  𝑋 and     𝑡 ∶  𝑋 →  𝑋 with 𝑡 ∈ 𝑆 

 

𝐸

𝑔′

⇢
→
𝑔

𝑋
𝑡

→ 𝑋
𝑠

→ 𝑊

𝑗 ↑ ↗ 𝑓

𝐵

 

such that 𝑠𝑡 = 𝑠,  𝑔′𝑗 = 𝑡𝑓 and 𝑠𝑔 = 𝑠𝑔′. 

 

The following result is elementary in nature. 

 

3.3  Proposition.  𝑆-cofibration   implies weak    𝑆-cofibration. 

 

Proof.  Let  𝑗 ∶  𝐵 → 𝐸 be an  𝑆-cofibration in the category    𝒞.  In order to show that 𝑗 ∶  𝐵 →

𝐸  is also a weak  𝑆-cofibration consider an arbitrary diagram  

 

𝐸
𝑔
→ 𝑋

𝑠
→ 𝑊

𝑗 ↑ ↗ 𝑓

𝐵

 

 

with  𝑠 ∈ 𝑆  and  𝑠𝑔𝑗 = 𝑠𝑓. Since   𝑗 ∶  𝐵 → 𝐸   is an    𝑆-cofibration,  there exists a morphism  

𝑔′  ∶  𝐸  →   𝑋 
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𝐸

𝑔′

⇢
→
𝑔

𝑋
𝑠

→ 𝑊

𝑗 ↑ ↗ 𝑓

𝐵

 

                                   

in  𝒞  such that   𝑔′𝑗 = 𝑓 and  𝑠𝑔 = 𝑠𝑔′. Considering  𝑡 =  1𝑋 ∶ 𝑋 → 𝑋, we can have 𝑠𝑡 = 𝑠,  

𝑔′𝑗 = 𝑡𝑓 and 𝑠𝑔 = 𝑠𝑔′.                                                                                                                                 ∎ 

 

Under some moderate assumptions on the set  𝑆, it can be proved that weak 𝑆-

cofibration always implies 𝑆-cofibration. 

 

3.4  Proposition. Let   𝑆  be the set of morphisms in    𝒞. Let    𝐹𝑆 = 𝐹 ∶   𝒞 →  𝒞[𝑆−1]  be 

the canonical functor.   Suppose the following conditions hold : 

(a) 𝑗 ∶ 𝐵 → 𝐸    is a weak   𝑆-cofibration. 

(b) 𝑆  admits a calculus of left fractions. 

(c) 𝑆   consists of monomorphisms. 

 Then   𝑗  ∶  𝐵 →  𝐸    is an  𝑆-cofibration. 

 

Proof.  For showing that      𝑗  ∶  𝐵 →  𝐸    is an  𝑆-cofibration, consider an arbitrary diagram  

 

𝐸
𝑔
→ 𝑋

𝑠
→ 𝑊

𝑗 ↑ ↗ 𝑓

𝐵

 

 

with  𝑠 ∈ 𝑆  and  𝑠𝑔𝑗 = 𝑠𝑓.   Since  𝑠 ∈ 𝑆  and  𝑠𝑔𝑗 = 𝑠𝑓  and       𝑗  ∶  𝐵 →  𝐸    is a weak  𝑆-

cofibration, there  exist a morphism 𝑔′ ∶  𝐸 →  𝑋 and     𝑡 ∶  𝑋 →  𝑋 with 𝑡 ∈ 𝑆 such that the 

following diagram commotes 
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𝐸

𝑔′

⇢
→
𝑔

𝑋
𝑡

→ 𝑋
𝑠

→ 𝑊

𝑗 ↑ ↗ 𝑓

𝐵

 

 

i.e.,  𝑠𝑡 = 𝑠,  𝑔′𝑗 = 𝑡𝑓 and 𝑠𝑔 = 𝑠𝑔′.  It is enough to prove that 𝑔′𝑗 = 𝑓.  Since 𝑔′𝑗 = 𝑡𝑓 we have  

𝑠𝑔′𝑗 = 𝑠𝑡𝑓 =  𝑠𝑓.   Since   𝐹   is a covariant functor we have   𝐹(𝑠𝑔′𝑗) = 𝐹(𝑠𝑓),  i.e.,  

𝐹(𝑠)𝐹(𝑔′)𝐹(𝑗) = 𝐹(𝑠)𝐹(𝑓).   Since  𝐹(𝑠)  is an isomorphism  in    in     𝒞[𝑆−1]   we  have   

𝐹(𝑔′)𝐹(𝑗) = 𝐹(𝑓),   i.e., 𝐹(𝑔′𝑗) = 𝐹(𝑓).    By Theorem   1.8,  𝐹 is faithful. Hence we have   𝑔′𝑗 =

𝑓.  This completes the proof of the Proposition 3.4.                                                                           ∎ 

 

4.  Adams completion and  𝑺-fibrations 

 

In [2], Bauer and Dugundji have examined the notion of  𝑆-fibration in  the category  𝒯, 

the category of topological spaces and continuous functions;  under suitable choice of the set   

𝑆   they have shown that a map 𝑝 ∶ 𝐸 → 𝐵  is  an 𝑆-fibration    if and only if it is a Hurewicz 

fibration. In this note, under reasonable assumptions we show that a morphism  𝑝 ∶ 𝐸 → 𝐵    

in a category  𝒞  is an  𝑆-fibration  if and only if it is a weak 𝑆-fibration. 

 

4.1 Theorem.  Let  𝑆   be a saturated family of morhpisms of a category   𝒞  and let every object 

in   𝒞   admit an Adams completion. Let   𝑆   consist of monomorphisms. Then  {weak 𝑆-

fibrations} =  {𝑆-fibrations}. 

 

Proof.  The proof follows from Theorem 1.7, Propositions 2.3 and 2.4.                          ∎ 

 

The following is a direct consequence of Theorem 4.1. 
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4.2 Corollary.  Let  𝑆̅   be the saturation of a family of morhpisms of a category  𝒞  and let every 

object in   𝒞 admit an   𝑆̅-completion.  Let   𝑆  consist of monomorphisms. Then  {weak   𝑆̅-

fibrations} =  {𝑆̅-fibrations}. 

 

4.3 Note.  In the presence of the conditions of Proposition 2.4, we have {weak   𝑆-fibrations} 

=  {𝑆-fibrations}. 

 

4.4 Note.  If   S  contains only the identities of   the category  𝒞,  then {weak 𝑆-fibrations} =  

{𝑆-fibrations} ([2], Remark 1); this is so because   𝑆   satisfies the conditions of Propositions 

2.4. 

 

4.5 Remark. Everything which has been obtained for 𝑆-fibration and  weak 𝑆-fibration can be 

dualized in the usual fashion to yield the corresponding results for 𝑆-cofibration and  weak  

𝑆-cofibration [2]. 
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