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LINE SHAPE PARAMETERS FOR HCl AND HF
IN A CO, ATMOSPHERE*

P. Varanasy, S, K. SaranGt and G. D. T. TEIwANIT

Department of Mechanics, State University of New York, Stony Brook, N.Y. 11790, U.S.A.

Abstract—High-resolution (0.1 cm ™ ') measurements have been performed on several CQO,-broadened lines in
the fundamentals of HCI*® and HCP’. Line intensities, half-widths and shapes have been determined at room
temperature. Half-widths in HCI-CQ, and HF-CO, collisions have been computed for several temperatures
employing Anderson’s theory. The measured shapes of HCI lines broadened by CO, are described by a semi-

empirical super-Lorendzian line shape, given by
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with # = L.75. The curve-of-growth for this line shape has been derived in terms of a function similar to the
Ladenburg-Reiche function. Absorption between R(0) and P(1) is affected by the appearance of several pressure-
induced Q-branch lines, at the pressures from one to ten atmospheres used in the present study.
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INTRODUCTION

Tue work reported in this paper has been prompted by the recent discovery'! of traces
of HCI and HF in the atmosphere of Venus, which is composed predominantly of CO,.
Both HCI and HF are present in such trace amounts (partial pressures of the order of
107* and 10 ° torr™) as to make them optically thin. Line-width information may not
really be required to estimate their abundances. However, since the rotational lines in
both HC1 and HF bands are well separated and, hence, well resolved, they would seem
singularly attractive for studying line-formation in the Cytherean atmosphere. A thorough
understanding of the purely absorbing profiles of HCl (and HF) lines in CQO, atmospheres
should provide an important first look at the more complex line-shape studies in a
scattering-absorbing atmosphere. Furthermore, planetary transmission studies, besides
the Cytherean case, require line-shape information for dipolar molecules (H,0, NH;,
HCI, H,S, etc.)in atmospheres that are composed predominantly of quadrupolar molecules
(N,, H,, CQ,, etc.). Hence, an extensive experimental study of collision-broadened line
shapes in dipole—quadrupole collisions may have practical, as well as academic, utility.

* Supported by—NASA under Grant No. NGR-33-015-139,
t Present address: Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tenn.
37916, US.A.
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Two suitable molecules for study are HCl and CO, since both are linear molecules ; HCl is
strongly polar while CO, is a large quadrupole.
The work which we report here is similar to that of BENEDICT er al.®

EXPERIMENTAL DETAILS

We have employed an Ebert-mounted grating spectrophotometer with a resolution
of approximately 0.1 cm ™! to study the spectra of HCI*® and HCI®7 between 2700 and
3100 cm ™. Six absorption cells have been used. Three glass cells of lengths equal to 0.04,
1 and 10 cm were sealed with infrared-grade fused-silica (“Infrasil””) windows. Calcium
fluoride windows were used on a 2 cm long glass-bodied absorption cell and a meter long
White cell. A 5 cm long stainless steel high-pressure cell was also used with fused-silica
windows. The cell length of the smallest cell was calibrated using well-established lines in
the CO fundamental® Mixtures of HCIl and CO, were prepared with technical grade
(99 per cent) HCI and Coleman Instrument grade (99.99 per cent pure) CO,. The gases
were allowed to mix for several days in stainless-steel cylinders. The concentration of HCI
was determined by measuring the intensities of severai lines and calibrating them against
the intensities obtained using pure HCI. Each gas mixture was used for at least a week ;
no appreciable loss in the concentration of HC1 was observed. Three ratios, equal to 0.03,
0.075 and 0.165, of the partial pressure of HCI to the total pressure were used. The spectra
were taken at a scanning rate of 0.15cm™!/min with a time constant of 8 sec and with
1 per cent noise.

LINE INTENSITIES IN THE FUNDAMENTALS OF HCI’® AND HCIY

At least three sets of published data'®** are available for the line intensities in the
fundamental bands of HCI*® and HC1?". Two sets®* are in wide disagreement with each
other. Since line intensity is an important parameter in determining line shape, we have
remeasured the intensities of HCI*® lines using pure HCI samples and the 0.04 cm cell.
At this path-length and pressures of I and 2 atm, practically no overlapping was observed
between the lines of isotopic pairs at a spectral resolution of 0.1 cm ™!, Our data shown in
Table 1 are the results of independent measurements made on the two isotopic lines. The
estimated accuracy of our line-intensity measurements is about 3 per cent.

~
MEASUREMENT AND COMPUTATION OF CO,-BROADENED HALF-WIDTHS

Line widths have been measured using a “curve-of-growth” procedure, which was
coupled with an iterative process of matching the observed and computed transmission
contours. The curve-of-growth measurements were carried out at total pressures of I and
2 atm. Before the exact form of the line shape was recognized the Ladenburg-Reiche
curve-of-growth was used. These estimates were then revised according to the modified
curve of growth (see Appendix) for the super-Lorentzian profile which best fitted the
experimental data. The resulting half-widths were not only consistent with the new curve-
of-growth, but also matched the data obtained under conditions when direct line-width
measurements were possible.



TABLE 1. LINE INTENSITIES, S, (cm™2 atm ™ !), IN THE FUNDAMENTAL BANDs oF HCI®S anp HCI?7 aT 295°K

S, (cm~Zatm™1)

HCPS HCP

Line

s{f&; Ref.(2) Ref(4)  Ref(5) ;{1‘]’53 Ref. (2} Rel (4  Ref (5)
PI8) 1.44 — 141 132 048 0428 0463 0433
(%) 2.50 246 270 240 0.90 0918 0883 =
P(6) 452 416 454 417 1.54 1.44 1.48 1.34
P(5) 6.73 579 672 = 218 1.93 219 204
P(3) 9.00 7.58 891 - 293 248 290 173
P(3) 9.41 8.49 932 _ 102 310 304 279
P(2) 820 746 816 — 272 254 266 254
Pi1) 500 456 496 _ 161 1,54 161 158
R(0) 525 471 490 172 161 161
&(1) 898 852 = 290 2,95 296
R2) 1020 9.61 — 300 313 142
RG) 1000 943 _ 340 346 325
R(@) 792 765 _ 261 247 27
R(5) 6.60 598 - 220 203 1.98
R(6) 424 160 174 140 .40 1.25
R(7) 210 211 212 0.68 0.661 0.701
R(8) 107 1.07 1.09 0.44 0.418 0.359
RE) 0480 0481 0.476 0.17 — 0.156
RO0) 0194 = 0.197 0.067 _ 0.654
R 00625  — 0.0689 0022 _ 0.0220

Siend = 140+ 10cm 2 atm !

The measured half-widths in HCI-CO, collisions are compared in Fig. | with the data
of BABROV et al.“¥) together with a computation using Anderson-Tsao-Curnutte theory.(”?
In our studies, no distinction has been drawn between the balf-widths of HC1*? and HCI?’
lines, or of the P and R branch lines with the same m, since they were nearly equal. The
data of Babrov et al. are for the first eight lines in the P branch, whereas our data cover
both P and R branches up to R(12). Half-widths computed at 200 and 250°K, at which
no experimental data are currently available, are also shown in Fig. 1. Half-width com-
putationsin HF-COQ; collisions, which are practically identical to those involving HCI-CO,
collisions, were also made using Anderson’s theory at 200, 250 and 295°K. Our results
and a comparison with the experimental data of SHAw and LoveLL!"® are shown in Fig. 2.
The various molecular constants that have entered the half-width calculations are given
in Table 2.

In the notation used in Table 2, u is the dipole moment, 8 is the quadrupole moment,
oy and a, are, respectively, the parallel and perpendicular components of polarizability,
¢ is the ionization potential, By, the ground state rotational constant and oy, refers to
the collision diameter according to kinetic theory.
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room temperature, for lines in the fundamentals of HCI?® and HCI?” are shown by circles
and triangles.!*

MEASUREMENT OF LINE SHAPES

The results shown in Figs. 3-7 are typical of our line-shape measurements in the HCI
fundamental. Such data were obtained with a line-width to spectral slit-width ratio of
5to 1 or greater. Hence, slit-function corrections were found to be quite negligible. This fact

TABLE 2. INDIVIDUAL MOLECULAR CONSTANTS

HCl HF CO, Ref.
p (1078 esu, cm) 1.07 1.74 0 8
#(1072° e5.0. cm?) 38 26 4.3 8
2, (1072% cm?) 313 396 40.6 9
a, (10 2% cm?) 23.9 17.2 19.5 9
e (107 ergs) 2211 2.836 2.307 10
By (cn1™') 10.4 20.6 0.389 11
Opin (A) 3.308 3.1 4,07 9
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FiG. 2. CO,-broadened half-widths of HF lines computed at 200, 250 and 295°K using Anderson—
Tsao- Curnutte theory. Circles represent the experimental data of SHAw and LoverL!' at 295°K.

was verified by a computer program that was carried out for Lorentz profiles and super-
Lorentz profiles including the distortion due to slit-function corrections. In this program
the computed transmission at each frequency accounts for the absorption due to three
isotopic pairs, i.e. six lines, on either side of its wave number location, making a total of
twelve lines at each wave number. The solid curves in Figs. 3-7 are the results of such
computations for the super-Lorentz profile given by the following expression for the

absorption coefficient:
s —vallr 1!
k, = _("sin f) [(_" ”") +1J (1)
w2 7 ¥

with y = 1.75.(See Appendix for a detailed discussion on how we arrive at this expression.)
The dotted lines in Figs. 5 and 6 are for Lorentz lines, for which
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F1G. 3. Comparison of measured and super-Lorentz [equation (1)] profiles of spectral transmission
of CO,-broadened lines R{0) in the fundamentals of HC13® and HCI?7. T = 295°K.
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F1G. 5. Comparison of measured and theoretical profiles of spectral transmission of CO,-broadened

lines R(9) and R(L0} in the fundamentals of HCI1** and HCI?". The solid curve represents super-

Lorentz profile [equation (1)] and the dotted curve is for the Lorentz profile [equation (2)}).
T = 295°K.
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F1G. 6. Comparison of measured, Lorentz {dotted) and super-Lorentz [equation (1), solid curve]
profiles of spectral transmission in the fundamentals of HCI*® and HCI*?, between 2900 and
3000 cm ™, at 295°K.
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F1G. 7. Comparison of measured and super-Lorentz [equation (1}] profiles of spectral transmission
in the zero gaps of the fundamentals of HCI*® and HCI7, at 295°K.

MEASUREMENT AND EMPIRICAL DETERMINATION OF LINE-SHAPE
PARAMETERS FOR THE PRESSURE-INDUCED Q-BRANCH

We see, from the data shown in Fig, 7, a pressure induced Q-branch in the “zero gap”
between the lines P(1) and R(0). Influence of the Q-branch can also be observed, though
much less directly, in Fig. 6, as it appears in the form of enhanced absorption in the troughs
between the R-branch lings with J < 4. From Figs. 3-5and from data that were taken under
similar conditions for the rest of the R-branch lines, it is clear that the super-Lorentz
contour given by equation (1) describes the line shape quite accurately. The agreement
between the theoretical and the measured line contours is excellent in two conspicuous
cases. In the case of low J-lines shown in Figs. 3 and 4, the path length is too small to
exhibit any influence due to the wing of the @-branch. As pointed out earlier, the contribu-
tions from neighboring lines (excepting the @-branch) have already been taken into account
in drawing the theoretical contours. In the second case (shown in Fig. 5) the lines under
consideration are nearly 200cm™" away from the central Q-branch, so that, even for a
path length of 10cm and a total pressure of 6.1 atm, we see little evidence of Q-branch
contribution to the local absorption. Thus, once we accept the line profile as given by
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equation (1) as a true representation of the shape of all the R-branch lines, we may attribute
the striking difference between the measured and the computed transmission shown in
Figs. 6 and 7 to the absorption by the Q-branch. This is obvious in Fig. 7 and is less so in
Fig. 6. However, we note in Fig. 6 that the excess in the measured absorption over the
computed value in the troughs between the lines is increasing as we approach the location
ofthe Q-branch. Therefore, if we plot the difference between the measured and the computed
transmission as a function of wave number, we obtain the absorption contours for the
Q-branch such as those shown in Figs. 8 and 10. The absorption coefficient referred to in
Fig. 8 is defined by the relation

k, = (p)™" log, [T, e/ Ts ) (3)
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FiG. 8. Apparent spectral absorption coefficients for pressure-induced Q-branches in the funda-
mentals of HCI** and HCI?” at 295°K.

where 1, ., and 7, pg are, respectively, the experimental transmission and the computed
non-Lorentz transmission which accounts for only the P and R branch lines; p is the
partial pressure of HC1 and [ is the cell length.

In Fig. 9 we show the local (spectral) absorption coefficients at five frequencies in the
Q-branch, as obtained from the data in Fig. 8 and plotted against the total pressure. The
linear dependence of k, on total pressure, which is a constant multiple of the partial pressure
of the perturbing gas (CQ, in this case), is a well known characteristic of pressure-induced
absorption. Hence it is more useful to work with the quantity k,/p,; which is plotted in
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Fig. 10 as a function of frequency. The experimental data beyond 2900 cm ™! are obtained
from Fig. 6 by using equation (3). From spectral absorption coefficient data such as those
shown in Fig. 10, it should be possible, at least in a semi-empirical manner, to arrive at
some estimates for the strengths and widths as well as shapes of the individual (though
thoroughly blended) lines of the pressure-induced @-branch. A first and approximate set
of conclusions based upon such procedure is discussed in the last section.

CONCLUSIONS

We focus our attention first at the line intensities given in Table 1. The most striking
feature is the agreement among all measurements listed in the table for the R-branch lines
with m > 8, for both HCI*® and HCI®’. Thus one may safely say that the intensities of
these lines appear to be established. Intensities of these lines are what we have actually
used in determining the composition of our HCI-CO, mixtures. The intensity data for
lines in the R-branch with m < 8 and of all the lines in the P branch obtained by using the
samples (mixtures) thus calibrated were consistent with the data obtained using pure HC
samples. They are also in excellent agreement with the data of BaBroV et al.** for the
lines in the P-branch. Thus, we believe the intensity estimates of BeNepicT et al.’?! and of
ToTH et al® may be in error. We are unable to locate the possible sources of error.

Qur estimate for the total integrated intensity of the entire band is arrived at by adding
the intensities of all of the lines we have measured. P-branch lines with m > 8 and R-branch
lines with m > 12, which have not been included in Table 1, might contribute about
2 per cent to the total intensity.'*’ Hence, our estimate should be accurate within the S per
cent error limits we have already quoted for the line intensity data and the additional error
of 2 per cent we have just mentioned. 1t is interesting to observe that our result is precisely
the “lower limit” obtained by PENNER and WEBER'® using an absorption cell of length
equal to 0.5 and pure HCI at pressures up to 20 atm. Their measurements for larger path-
lengths (see Fig. 5 of Ref. 6) asymptotically approach this limit as the product pi goes to
zero. Thus, a reinterpretation of their data may be a plausible means of resolving a long-
sustained “controversy” between the low “high-resolution estimates’ based upon line-
intensity measurements (Refs. 2, 4, 5 and this study) and the high “low-resolution estimates”
of PENNER and WEBER'® (and of others mentioned in Ref. 6).

By means of data such as those shown in Figs. 3-6, we are convinced that the semi-
empirical line shape given by equation (1)is an accurate fit of the experimental line contours.
It is a well-known result in the statistical (or quasi-static) line-broadening theory'®-'2) that
the shape of spectral lines subject to a statistical (or quasi-static) perturbation by inter-
molecular potentials, which vary with intermolecular distance as +cr ™", is given by

ky ~ (= vg) ™"

at frequencies far from the line center v,. In the case of HCI-CQ, collisions the dominant
interaction is due to dipole-quadrupole forces for which n = 4. Thus, we have

n=m+3)/n=1175,

which is precisely the value used by us. The line shapes given by statistical theories have
two inherent drawbacks.!*? Firstly, the profiles are not symmetrical about the line center
unless y = 2, which is the case for resonant dipole—dipole forces. Secondly, the theery fails
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for frequencies near the line-center. Thus we find it necessary to “improvise”™ a little and
(i) artificially make the shape symmetrical by taking only the absolute value of (v —v,) and
(ii) introduce the second term (equal to unity) in the denominator of equation (1). The first
step is dictated by the apparent symmetrical shape observed experimentally in the infrared
and the second step is necessary 1o preserve the central portion of a line. The actual form
of the second term in the denominator of equation (1) is prompted by the fact that for
n = 2, we recover the Lorentz line-shape. The justification for developing this particular
algebraic form of the profile, however, rests quite heavily upon the remarkable success
with which it describes the experimental shape of an entire line. (See Figs. 3-5.)

In Figs. 1 and 2, we show comparison of experimental half-widths with those computed
using Anderson’s theory. The theory seems to match fairly well the experimental data
(Fig. 1) for HCl lines over a wide range of values of the quantum number m excepting the
“hump” portion between m = 5 and m = 8. In Fig. 2 for HF-CQO, collisions, we note
good agreement between the theoretical half-widths and the data of SHaw and LoveLi!!#
for m < 6. Further experimental work on CQO,-broadened HF lines, especially on lines
with m > 7, is clearly warranted to establish the trend of the v2 vs. m curves for large
values of m.

Anderson’s theory is essentially an impact-broadening theory which necessarily re-
quires the time spent by the molecules in a collision, which interrupts the radiation, to be
negligible in comparison with the mean time between the collisions. This assumption leads
to a generalized Lorentz line shape that takes line-shift also into account. On the other
hand, a statistical broadening theory is built upon the exact opposite viewpoint. [t requires
that the time spent in a collision be comparable with the mean time between collisions
(hence, the label “*quasi-static™). It is also implicit in the basic [ramework of the statistical
theory that the collisions are no longer binary as in the case of impact-broadening theories.
The utter inadequacy of the Lorentz lineshape in HCI-CO, collisions observed in the
present study makes it difficult to conceive of the collisions as impact phenomena. There-
fore, we can only view upon the success with which one could apply Anderson’s theory
to HCI-CO, collisions as to imply that the strength of the Anderson-Tsao—Curnutte
approach lies not so much in the basic assumptions discussed above, but in the detailed,
and fairly effective, manner in which the important intermolecular interactions are taken
into account by the theoretical model.

The line shape introduced in this paper for dipole-quadrupole collisions could have
conceivable application in similar cases of broadening. For example, in NH;-H,,
H,O0-N,, H,0-CO,, H,S5-H,, HF-CQO,, etc. In the case of NH;-H, collisions some
preliminary studies seem to show some evidence in this direction. These and other line-
shape studies (involving H,0-N, and H,0-CQ,) will be published at a later date.

Finally, we wish to present semi-empirical estimates for the pressure-induced Q-branches
of HCI** and HCI®?. We make the following salient assumptions:

{a) The relative intensities of lines with different J’s but belonging to the same isotopic
species are proportional to the Boltzmann factors of the rotational levels of the unperturbed
molecule.

(b) The frequency separations between HCI*> and HCI?” lines are the same as in the
P- and R-branches.

{c}) The measured line intensities of the two species of each isotopic pair bear the same
ratio as do their abundances, ie. a ratio of HCI®®:HC13" = 3.07:1.
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{d) The transition probabilities for the Q-branch lines are the quadrupole transition
probabilities for J = 0, i.e.

J(J+1)
QT —1)(2J+3)

(¢) The Q-branch lines have the same shape as the P- and R-branch lines do, with
the exception that their long wave-length wings are diminished by a Boltzmann factor
which is a characteristic of pressure-induced absorption.*®’ The half-widths are nearly
200 times larger than the half-widths of the lines of the P- and R-branches as is usually
the case with collision-induced lines. We further assume that the lines have nearly the same
J-dependence as the P- and R-branch lines.

() The locations of the Q-branch lines are uniformly shifted by approximately 2 cm ™
(experimental fact) in the case of perturbation by CO, molecules from the theoretical line
positions for an unperturbed molecule. Some further evidence for the large shifts in the
pressure-induced Q-branch lines (different for different perturbers) may be found in the
paper by RANK et al!¥

Under the assumptions (a)—(f), we may now write a semi-empirical expression for the
(continuum) absorption coefficient in the @-branch:

U, J) =

1

© heBIJ+D)|  xy (n_. w7 [ |[v=v" -1
o, Jg exp[— } . —sin — +1
ﬂ — 5° ng y kT TWJ,Q\2 n Va0
- Y@ o P
heBJ(J+1
o ¥ ou. J)g,exp[— --%T )}
J=1

where
he
¥y = 1forv zv; and y; = exp ﬁ(v—vj) for v < vy,

Here B is the rotational constant of the unperturbed HCI molecule, S(OQ) [cm~? atm™ %]
is the total integrated intensity of the pressure-induced @-branch at ane atmosphere and
T is the temperature (in °K). The constants S, and 7 , are determined by fitting the data
shown in Fig. 10 with equation (4). Our best estimates for the two parameters are

=15+02cm™?atm™?

and

Yo =200y gem™tatm™h
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APPENDIX

In this appendix, we develop the “super-Lorentz” line shape given by equation (1) and the corresponding
curve of growth.
We begin by describing the spectral line shape in terms of a spectral absorption coefficient:

Eiem™'atm ™ = S-f(v—vy; 7). {A-1)

Here S (cm ™% atm™") is the integrated intensity of the line and f(v —v,; y) is the “line shape factor™ given in
terms of the frequency displacement (v — v,,) from the frequency v, at the line center and y, the collision-broadened
half-width.

‘We require that the shape factor f(v—vy;y) exhibit the following essential features:

(1) symmetrical about the central frequency:

Jr=vg;79) = flv—rql: 7).

(ii) normalized such that J'Tm kdiv—vy =S5

= [ pvmrenav—s =2 [ v —v = L

(iii) the far wings of the line ({» — vy| = y) vary according to the shape given by statistical theory, i.e. f(v—vy) ~
(v —vo) "7 where n = {n+3)/n, with n being the exponent governing the power law dependence (£ Cr ") of the
intermolecular potential upon the intermolecular distance r.

(iv) f(v—vg:7) be finite at v = vy, and (v) the form of f{v— vy, y) be general enough as to include the Lorentz
line shape as a particular case. (For resonant dipole—dipole interactions n = 2, it shouid lead to the Lorentz line
shape.) By letting

—vy
¥

L]
+l:|, (l<n=<2) (A-2)

Sl —voin) = C[l”

we satisfy the requirements (i), (iii}, (iv) and (v). It would seem that one could use a constant, to be quite general,
in place of the factor unity in the denominator. However, it would only lead te a different value for y which is,
in any event, determined experimentally. Thus, the constant being absorbed in the value of y, the above expression
should be quite general indeed. The constant C is evaluated by using the normalization condition (ii). A simple
integration leads to the result:

C = (n/2ny) sin(n/n) (A-3)

Substituting equations (A-2) and {A-3) in equation (A-1) we arrive at equation (1):

[ {1y — L]
gsing)[ Iv ”"0|) +17

¥
For n = 2, equation (1) reduces to the Lorentz line shape. Thus, condition {v) is also met.

-1

k, = {8/my) (1)
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Now, we proceed to determine the curve of growth of the profile given by equation (1). By definition, the
equivalent width of a spectral line is given by

W (em™) = Jm [1—exp(— k,pl)] d(v—v,). (A-d)

-

Substituting equation (1) into equation (A-4), we get

Wiw) = 2myLiu; 1) {A-3)
where
L =L j - [1_ exp‘ _wn sin (x/n) }dx (A-6)
nJdy xT+1
with
u = (Sph/(2ny)
and

X = |v—rglfy.

The integral in equation (A-6) may be evaluated in terms of the confluent hypergeometric function M(a, b, u)
{see I. S. GRADSTEYN and 1. M. RyzHik, Tables of Integrals, Series and Products. Academic Press, N.Y. (1965},
p- 340). We then obtain

11 1
Liu;n) = ﬂsin(f) . B(l——,—+1)M(1——, 2. —upsin
.

)
n ] 1y ’1

where B(m, n) is the beta function. Both the beta functicn and the confluent hypergeometric function are tabulated
and the various asymptotic expansions for the latter are known (see, for example, M. ABRaMOWITZ and 1. A.
SteGuN, Handbook of Mathematical Functions. N.B.S. Appl. Math. Series 55 (1964)).

It is clear from the above development that L{x; 2) = L(u), the Ladenburg-Reiche function. It is worthwhile to
verify that it is indeed so. In the process of verification, we shall have arrived at an alternate derivation of the
function L{u) from that commonly given in textbooks (see 8. S. PENNER, Quantitative Molecular Spectroscaopy and
Guas Emissivities, Addison-Wesley, Reading, Massachusetts (1959), pp. 42-44). For 5 = 2, equation (A-7) reduces to

L{u; 2) = uM(1/2, 2, —2u). (A-8)
The conventional form of the Ladenburg—Reiche function is
Liw) = ue™ " [Jo(iv) — 17 (iw)}. (A-9)

The Bessel functions in equation (A-%} may be written in terms of confluent hypergeometric functions and using
equations (13.4.2) and (13.4.3) of Abrahamovitz and Stegun (loc. cit) we obtain

y _
Liw) = u[M(i—, 1, —2u)+5M@, 3, —2u)J

= u[M(}, 1, - 20— 3{MG3, 2, - 2u)— M}, 2, —2u)]]
= uM(, 2, — 2u). (A-10)

By comparing equation (A-8) with equation (A-10), we note that L{u; 2) is the Ladenburg—Reiche function. We
have plotted both L{u) and L(u;#) in Fig. A-1 as functions of u {the curves of growth). For small values of u, both
the functions approach the linear limit, since this limit is independent of the shape factor and depends only upon §.
On the other hand, the large u limits are quite different. The so-called “square root™ limit in the case of L{u)
is replaced by a (1/4)-power limit in the case of L(u; ). This may also be seen from the asymptotic expansion of
Liu; ).

For large values of u:

—r in
L(u;q):M(unsinz) ’ |:|+0(L):|) (A-11)
TE n un
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FiG. A-1. Comparison of the ““curves of growth™ for Lorentz (dotted curve) and super-Larentz
[solid curve—equation (1)] lines.

which, for the special case of = 2, reduces to the familiar result

2 bl

It is clear that, for large values of u, the curve of growth for a super Lorentz profite should exceed that of a
Lorentz profile, since absorption in the wings of a line determines its equivalent width. It may easily be verified
that, since

Liu:2) =

W) _ Liuin)

Spl u

for an experimentally determined value of W/A(Spl), using the super-Lorentz curve of growth would lead to a larger
u than for the Ludenburg-Reiche case, and, hence, to a smaller line-width than the Lorentz half-width. Tt is obvious,
from physical grounds, that a line shape having the same integrated intensity must be narrower near the line
center than the Lorentz line shape in order to obtain excess absorption in the wings. Such is indeed the case for
HC! lines broadened by CO,.





