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ABSTRACT 

The present day structures and machineries are designed based on optimizing of multi-

objectives such as maximum strength, maximum life, minimum weight and minimum cost. 

Due to this they are flexible and allow having a very high level of stresses. This leads to 

development of cracks in their elements. Many engineering structures may have structural 

defects such as cracks due to long-term service. So it is very much essential to know the 

property of structures and response of such structures in various cases. The present article 

deals with finite element based vibration analysis of a cracked beam. The beam is modeled 

using the Timoshenko beam theory. The governing equation of motion has been derived by 

the Hamilton’s principle. In order to solve the governing equation two noded beam element 

with two degrees of freedom (DOF) per node has been considered. In this work the effect of 

structural damping has also been incorporated in the finite element model. The analysis is 

carried out by using state space model in time domain.  
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1. INTRODUCTION 

Presence of crack in a structural member is a serious threat to the performance of the 

structure. The effects of crack on the dynamic behaviour of the structural elements have been 

the subject of several investigations for the last few decades. Due to the existence of such 

cracks the frequencies of natural vibration, amplitudes of forced vibration, and areas of 

dynamic stability change. In order to identify the magnitude and location of the crack, 

analysis of these changes is essential. The information from the analysis enables one to 

determine the degree of sustainability of the structural element and the whole structure.  

Beams are one of the most commonly used elements in structures and machines, and fatigue 

cracks are the main cause of beams failure. The introduction of local flexibility due to 

presence of transverse crack in a structural member whose dimension depends on the number 

of degrees of freedom considered [1].  It has been observed that the local flexibility matrix is 



  

 

 

mainly appropriate for the analysis of a cracked beam if one employs an analytical method by 

solving the differential equations piece wisely [2]. One way to detect cracks on structures is 

to employ modal testing in which changes in modal parameters such as variations in 

frequencies and mode shapes are used to detect damage. The detection of structural damage 

through changes in frequencies was discussed [3]. Moreover, the damage identification 

basically based on changes in the nodes of mode shapes [4]. It was demonstrated that 

appropriate use of resonances and anti-resonances can be used to avoid the non-uniqueness of 

damage location for symmetrical beams.  

Identification of cracks in beam structures using Timoshenko and Euler beam formulation has 

been studied [5]. The Timoshenko and Euler beam formulations have been used to estimate 

the influence of crack size and location on natural frequencies of cracked beam. Frequency 

contour method has been used to identify the crack size and location properly. The free 

vibration analysis of cantilever beam was discussed. It has been observed that the presence of 

crack in the beam, will affect the natural frequency. The magnitude for the change of natural 

frequency depends on the change of (number, depth and location) for the crack.Also the 

change of dynamic property will effect on stiffness and dynamic behaviour.  

A method was used to find the lowest four natural frequencies of the cracked structure by 

finite element method [6]. It has been obtained the approximate crack location by using 

Armon's Rank-ordering method that uses the above four natural frequencies. A method for 

shaft crack detection have proposed [7] which is based on combination of wave-let based 

elements and genetic algorithm. The experimental investigations of the effects of cracks and 

damages on the structures have been reported [8]. The reduction of Eigen frequencies and 

sensitivity analysis to localize a crack in a non-rotating shaft coupled to an elastic foundation 

have been studied [9]. The shaft was modelled by the finite element method and coupled to 

an experimentally identified foundation model. The different damage scenarios by reducing 

the local thickness of the selected elements at different locations along with finite element 

model (FEM) for quantification and localization of damage in beam-like structures is 

investigated [10]. An analytical as well as experimental approach to the crack detection in 

cantilever beams by vibration analysis was discussed [11]. 

The finite element method for static and dynamic analysis of a cracked prismatic beam on the 

basis of Hamilton's principle was discussed [12]. The crack section was modelled as an 

elastic hinge by considering fracture mechanics theory. The component mode synthesis 



  

 

 

technique along with finite element method for free vibration analysis of uniform and stepped 

cracked beam with circular cross section was discussed [13] . The finite element analysis of a 

cracked cantilever beam and the relation between the modal natural frequencies with crack 

depth, modal natural frequency with crack location has been studied [14]. Only single crack 

at different depth and at different location are evaluated. The analysis reveals a relationship 

between crack depth and modal natural frequency. An overall flexibility matrix instead of 

local flexibility matrix in order to find out the total flexibility matrix and the stiffness matrix 

of the cracked beam is considered [15]. It has been observed that the consideration of ‘overall 

additional flexibility matrix’, due to the presence of the crack, can indeed give more accurate 

results than those obtained from using the local flexibility matrix. The overall additional 

flexibility matrix parameters are computed by 128-point (1D) and 128 ×128(2D) Gauss 

quadrature and then further best fitted using the least-squares method. The best-fitted 

formulas agree very well with the numerical integration results [16]. After getting the 

stiffness matrix of a cracked beam element standard FEM procedure can be followed, which 

will lead to a generalized eigenvalue problem and thus the natural frequencies can be 

obtained. 

This article exclusively focused on vibration analysis of a cracked nonprismatic Timoshenko 

cantilever beam by using finite element analysis. The governing equation of motion has been 

derived by using Hamilton’s principle. In order to solve the governing equation two noded 

beam element with two degrees of freedom (DOF) per node has been considered. The effect 

of structural damping has also been incorporated in the finite element model. 

 

2. MATHEMATICAL FORMULATION 

This mathematical formulation dealt with finite element modeling of uncracked beam and 

cracked beam which are discussed in the following sections. 

2.1 Finite Element Modeling of Uncracked Timoshenko Beam  

In order for modeling the cross section of the beam the shape function profile can be 

represented as  
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Where A(x) is represented as the area at any position x of the beam.A0 is the cross section area 

near the clamped end of the beam. Lb is the length of the beam.c is the taper values which 

vary from 0 to 1. 

 

Figure 1. A cantilever beam with crack subjected to shear force and bending moment.  

Figure 1 shows a cantilever beam of circular cross-section having diameter ‘D’ with a single 

transverse crack with constant depth ‘a’. The crack is at a distance of ‘Xc’ from the clamped 

end of the beam. The beam is divided into number of equal number of finite elements having 

length ‘Le’. The dynamic equations of motion for system are derived using 

Hamilton’sprinciple as 
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0
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Where‘∂’ is the variation, t1  and  t2 are the starting and finish time, KE is the total kinetic 

energy, PE is the total potential energy and Wp is the total work done by the external 

mechanical force. The sum of (KE−PE+Wp) is called the Lagrangian La. 

 

1

2 b

T

b
V

PE S TdV .            (3) 

1

2 b

T

b b
V

KE ρ q qdV .            (4) 

   
1

.
fn

p i i i
i

W q x Q x

  .           (5) 

 

V is the volume, q is the displacement, x is the position along the beam, ρ is the density and 

the subscripts b represents the beam material. Now using Eqs. (3), (4) and (5) and putting it in 

in Eq. (2) we get  
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This equation can now be used to solve for the equations of motion of dynamical mechanical 

system. By using finite element formulations the displacement field in terms of shape 

functions can be represented as  

  ( , ) wq x t N w , 

  '( , ) θq x t N w .            (7) 

 

Where [Nw] and [Nθ] are the shape functions for displacement and rotation and {w} is the 

nodal displacements. Using Eqs. (7), we can simplify the variational indicator to include 

terms that represent physical parameters. By doing this the equations describing the system 

become more recognizable when compared to those of a typical system and help give 

physical meaning to the parameters in the equations of motion. The mass matrix for the 

system can be written as 
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The stiffness matrix can be written as: 
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Now considering all the equations in Eq. (6), the equation will become  
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Taking the integral of the above equation leaves the dynamic equations. 
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The Eq. (11) now represents the mechanical system and can be used to determine the motion 

of the beam. In addition to this, the system should have some type of additional mechanical 

damping that needs to be accounted for. The amount of mechanical damping added to the 

model was determined from experimental results. This is done using proportional damping 

methods and the damping ratio that is predicted from the measured frequency response 

function. With the damping ratio known, proportional damping can be found as [17]. 
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Where α and β are determined from 
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Where ζi is the damping ratio found from frequency response of the structure.Hence the Eq. 

(11) will become   
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Where [M], [C] and [K] are the global mass, damping and stiffness matrix of the system .The 

mass matrix and stiffness matrix have been calculated by numerical integration using Gauss 

quadrature. 

2.2 Finite Element Modeling of Cracked Timoshenko Beam Element    

From figure (1) the various geometric dimensions can be obtained as  
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2

1 22 α .                   (14) 

The additional strain energy due to the existence of the crack can be expressed as [18], [19]. 
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Where ‘G’ is the strain energy release rate function. The strain energy release rate function 

can be expressed as  
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Where E΄=E for plane stress problem, E΄=E/1-µ
2 for plane strain problem. KI2, KI3, KII2  are 

the stress intensity factors. The values of stress intensity factor can be can be expressed as
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Using Paris equation      
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  The overall additional flexibility matrix Cij can be obtained as [19] 
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  By combining the equations we get 
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2.2.1 Overall Additional Flexibility Matrix Under Conventional FEM Co-Ordinate          

System 

 

Figure 2. Cracked Timoshenko beam element. 

       Figure 2 shows a cracked beam element with generated loading. The beam is subjected to 

shearing force ‘V’ and bending moment ‘M’ at each node. The corresponding displacements 

are denoted as ‘y’ and ‘θ’. ‘Lc’ denotes the distance between the right hand side end node and 

the crack location. ‘a’ denotes the crack depth. The beam element has length ‘Le’, cross-

sectional area ‘A’ and flexural rigidity ‘EI’.Under the FEM co-ordinate and notation system, 

the relationship between the displacement and the forces can be expressed as 
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2.2.2 Flexibility Matrix For Intact Timoshenko Beam Element  

The flexibility matrix Cintact of the intact Timoshenko beam element can be written as 
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2.2.3 Total Flexibility Matrix Of The Cracked Timoshenko Beam Element  

The Total flexibility matrix of the cracked Timoshenko beam element is obtained by the 

combination of over-all additional flexibility matrix and flexibility matrix of an intact beam 

actovltotal CCC int                      (23) 

2.2.4 Stiffness Matrix Of A Cracked Timoshenko Beam Element  

Through the equilibrium conditions, the stiffness matrix ‘Kc’ of a cracked beam element can 

be obtained as follows [20] [21] 

T
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2.3 State Space Representation 

This method is used to derive the uncoupled equations governing the motion of the free 

vibrations of the system in terms of principal coordinates by introducing a linear 

transformation between the generalized coordinates w (t) and the principal coordinates η(t) 

[22].The displacement vector r(t) can be approximated by using a transformation matrix 

between the generalised coordinates and the modal coordinates as  

( ) ( )w t η t            (25) 

Where ϕ is the modal matrix containing the eigenvectors representing the vibratory modes. 

Representing Eq. (25) in the state-space form as  
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 ,         (26) 

Where [A] is the system matrix, [B] is the input matrix, [C] is the output matrix, {X} is the 

state vector and {u} is the input vector. 

3.  RESULT AND DISCUSSION 

By considering the mathematical formulations discussed, a MATLAB code has been 

established for analysis of Timoshenko beam. The developed MATLAB code is validated 

and different results are presented. For the analysis a uniform cantilever beam of circular 

cross section is considered for validation of present code. The length and diameter of the 



  

 

 

beam are 1000mm and 20 mm. Material properties for the beam are considered as E = 206 

GPA, ρ = 7800 kg/m
3
 and µ = 0.3. The beam is subjected to 1 N at the end. The length of 

beam is divided into finite  numbers of small elements. The fundamental frequencies are 

calculated by using the present code developed and compared with the exact solution 

obtained [23] in Table 1. From Table 1 it is observed that results obtained from the present 

code are in good agreement with the exact results [23]. 

Table 1. Comparison of natural frequencies of cantilever beam 

 

Natural 

frequency(rad/sec) 

Exact [23] Present code 

ω1 87.19 88.80 

ω2 556.04 556.92 

ω3 1584.69 1560.46 

 

The effect of taper on the natural frequencies is shown in table 2.The value of taper varies from 0.2 to 

0.8.From the table it is observed that as the taper value increases the natural frequencies decreases. 

 

Table 2. Effect of taper on natural frequencies 

 

Natural frequency(rad/sec) 

c ω1 ω2 ω3 

0.2 89.03 557.80 1563.82 

0.3 89.04 557.94 1564.56 

0.4 88.94 557.40 1563.47 

0.5 88.69 555.88 1559.71 

0.6 88.20 552.93 1552.02 

0.7 87.36 547.84 1538.49 

0.8 86.00 539.51 1516.00 

  

Table [3-6] represents the natural frequencies of a cracked Timoshenko beam at various crack 

positions (such as 0.2, 0.4, 0.6 and 0.8) and relative crack depths (such as 0.2, 0.3, 0.4, and 

0.5). The taper value of the beam is taken as 0.5. 

 

 

 

 

 

 



  

 

 

Table 3. Natural frequencies of Cracked Timoshenko beam, Xc/L=0.075. 

 

ω (rad/sec) Xc/L α/D=0.2 α/D =0.3 α/D =0.4 α/D =0.5 

ω1 0.075 86.77 86.47 86.34 86.28 

ω2 0.075 544.45 542.55 541.70 541.29 

ω3 0.075 1530.05 1524.64 1522.22 1521.07 

 

Table 4. Natural frequencies of Cracked Timoshenko beam, Xc/L=0.275. 

ω (rad/sec) Xc/L α/D=0.2 α/D =0.3 α/D =0.4 α/D =0.5 

ω1 0.275 86.83 86.52 86.37 86.31 

ω2 0.275 551.71 547.07 544.98 543.97 

ω3 0.275 1552.34 1538.58 1532.34 1529.33 

 

Table 5. Natural frequencies of Cracked Timoshenko beam, Xc/L=0.475. 

ω (rad/sec) Xc/L α/D=0.2 α/D =0.3 α/D =0.4 α/D =0.5 

ω1 0.475 86.34 86.21 86.16 86.13 

ω2 0.475 554.31 548.85 546.31 545.08 

ω3 0.475 1555.35 1540.66 1533.90 1530.63 

 

Table 6. Natural frequencies of Cracked Timoshenko beam, Xc/L=0.675. 

ω (rad/sec) Xc/L α/D=0.2 α/D =0.3 α/D =0.4 α/D =0.5 

ω1 0.675 86.06 86.04 86.03 86.02 

ω2 0.675 545.13 543.15 542.20 541.72 

ω3 0.675 1556.73 1542.09 1535.13 1531.71 

 

It is observed from the tables that natural frequencies of cracked beam decreases as crack 

depth increases at a particular position. This is due to fact that presence of crack reduces the 

stiffness matrix of the beam hence reduces the natural frequency. Figures 3-5 show the mode 

shapes for uncracked and cracked Timoshenko beam with relative crack position of 0.275 and 

relative crack depths of 0.2, 0.3, 0.4 and 0.5.The taper value of the beam is taken as 0.5. It is 

observed that due to presence of crack with various relative crack depths there are variations 

in mode shapes.  



  

 

 

 

Figure  3. First mode shapes of uncracked (a=0.0) and  cracked beam (a=0.2,0.3,0.4,0.5), XC/L=0.275. 

 

Figure 4. mode shapes of uncracked (a=0.0) and  cracked beam (a=0.2,0.3,0.4,0.5), XC/L=0.275. 

 

Figure 5. Third mode shapes of uncracked (a=0.0) and  cracked beam (a=0.2,0.3,0.4,0.5), XC/L=0.275. 



  

 

 

By using the  state space representation the dynamic analysis of the cracked beam has been 

conducted.The load of 1 N  is applied at the end of cantilever beam.The frequency response 

of uncracked and cracked beam with relative crack depths of 0.2,0.3,0.4 and 0.5  has been 

shown in figure 6.From the figure it is observed that the amplitude of cracked beam at first 

natural frequency  decreases for all cases as compared to uncracked beam. 

 

Figure 6. Frequency response  of uncracked (a=0.0) and  cracked beam (a=0.2,0.3,0.4,0.5), XC/L=0.275. 

 

Figure 7. Frequency response  of cracked beam (a=0.3), XC/L=0.275.in time domain 

The frequency response of cracked beam in time domain is shown in figure 7. From the 

figure it is concluded that the frequency response of cracked beam dies out after sometime. 

This is due to the presence of structural damping which is responsible for reduction in 

amplitude. 

4. CONCLUSION 

The present article focused on the vibration analysis of a cracked beam using finite element 

formulation. The beam is modeled using the Timoshenko beam theory by considering the 



  

 

 

rotary inertia and shear deformations. Two noded beam elements with two degrees of 

freedom at each node is considered in order to solve the governing equation. From the 

analysis it is observed that due to presence of crack in a beam the natural frequencies 

decreases as the relative crack depth increases. Again from dynamic analysis it is observed 

that the amplitude of vibration of cracked beam decreases by varying the relative crack 

depths as compared to uncracked beam. 
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