
Predicting Object-Oriented Software Maintainability using
Hybrid Neural Network with Parallel Computing Concept

Lov Kumar1

Dept. CS&E
NIT Rourkela

lovkumar505@gmail.com

Santanu Ku. Rath2

Dept. CS&E
NIT Rourkela

skrath@nitrkl.ac.in

ABSTRACT

Software maintenance is an important aspect of software
life cycle development, hence prior estimation of effort for
maintainability plays a vital role. Existing approaches for
maintainability estimation are mostly based on regression
analysis and neural network approaches. It is observed that
numerous software metrics are even used as input for es-
timation. In this study, Object-Oriented software metrics
are considered to provide requisite input data for design-
ing a model. It helps in estimating the maintainability of
Object-Oriented software. Models for estimating maintain-
ability are designed using the parallel computing concept
of Neuro-Genetic algorithm (hybrid approach of neural net-
work and genetic algorithm). This technique is employed
to estimate the software maintainability of two case stud-
ies such as the User Interface System (UIMS), and Quality
Evaluation System (QUES). This paper also focuses on the
effectiveness of feature reduction techniques such as rough
set analysis (RSA) and principal component analysis (PCA).
The results show that, RSA and PCA obtained better re-
sults for UIMS and QUES respectively. Further, it observed
the parallel computing concept is helpful in accelerating the
training procedure of the neural network model.

Categories and Subject Descriptors

D.1.5 [PROGRAMMING TECHNIQUES]: Object-oriented
Programming; D.2.8 [Software Engineering]: Metrics; I.2.6
[ARTIFICIAL INTELLIGENCE]: Learning

Keywords

Artificial neural network, Maintainability, Genetics algorithm,
Object-Oriented Metrics, Parallel Computing

1. INTRODUCTION
Present day emphasis is mostly given on Object-Oriented

paradigm for software development. The quality of Object-
Oriented software is assessed by the use of software met-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ISEC ’15 Bengaluru, Karnataka, India
Copyright 2015 ACM 978-1-4503-3432-7/15/02 ...$15.00.
http://dx.doi.org/10.1145/2723742.2723752.

rics. A number of metrics have been proposed for this pur-
pose. Some of the metrics available in literature are as fol-
lows: Abreu MOOD metric suite [1], Bieman and Kang [14],
Briand et al. [4], Halstead [11], Henderson-sellers [12], Li
and Henry [19], McCabe [21], Lorenz and Kidd [20], Lake
and Cook [18] and CK metric [7] suite, etc.

The usefulness of these metrics lies in their ability to pre-
dict the quality of the developed software. Software quality
attributes, identified by ISO/IEC 9126 are functionality, re-
liability, usability, maintainability, portability and efficiency
[13]. In this study, focus has been given on a particular at-
tribute i.e., maintainability in order to improve design or
coding of Object-Oriented software. It also provide some
useful information for plan the use of valuable resources [28].
The ISO/IEC 9126 standard defines maintainability as the
capability of the software product to be modified, including
corrections, improvements or adaptation of the software to
changes in environment and in requirements and functional
specifications. In this paper, maintainability is considered
as the number of source of lines changed per class [13]. A
line change can be an ‘addition’ or ‘deletion’ of lines of code
in a class [19].

In order to estimate the maintainability of a class, several
traditional methods are available in literature as proposed
by many authors. But less importance has been given on us-
ing machine learning techniques for estimation purpose. Ar-
tificial intelligence techniques, a subset of machine learning
methods have the ability of computer, software and firmware
to measure the properties of a class, that human beings rec-
ognize as intelligent behavior. These methods are able to
approximate the non-linear function with more precision.
Hence they can be applied for software maintainability es-
timation in order to achieve better accuracy. In this paper,
hybrid approach of ANN and genetic algorithm i.e., Neuro-
genetic (Neuro-GA) [5] approach with parallel computing
framework is used for predicting software maintainability
on two commercial software products such as User Interface
System (UIMS) and Quality Evaluation System (QUES).
To train these models, Object-Oriented software metrics are
considered as input data.

The remainder of the paper is organized as follows: Sec-
tion 2 shows the related work in the field of software main-
tainability estimation and Object-Oriented metrics. Section
3 emphasizes on mining of metrics values from data repos-
itory. Section 4 briefs about the methodologies used to es-
timate the maintainability. Section 5 shows the concept of
parallel computing for training the neural network. Section 6
presents the performance parameters used for evaluating the

100

models. Section 7 highlights on the results for maintainabil-
ity prediction, achieved by applying Neuro-GA approach.
Section 8 gives a note (comparison) on the performance of
the designed models based on the performance parameters.
Section 9 concludes the paper with scope for future work.

2. RELATED WORK
It is observed in literature that software metrics are used

in design of prediction models which serve the purpose of
computing the prediction rate in terms of accuracy such as
fault, effort, re-work and maintainability. In this paper, em-
phasis is given on work done on the use of software metrics
for maintainability prediction.

Table 1 shows the summary of literature review done on
maintainability, where it describes the applicability of nu-
merous software metrics used by various researchers and
practitioners in designing their respective prediction mod-
els.

Table 1: Summary of Empirical Literature on Main-
tainability
Author Prediction technique
Li and Henry (1993)
[19]

Regression based models

Paul Oman (1994) et

al. [24]
Regression based models

Don Coleman (1994)
et al. [8]

Hierarchical multidimensional as-
sessment model, polynomial regres-
sion models, aggregate complex-
ity measure, principal components
analysis, and Factor analysis.

Don Coleman (1995)
et al. [9]

Hierarchical multidimensional as-
sessment model, polynomial regres-
sion models, Estimating maintain-
ability via entropy, principal com-
ponents analysis, and Factor analy-
sis.

Scott L. Schneberger
(1997) [26]

Regression based models

Binkley et al. (1998)
[3]

Regression analysis

Bandi et al. (2003)
[2]

variance, correlation, and regres-
sion analysis.

Van Koten et al.
(2006) [27]

Bayesian Network, Regression Tree
, Backward Elimination and Step-
wise Selection.

Yuming Zhou and
Hareton Leung
(2007) [28]

Multivariate linear regression, Ar-
tificial neural network, Regres-
sion tree, Support vector regression
and Multivariate adaptive regres-
sion splines

Jie-Cherng Chen
and Sun-Jen Huang
(2009) [6]

Regression analysis

From the above table, it can be interpreted that many of
the authors have used statistical methods such as regression
based analysis and their forms in predicting the maintain-
ability. But keen observation reveals that very less work has
been carried out on using neural network models for design-
ing their respective prediction models.

Neural network models over the years have seen an explo-
sion of interest, and their applicability across a wide range
of problem domains. Indeed, neural network models can
be mainly used to solve problems related to prediction and
classification. Neural network models act as efficient predic-
tors of dependent and independent variables due to sophis-
ticated modeling technique where in, they posses the ability
to model complex functions. In this paper, software met-
rics have been considered for predicting maintainability by
applying artificial intelligence techniques.

3. RESEARCH BACKGROUND
The following subsections highlight on the data set used

for computing maintainability. Data are normalized to ob-
tain better accuracy and then dependent and independent
variables are chosen for maintainability estimation.

3.1 Metrics set and empirical data collection
Metrics suites are defined for different goals such as effort

estimation, fault prediction, re-usability and maintenance
effort. In this paper, different Object-Oriented metrics have
been considered for predicting software maintainability i.e.,
the number of lines changed per class is considered as a cri-
terion in determining the maintainability of a class. A line
change can be an ‘addition’ or ‘deletion’ of lines of code in a
class [19]. The metrics selected in this study are tabulated
in Table 2. Classic-ADa is an Object-Oriented programing
language that adds the capability of Object-Oriented pro-
graming to ADa by providing Object-Oriented construct in
addition to the ADa constructs [19]. In this paper, Classic-
ADa metrics analyzer is used to gather metrics from Classic-
ADa’s design and source code. Figure 1 depicts the flow
chart to extract the change i.e., altered lines of code in the
developed software.

Source code of different versions
are collected over a given period

of time

Classes are identified

Object-Oriented metrics
of each classes are

computed

Change (Source line of
code (SLOC)) for each

class is computed

Figure 1: Flow chart for extraction of change in a
software product

3.2 Effectiveness of metrics
After obtaining the maintainability data, an attempt is

made to establish a relationship between the maintainability
and the metrics. The maintainability ‘change’ is measured
as “the number of lines changed per class’ [19]. Hence in
this approach, change is considered as a dependent variable
and each of the metric group as a set of independent vari-
ables while developing the relation. Maintainability is thus
assumed to be a function of the used metrics.

To analyze the effectiveness of the metrics used, in the pa-
per the various metrics are categorized into different groups
as follows:

a. Analysis 1 (A1): The effectiveness of SIZE metrics

101

Table 2: Definition of the metrics used
Metric Description
Weighted method per class (WMC) Sum of the complexities of all class methods.
Depth of inheritance tree (DIT) Maximum length from the node to the root of the tree.
Number of children (NOC) Number of immediate sub-classes subordinate to a class in the class hierarchy.
Response for class (RFC) A set of methods that can potentially be executed in response to a message

received by an object of that class.
Lack of cohesion among methods (LCOM) Measures the dissimilarity of methods in a class via instanced variables.
Data abstraction coupling (DAC) The number of abstract data types defined in a given class.
Message-passing coupling (MPC) The number of send statements defined in a given class.
Number of methods (NOM) The number of methods implemented within a given class.
SIZE1 The number of semicolons in a given class
SIZE2 Total number of attributes and the number of local methods in a given class.

Table 3: Descriptive statistics of classes for UIMS
UIMS WMC DIT NOC RFC LCOM MPC DAC NOM SIZE1 SIZE2 CHANGE
Max. 69 4 8 101 31 12 21 40 439 61 289
Min. 0 0 0 2 1 1 0 1 4 1 2
Median 5 2 0 17 6 3 1 7 74 9 18
Mean 11.38 2.15 0.94 23.20 7.48 4.33 2.41 11.38 106.44 13.97 46.82
Std Dev. 15.89 0.90 2.01 20.18 6.10 3.41 4.00 10.21 114.65 13.47 71.89

Table 4: Descriptive statistics of classes for QUES
QUES WMC DIT NOC RFC LCOM MPC DAC NOM SIZE1 SIZE2 CHANGE
Max. 83 4 0 156 33 42 25 57 1009 82 42.09
Min. 1 0 0 17 3 2 0 4 115 4 6
Median 9 2 NA 40 5 17 2 6 211 10 52
Mean 14.95 1.91 0 54.38 9.18 17.75 3.44 13.41 275.58 18.03 62.18
Std Dev. 17.05 0.52 0 32.67 7.30 8.33 3.91 12.00 171.60 15.21 42.09

along with the combination of CK metrics suite and Li
and Henry metrics are used for estimating the main-
tainability. The relationship is represented as follows:

Maintainability = Change = f(WMC,DIT,NOC,

RFC,LCOM,MPC,

DAC,NOM, SIZE1, SIZE2)

b. Analysis 2 (A2): In this analysis, feature extracted
attributes using principal component analysis (PCA)
are considered as input for estimating the maintain-
ability. The relationship is represented as follows:

Maintainability = Change = f(Extracted feature

attributes using PCA)

c. Analysis 3 (A3): In this analysis, reduced feature at-
tributes using rough set analysis (RSA) are considered
as input to design a model for estimating the main-
tainability. The relationship is represented as follows:

Maintainability = Change = f(Reduced feature

attributes using RSA)

3.3 Case study

In this paper, to analyze the effectiveness of the proposed
approach, two Object-Oriented software data sets published
by Li and Henry (1993) are used as case studies [19]. Soft-
wares such as User Interface System (UIMS) and Quality
Evaluation System (QUES) are chosen for computing the
maintainability. The softwares systems viz., UIMS and QUES
have 39 and 71 classes respectively. The data have been col-
lected over the past three years. The maintainability of a
software is measured by the number of lines changed per
class. Table 3 and Table 4 show the Min, Max, Median
and Standard deviation values of the two software systems
(UIMS and QUES).

In this analysis, the derivative of inheritance metric ‘NOC’
in QUES software product, has all its 71 classes with NOC
values zero. This indicates that there are no immediate sub-
classes of a class in the class hierarchy and hence NOC is
not considered in computing maintainability in this analysis.
From Table 3 and Table 4, it is clear that the DIT metric has
low value of median and mean for both UIMS and QUES
data sets. The low value of median and mean for DIT shows
that inheritance was considered to a greater extent in both
software system. Similarly medians and means of NOM and
SIZE2 are found in the UIMS and QUES data sets, suggest-
ing that the class size at the design level in both systems
are similar. However, the medians and means of SIZE1 in
the QUES data set are significantly larger than those in the
UIMS data set. This suggests that the complexities of the
problems processed by the two systems are rather different.
Moreover, the medians and means of RFC and MPC in the
QUES data set are of greater value in comparison with UIMS
data set. This suggests that the coupling between classes in

102

Table 5: Correlations between the metrics for UIMS (upper triangle) and QUES (lower triangle)
WMC DIT NOC RFC LCOM MPC DAC NOM SIZE1 SIZE2 CHANGE

WMC 1 -0.22 0.23 0.91 0.80 0.63 0.44 0.84 0.97 0.77 0.65
DIT -0.13 1 -0.47 -0.23 -0.19 0.06 -0.43 -0.36 -0.19 -0.41 -0.43
NOC NA NA 1 0.21 0.13 0.03 0.32 0.23 0.17 0.27 0.56
RFC 0.74 0.11 NA 1 0.79 0.74 0.61 0.93 0.91 0.89 0.64
LCOM 0.57 0.12 NA 0.82 1 0.50 0.36 0.75 0.82 0.68 0.57
MPC 0.14 0.02 NA 0.33 -0.10 1 0.44 0.55 0.67 0.55 0.45
DAC 0.57 0.39 NA 0.64 0.56 0.02 1 0.75 0.52 0.87 0.63
NOM 0.70 0.13 NA 0.81 0.88 -0.11 0.81 1 0.87 0.98 0.64
SIZE1 0.89 0.01 NA 0.80 0.54 0.37 0.64 0.69 1 0.82 0.63
SIZE2 0.69 0.20 NA 0.81 0.84 -0.08 0.89 0.99 0.71 1 0.67
CHANGE 0.43 -0.09 NA 0.39 0.05 0.46 0.08 0.14 0.64 0.15 1

the QUES is higher than those in the UIMS. In contrast, the
median and mean of LCOM in the QUES data set are simi-
lar to the median and mean of LCOM in the UIMS data set,
implying that these two systems have similarly cohesion. It
can also be seen that the mean of CHANGE in the QUES
data set is larger than that in the UIMS data set. The depen-
dency between metrics is computed using Pearson’s corre-
lations (r: Coefficient of correlation) for UIMS and QUES.
The coefficient of correlation, r, is useful because it mea-
sures the strength and direction of the linear relationship
between two variables. It is defined as the covariance of the
variables divided by the product of their standard devia-
tions. It also act as a measure that allows us to determine
how certain one can be in making predictions from a certain
model. Table 5 shows the Pearson’s correlation analysis for
the dataset. The upper triangular matrix represents the cor-
relations between the metrics in the UIMS data set, and the
lower triangular matrix represents the correlations between
the metrics in the QUES data sets.

3.4 Data normalization technique
Normalization of input feature values has been carried out,

over the range [0,1], so as to adjust the defined range of
input feature values and avoid the saturation of neurons,
when we apply for neural network. In this paper, Min-Max
normalization technique has been used to normalize the data
[15].

Min-Max normalization performs a linear transformation
on the original data. It maps each of the actual data x of
attribute X to normalized value x′ which lie in the range
of [0,1]. Min-Max normalization is calculated by using the
following Equation:

Normalized(x) = x
′ =

x−min(X)

max(X)−min(X)
(1)

where min(X) and max(X) represent the minimum and
maximum values of the attribute X respectively.

3.5 Cross-validation method
Cross-validation is a statistical learning method which is

used to evaluate and compare the models by partitioning
the data into two portions. One portion of the divided set
is used to train or learn the model and the rest of the data
is used to validate the model.

K-fold cross-validation is the basic form of cross validation
[17]. In K-fold cross-validation the data are first partitioned
into K equal (or nearly equally) sized portions or folds. For

each of the K model, K-1 folds are used for training and the
remaining one fold is used for testing purpose. The signifi-
cance of K-fold-cross-validation lies in it’s ability to use the
data set for both training and testing. So the performance
of each model on each fold can be tracked using predeter-
mined performance metrics available in literature. In liter-
ature, it is observed that 5-fold and 10-fold cross-validation
approaches have been used for designing a model. In this
paper, 5-fold cross-validation are used for both QUES and
UIMS for comparing the models.

3.6 Principal Component Analysis (PCA)
The concept of principal component analysis (PCA) was

develop by Karl Pearson in 1901. PCA is a statistical tech-
nique used to transfer a data space of high dimension into a
feature space of lower dimension having the most significant
features. PCA rigidly rotates the axes of the p-dimension
space to new position (principle axes) such that principle
axis 1 has the highest variance, axis 2 has the next highest
variance and so on.

Many of the Object-Oriented have high correlation with
each other. So PCA is used to transfer raw metrics to vari-
ables that are not correlated to each other when the origi-
nal data are Object-Oriented metrics, called a new principal
component variables domain metrics. The detail steps of
PCA is describe below:

PCA()

Input: ‘n x m’ feature matrix X where ‘n’ represents
number of samples and ‘m’ represents the number of fea-
tures.
Output: ‘nxk’ reduced feature matrix (k << m).

Step 1: Matrix ‘X’ is normalized ensure zero mean of
each feature value.
Evaluate µj = 1

n

∑n

i=1 x
j

i vary j for all feature values
i.e., 1 to m
Replace xj with (xj − µj) vary xj across all samples

i.e., from 1 to n
Step 2: Compute covariance matrix of the normalized
matrix.
∑

(sigma) = 1
m
(XTX)

Step 3: Compute the eigen vectors of matrix using MAT-
LAB command as: eign = eig(sigma)
Step 4: Choose the first ‘k’ number of principal com-
ponents from the covariance matrix using the following
criteria:

103

for (every eigen vector i = 1 to m) do

Evaluate cumvar =
∑k

i=1 λii∑m
i=1 λii

{cumvar denotes

(cumulative variance) and (λ) represents eigen
values sorted in descending order}
if (cumvar ≥ 0.99)or(1 − cumvar ≤ 0.01)
then

return k {99% of variance is retained}
end if

end for
Step 5: Reduce the matrix dimension, taking the first k
columns (1 to k) of eign matrix as eign(:,1:k) and assign
to eignred.
Step 6: Evaluate Z = X ∗ eignred.
where Z is the new matrix with reduced feature dimension
retaining 99% of the variance.
Step 7: Stop.

3.7 Rough Set Analysis
Rough set analysis (RSA) is a formal approximation of a

conventional (CRISP) set, which was described by Pawlak
[25]. This formal approximation, represents the lower and
upper bound of the original set. It helps in adequate anal-
ysis of various types of data, especially when dealing with
inexact, vague and uncertain data. Rough set captures two
unique features of imperfection in knowledge i.e., in-discernibility
and vagueness. Rough set execution is based on the concept
that lowering the ’degree of precision’ in the data makes
data pattern more visible. In general, rough set approach
can be viewed as a formal framework for mining facts from
imperfect data. The results achieved by application of rough
set concept can be represented in the form of classification,
decision rules or inform of reduced data set. Following are
the steps followed to obtain reduced attribute set:

Step 1. Collection of data.
Data is extracted from Promise data repository [[22]].

Step 2. Discretization of data.
The data extracted from the repository is discretized
by using K-means clustering algorithm.

Step 3. Lower and upper approximation of all possible set is
calculated.
Lower approximation is defined as the union of all
these elementary sets which are contained in X.

BX = {xi ∈ U | [xi]Ind(B) ⊂ X} (2)

Upper approximation is the union of these elementary
sets, which have a non-empty intersection with X.

B̄X = {xi ∈ U | [xi]Ind(B) ∩X 6= 0} (3)

Step 4. Accuracy of all possible set is calculated.

An accuracy measure of the set X in B ⊆ A is defined
as:

µB =
Card(BX)

Card(B̄X)
(4)

The cardinality of a set is the number of objects con-
tained in the lower / upper approximation of the set
X.

Step 5. All possible sets are selected on the basis such that,
their accuracy is equal to the accuracy of universal
set.

Step 6. The set with least possible value of cardinality is cho-
sen as reduct set from all possible selected set.

4. PROPOSED WORK FOR PREDICTING

MAINTAINABILITY
This section gives a brief note on the use of a hybrid ap-

proach on Artificial neural network (ANN) and genetic algo-
rithm (GA) i.e.,Neuro-GA approach for predicting software
maintainability [5].

4.1 Neuro-GA Approach
In this approach, genetic algorithm is used for updating

the weight during learning phase. A neural network with a
configuration of ‘l-m-n’ is considered for estimation i.e., the
network consists of ‘l’ number of input neurons, ‘m’ number
of hidden neurons, and ‘n’ number of output neurons. In
this paper, for input layer, linear activation function is used
i.e., the output of the input layer is treated as input of the
input layer. It is represented as:

Oi = Ii (5)

For hidden layer and output layer, sigmoidal function or
squashed-S function is used. The output of hidden layer
‘O′

h for input of hidden layer ‘I ′h is represented as:

Oh =
1

1 + e−Ih
(6)

and output of the output layer ‘O′

o for the input of the out-
put layer ‘I ′o is represented as:

Oo =
1

1 + e−Io
(7)

The number of weights N required for this network with a
configuration of ‘l-m-n’ can be computed using the following
equation:

N = (l + n) ∗m (8)

Each weight (gene) being a real number and assuming the
number of digits (gene length) in weights to be d, the length
of the chromosome L can be computed using the following
equation:

L = N ∗ d = (l + n) ∗m ∗ d (9)

For determining the fitness value of each chromosome, weights
are extracted from each chromosome using the following
equation:

Wk =



























if 0 <= xkd+1 < 5

−xkd+2∗10
d−2+xkd+3∗10

d−3+....+x(k+1)d

10d−2

if 5 <= xkd+1 <= 9

+
xkd+2∗10

d−2+xkd+3∗10
d−3+....+x(k+1)d

10d−2

(10)

The fitness value of each chromosome is determined based
on the derived fitness function. The algorithm for deriving
fitness function is as follows:

Let ¯(Ii, T̄i) ; i=1,2,3....,N where
Īi = (I1i, I2i, I3i,, Ili) and T̄i = (T1i, T2i, T3i,, Tni)

104

represent the respective input and output pairs of the neu-
ral network with a configuration of l-m-n. For each chromo-
some Ci, i = 1, 2, 3,, p, belonging to the current popula-
tion Pi whose size is P . The following algorithm indicates
the steps to find the fitness value of the individual chromo-
somes in the population:

Algorithm for fitness function: FITGEN()

Input: Īi = (I1i, I2i, I3i,, Ili)
Output: T̄i = (T1i, T2i, T3i,, Tni)
where Īi, T̄i represent the input and output pairs of the
l-m-n configuration of neural network.

Step 1: Weights W̄i from Ci are calculated using equation
10.
Step 2: Considering W̄i as a constant weight, the network
is trained for N input instances and the estimate value Oi

is found.
Step 3: Error Ej for each input instance j is computed
using following equation:

Ej = (Tji −Oji)
2 (11)

Step 4: Root mean square error (RMSE) for the chro-
mosome Ci is computed using the following equation:

Ei =

√

∑j=N

j=1 Ej

N
(12)

where N is the total number of training data set.
Step 5: Fitness value for chromosome Ci using the fol-
lowing equation is found out as:

Fi =
1

Ei

=
1

√

∑j=N
j=1 Ej

N

(13)

Figure 2 shows the block diagram for Neuro-GA approach,
which represents the steps followed to design the model.

Random
population
of ‘n’ chro-
mosomes is
generated

Weight set
is extracted

Weight for
training the

network is fed
as input

Fitness value is
computed using

FITGEN()

Stopping
crite-
rion
met ?

Model is used
for testing

Yes

Min fitness
value

chromosome is
replaced with
Max fitness

value
chromosome

Two-point cross
over is

performed

No

Figure 2: Flow chart representing Neuro-GA execu-
tion

5. PARALLEL COMPUTING OF NEURAL

NETWORK
A number of parallel computing algorithms are used to ac-

celerate the training procedure of the neural network model
[10]. These approaches can be categorized into node paral-
lelism and training dataset parallelism.

5.1 Node parallelism
Node parallelism is based on the structure of neural net-

work and it can be achieved by mapping neurons into differ-
ent computing nodes for pipelining the process. Each com-
puting node takes charge of only a part of the computation
of the neural network.

5.2 Training dataset parallelism
In training dataset parallelism, each computing node has

the complete neural network in local, and conducts com-
putation for entire neural network. The training dataset is
divided into several subsets, and these subsets are assigned
to different computing nodes for parallel processing.

In this paper, the concept of training dataset parallelism
is used for parallel computing for training the neural net-
work. Figure 3 shows the block diagram for parallel com-
puting of the neural network, comprising of four computing
nodes. Each computing node performs full training of the
network for one set of the training dataset. This concept is
based on master-slave approach. Master uses ‘scheduler’ for
distributing the job among the available computing nodes.

Data divided into K equal parts

Scheduler

Computing
Node1

Computing
Node2

Computing
Node3

Computing
Node 4

Results are
merged

Model is tested

Figure 3: Flow chart representing Training set par-
allelism

6. PERFORMANCEEVALUATIONPARAM-

ETERS
Software maintainability estimation accuracy for a model

designed by using AI techniques is determined by using per-
formance evaluation parameters such as: Mean Relative Er-
ror (MRE), Mean Absolute Relative Error (MARE), and
Standard Error of the Mean (SEM) [23]. Parameters like
True error (e) and Estimate of true error (ê) are being used
for evaluating models involving cross validation approach
[16].

• Mean Absolute Error (MAE)

MAE =
1

n

n
∑

i=1

(|y′

i − yi|) (14)

105

• Mean Absolute Relative Error (MARE)

MARE =
1

n

n
∑

i=1

|yi − y′

i|
yi

(15)

In equation 15, a numerical value of 0.05 is added in
the denominator in order to avoid numerical overflow
(division by zero). The modified MARE is formulated
as:

MARE =
1

n

n
∑

i=1

|yi − y′

i|
yi + 0.05

(16)

• Standard Error of the Mean (SEM)

SEM =
SD√
n

(17)

where SD is the sample standard deviation, and n is
the number of samples.

• True Error (e)

Ei =
1

L
∗

L
∑

j=1

|yi(j) − y
′

i(j)| (18)

where K, L represent the number of folds and number
of samples in each fold respectively.

• Estimate of True Error (ê) Estimate of the true
error which is equal to average of the performances of
the k models and is given as:

ê =
1

K
∗

K
∑

j=1

(êj) =
1

K
∗

K
∑

j=1

(
1

nj

∗
nj
∑

i=1

(yi − y
′

i)
2) (19)

where nj is number of sample in Dj dataset.

7. EXPERIMENT AND RESULT
Software maintainability estimation accuracy for the model

designed by using AI techniques is determined by using per-
formance evaluation parameters such as Mean Relative Er-
ror (MRE), Mean Absolute Relative Error (MARE), and
Standard Error of the Mean (SEM) [23]. Parameters like
True error (e) and Estimate of true error (ê) are being used
for evaluating models involving cross validation approach
[16]. Further, this paper employs feature reduction tech-
niques such as PCA and RSA to minimize the features and
study the effect on these techniques on the given case stud-
ies.

7.1 Feature extraction using PCA
In the analysis, the extracted set of the Object-Oriented

metrics suite attributes obtained by applying principle com-
ponent analysis (PCA) are used as input for designing the
model to estimate the maintainability of software system.
The principal component extraction analysis and varimax
rotation concept is applied on all Object-Oriented metrics.
Rotated component metrics are tabulated in Table 6. Table
6 shows the relation between the original Object-Oriented
metrics and the domain metrics. The value greater then 0.7
(shown bold in Table 6) are the metrics, which are used to
interpret the principal component. Table 6 also shows the
eigenvalue, variance percentage and cumulative percentage.

Table 6: Rotated principle component
UIMS QUES

metrics PC1 PC2 PC1 PC3 PC3

WMC 0.919 0.189 0.830 0.261 -0.272

DIT -0.368 0.745 0.062 0.027 0.976

NOC 0.349 -0.792 - - -

RFC 0.957 0.182 0.874 0.339 0.048

LCOM 0.819 0.220 0.870 -0.153 0.058

MPC 0.693 0.389 -0.026 0.966 0.037

NOM 0.936 0.020 0.972 -0.129 0.094

DAC 0.707 -0.311 0.797 0.028 0.425

SIZE1 0.933 0.234 0.973 -0.090 0.187

SIZE2 0.788 -0.357 0.808 0.481 -0.090

Eigenvalues 5.332 2.351 5.375 1.397 1.246

% variance 53.315 23.57 59.725 15.519 13.842

Cumulative % variance 53.315 76.887 59.725 75.244 89.086

7.2 Feature reduction using RSA
In the analysis of predicting maintainability, the reduced

attribute set of the Object-Oriented metrics suite is used.
This reduced attribute set was obtained by applying rough
set analysis (RSA). But in order to obtain this set of re-
duced features, data needs to be classified. K-means clus-
tering was used to classify the data in this thesis work. Here,
the data available in particular cluster are grouped under a
single class. So, after applying K-means clustering, three
clusters were obtained and the data were categorized into
three groups such as Low, Medium and High. Table 7 shows
the cluster center’s for the respective metrics of UIMS and
QUES software system.

Table 7: Cluster Center of software metrics using
K-Means Clustering

UIMS QUES

C1 C2 C3 C1 C2 C3

WMC 1.60 11.23 44.33 6.01 32.35 68.33

DIT 0.75 1 3.06 0.90 2 3.25

NOC 0 1.80 5.60 - - -

RFC 11.80 33.10 69.75 35.47 70.05 129.75

LCOM 3.75 7.75 25.66 4.40 14.16 24.87

MPC 1.13 4.56 9.87 8.90 18.68 34.11

DAC 0.45 3.33 17.00 1.79 7.62 25.00

NOM 5.047 12.61 34.80 5.55 21.29 37.77

SIZE1 30.88 100.266 348.50 176.32 309.29 611.45

SIZE2 6.44 18.55 43.40 8.73 28.80 52.14

CHANGE 21.14 188.33 271 33.95 84.15 173.80

After categorizing the data into three groups, now the
range of each group is determined. Here,

i. Low: Data lies in the range from zero to the average
of clusters c1 and c2.

ii. Medium: Data lies in the range from average of clus-
ters c1, c2 and the average of c2 and c3.

iii. High: Data lies in the range from average of the clus-
ters c2, c3 and the maximum values of the respective
attributes.

Table 8 and Table 9 contain the tabulated range values of
the group of the software metrics.

Rough set obtained a reduced attribute set for estimating
maintainability of UIMS ad QUES software system. The
reduced attribute set of metrics obtained after applying RSA
for UIMS and QUES are tabulated in Table 10.

106

Table 8: set value UIMS
LOW MEDIUM HIGH

WMC [0 6.41) [6.41 29.78) [27.78 79.00]

DIT [0 1.37) [1.37 2.53) [2.53 4.00]

NOC [0 0.90) [0.90 3.70) [3.70 8.00]

RFC [0 21.45) [21.45 51.42) [51.42 101.00]

LCOM [0 5.75) [5.75 16.70) [16.70 31.00]

MPC [0 2.84) [2.84 7.21) [7.21 12.00]

NOM [0 8.83) [8.83 23.70) [23.70 40.00]

DAC [0 1.89) [1.89 10.16) [10.16 21.00]

SIZE1 [0 65.57) [65.57 224.38) [224.38 439.00]

SIZE2 [0 12.49) [12.49 30.97) [30.97 61.00]

CHANGE [0 104.73) [104.73 229.66) [229.66 289.00]

Table 9: set value QUES
LOW MEDIUM HIGH

WMC [0 19.18) [19.18 50.34) [50.34 83.00]

DIT [0 1.45) [1.45 2.62) [2.62 4.00]

NOC - - -

RFC [0 52.76) [52.76 99.90) [99.90 156.00]

LCOM [0 9.28) [9.28 19.52) [19.52 33.00]

MPC [0 13.79) [13.79 26.39) [26.39 42.00]

NOM [0 13.42) [13.42 29.53) [29.53 57.00]

DAC [0 4.71) [4.71 16.31) [16.31 25.00]

SIZE1 [0 242.80) [242.80 460.20) [460.20 1009.00]

SIZE2 [0 18.61) [18.61 40.32) [40.32 82.00]

CHANGE [0 59.05) [59.05 128.97) [128.97 217.00]

Table 10: Reduciced Attribute
Project Metrics
UIMS MPC, DAC, SIZE2
QUES LCOM, DAC, SIZE1

7.3 Parallel computing Concepts
To carry out this work of parallel computation, hardware

requirements such as a Core i5 processor having 2GB RAM,
a storage memory of 250GB. Here computing node is process
that runs on a physical core.

In this paper, based on the master-slave concept, varying
number of computing nodes are considered ranging from one
to five. The 5-fold cross validation was performed on both
the data sets viz., QUES and UIMS.

• Each fold of the 5 fold data set is assigned to each and
every computing node when there are five computing
nodes.

• In case, there exists four computing nodes, then the
master assigns two folds of the data set to the first
computing node, and then assigns one fold of data set
to the remaining computing nodes.

• When there are three computing nodes, the master
assigns two folds of data sets to the first two computing
nodes, and then assigns the last fold to the remaining
computing node.

• Similarly, when there are two computing nodes, then
the master assigns the first three folds of data set to
the first computing node, and the reaming two folds
to the second computing node.

• Finally, if there exists a single computing node, then
the master assigns all the 5 fold data set to the existing
single computing node.

Figure 4 shows the variation of training period based on
the number of computing nodes assigned by the master.
From Figure 4, it can be inferred that when a single node
is used the execution time is much more when compared to
the normal serial execution process. Further, it is observed
the training time is reduced when the number of computing
nodes are increased.

0 1 2 3 4 5
20

40

60

80

100

120

140

160

No. of Computing Node

T
im

e
 (

S
e
c
.)

0 1 2 3 4 5
0

20

40

60

80

100

120

140

No. of Computing Node

T
im

e
 (

S
e
c
.)

Full

PCA

RST

Full

PCA

RST

QUES UIMS

Figure 4: Training time vs No. of Computing Node

7.4 Neuro-GA
Following are the numerical values used in execution of

Neuro-GA approach for predicting software maintainability.

i. Initialization of chromosome: Let the population of
size N=50 is considered, initially generated by random
process.

ii. Extraction of weight: Each chromosome contains the
weight of input to hidden node and hidden node to
output. Weight is extracted using Equation 10.

iii. Computing fitness value: The fitness of individual chro-
mosomes is found using the proposed algorithm FIT-

GEN. This algorithm is executed with an aim of min-
imizing the mean square error.

iv. Ranking of chromosomes: The chromosomes in the
pool are ranked based on their fitness value. Minimum
fitness value chromosome is stripped of by Maximum
fitness value chromosome.

v. Crossover: Two point cross-over approach is performed.

vi. Stopping criteria: The execution of the proposed al-
gorithm terminates when 95% of the chromosomes in
the pool obtain unique fitness value, beyond this level
the fitness value of chromosome get almost saturated.

In this paper, 5-fold cross-validation concept has been con-
sidered for both QUES and UIMS for comparing the models.
Table 11 and Table 12, show the obtained performance met-
rics for UIMS and QUES software products.

From Table 11 and Table 12, it can be concluded that
the performance in estimating software maintainability is
better when RSA in UIMS (A3 analysis) and PCA in QUES
(A2 analysis) is considered. The high value of ‘R’ shows the
strong affinity between software metrics and maintainability.
Figure 7.4 shows the variance of number of chromosomes

107

Table 11: Performance matrix for UIMS data set
r Epochs MAE MARE SEM

A1 0.8831 76 0.0831 0.3155 0.0635
A2 0.7921 87 0.118 0.4792 0.0191
A3 0.9631 70 0.0439 0.1883 0.0437

Table 12: Performance matrix for QUES data set
r Epochs MAE MARE SEM

A1 0.8831 87 0.1296 0.3775 0.0197
A2 0.7529 68 0.1039 0.3536 0.0185
A3 0.7409 71 0.1124 0.3884 0.0177

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

Iteration No.

N
o

.
o

f
c
h

r
o

m
o

s
o

m
e
s
 c

o
n

ta
in

 s
a
m

e
 f

it
n

e
s
s

v
a
lu

e

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

Iteration No.

N
o

.
o

f
c
h

r
o

m
o

s
o

m
e
s
 c

o
n

ta
in

 s
a
m

e
 f

it
n

e
s
s

v
a
lu

e

A1

A2

A3

A1

A2

A3

UIMS QUES

Figure 5: No. of chromosomes contain same fitness
value VS Iteration No.

A1 A2 A3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

P
e

a
r
s

o
n

 r
e

s
id

u
a

l

A1 A2 A3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

P
e

a
r
s

o
n

 r
e

s
id

u
a

l

UIMS
QUES

Figure 6: Residual boxplot for UIMS and QUES

having same fitness value and iteration number of UIMS
and QUES.

Figure 6 shows the Pearson residual boxplots for all three
analysis (A1 to A3) for the normalized data of UIMS and
QUES data set, allowing a visual comparison. The line in
the middle of each box represents the median of the Pearson
residual. From Figure 6, it is clear that:

• In case of UIMS, all analysis have a median residual
close to zero. Of all the analysis, A3 analysis has the
narrowest box and the smallest whiskers, as well as
the few number of outliers. Based on these boxplots,
it is evident that A3 analysis present best estimation
accuracy as compared to other two analysis i.e., A1 and
A2. Hence it is observed that the model designed by
rough set theory as feature reduction technique yields
better maintenance accuracy value.

• In case of QUES, A1 and A2 analysis have a median
residual close to zero but in A3 analysis it is observed
that median residual is slightly greater then zero. It
interprets that the data is slightly underestimated. Of

all the analysis, A2 analysis has the narrowest box and
the smallest whiskers, as well as the few number of
outliers. Based on these boxplots, it is evident that
A2 analysis presents best estimation accuracy as com-
pared to other two analysis i.e., A1 and A3. Hence it
is observed that the model designed by principal com-
ponent analysis as feature extraction technique yields
better maintenance accuracy value.

8. COMPARISON OFMODELS
Apart from the comparative analysis done to find the suit-

able model which can predict the best software maintainabil-
ity, this paper also makes the comparison of the proposed
work with the work done by Yuming Zhou et al. [28] and
Van Koten et al. [27]. Yuming Zhou et al. and Van Koten
et al. have used same dataset i.e., UIMS and QUES for
predicting maintainability based on different regression and
neural network models . They have considered ‘MMRE’ as
a performance parameter to compare the models designed
for predicting maintainability of Object-Oriented software
systems. Table 13 shows the MMRE value of the proposed
work and the work done by Yuming Zhou et al. and Van
Koten et al. From Table 13, it can be observed that, in case
of QUES software MMRE value is almost same, but in case
of UIMS software, the proposed approach obtained better
prediction rate for maintainability.

Table 13: Performance based on MMRE for UIMS
and QUES

MMRE
Author Technique UIMS QUES
Van Koten
et al.[27]

Bayesian Network 0.972 0.452

Regression Tree 1.538 0.493
Backward Elimination 2.586 0.403
Stepwise Selection 2.473 0.392

Zhou et al.
[28]

Multivariate linear re-
gression

2.70 0.42

Artificial neural network 1.95 0.59
Regression tree 4.95 0.58
SVR 1.68 0.43
MARS 1.86 0.32
A1 0.3155 0.3775
A2 0.4792 0.3536
A3 0.1883 0.3884

9. CONCLUSION
In this paper, an attempt has been made to use software

metrics in order to predict software maintainability. Neuro-
GA approach coupled with the concept of parallel comput-
ing concept was used to design an estimation model by em-
ploying 5-fold cross-validation technique for both QUES and
UIMS case studies. The concept involved in usage of varying
number of computing nodes was explored in this analysis.

Software metrics in combination with feature reduction
techniques such as PCA and RSA, were used to analyze the
effectiveness of the designed models to estimate the soft-
ware manintainability for QUES and UIMS software prod-
ucts. These techniques have the ability to predict the output
based on the available historical data. Software metrics were
taken as input data to train the network, and estimate the

108

maintainability of the software product. From this analy-
sis, it can be concluded that Neuro-GA approach obtained
promising results when compared with the work carried out
by Yuming Zhou et al. and Van Koten et al.. The compar-
ative analysis highlights that there exists a strong relation-
ship between software metrics, and maintainability. It was
also observed that, the training time gets reduced to a sig-
nificant amount when the number of computing nodes were
increased.

Further, work can be replicated in estimating the main-
tainability of the software products by coupling neural net-
work with other techniques such as particle swarm optimiza-
tion, Fuzzy logic, Clonal selection algorithm etc. Another
perspective would be to extend the proposed work to provide
‘estimation’ as a service using the cloud concept.

10. REFERENCES

[1] F. B. E. Abreu and R. Carapuca. Object-Oriented
software engineering: Measuring and controlling the
development process. In Proceedings of the 4th

International Conference on Software Quality, volume
186, 1994.

[2] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk.
Predicting maintenance performance using
object-oriented design complexity metrics. IEEE
Transactions on Software Engineering, 29(1):77–87,
2003.

[3] A. B. Binkley and S. R. Schach. Validation of the
coupling dependency metric as a predictor of run-time
failures and maintenance measures. In Proceedings of

the 20th international conference on Software

engineering, pages 452–455. IEEE Computer Society,
1998.

[4] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter.
Exploring the relationships between design measures
and software quality in Object-Oriented systems. The
Journal of Systems and Software, 51(3):245–273, May
2000.

[5] C. Burgess and M.Lefley. Can genetic programming
improve software effort estimation. Information and

Software Technology, 43:863–873, 2001.

[6] J.-C. Chen and S.-J. Huang. An empirical analysis of
the impact of software development problem factors
on software maintainability. Journal of Systems and

Software, 82(6):981–992, 2009.

[7] S. R. Chidamber and C. F. Kemerer. A metrics suite
for Object-Oriented design. IEEE Transactions on

Software Engineering, 20(6):476–493, June 1994.

[8] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using
metrics to evaluate software system maintainability.
IEEE Computer, 27(8):44–49, 1994.

[9] D. Coleman, B. Lowther, and P. Oman. The
application of software maintainability models in
industrial software systems. Journal of Systems and

Software, 29(1):3–16, 1995.

[10] R. Gu, F. Shen, and Y. Huang. A parallel computing
platform for training large scale neural networks. In
2013 IEEE International Conference on Big Data,
pages 376–384, 2013.

[11] M. Halstead. Elements of Software Sciencel. Elsevier
Science, New York, USA, 1977.

[12] B. Henderson-Sellers. Software Metrics. Prentice-Hall,

UK, 1996.

[13] H.-W. Jung, S.-G. Kim, and C.-S. Chung. Measuring
software product quality: A survey of iso/iec 9126.
IEEE software, 21(5):88–92, 2004.

[14] B. K. Kang and J. M. Bieman. Cohesion and reuse in
an Object-Oriented system. In Proceedings of the

ACM SIGSOFT Symposium on software reuseability,
pages 259–262. Seattle, March 1995.

[15] J. Kaur, S. Singh, K. S. Kahlon, and P. Bassi. Neural
network-a novel technique for software effort
estimation. International Journal of Computer Theory

and Engineering, 2(1):17–19, 2010.

[16] Kim and Ji-Hyun. Estimating classification error rate:
Repeated cross-validation, repeated hold-out and
bootstrap. Computational Statistics and Data

Analysis, 53(11):3735–3745, 2009.

[17] R. Kohavi. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In
Proceedings of the 14th International Joint Conference

on Artificial Intelligence, San Mateo, pages
1137–1143, 1995.

[18] A. Lake and C. Cook. Use of factor analysis to develop
oop software complexity metrics. In Proceedings of 6th

Annual Oregon Workshop on Software Metrics, Silver

Falls, Oregon, 1994.

[19] W. Li and S. Henry. Maintenance metrics for the
Object-Oriented paradigm. In Proceedings of First

International Software Metrics Symposium, pages
52–60, 1993.

[20] M. Lorenz and J. Kidd. Object-Oriented Software

Metrics. Prentice-Hall, NJ, Englewood, 1994.

[21] T. J. McCabe. A complexity measure. IEEE
Transactions on Software Engineering, 2(4):308–320,
December 1976.

[22] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli,
J. Krall, F. Peters, and B. Turhan. The promise
repository of empirical software engineering data, June
2012.

[23] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting
best practices for effort estimation. IEEE Transactions

on Software Engineering, 32(11):883–895, 2006.

[24] P. Oman and J. Hagemeister. Construction and testing
of polynomials predicting software maintainability.
Journal of Systems and Software, 24(3):251–266, 1994.

[25] Z. Pawlak. Rough sets. International Journal of
Computer and Information Sciences, 11(5):341–356,
1982.

[26] S. L. Schneberger. Distributed computing
environments: effects on software maintenance
difficulty. Journal of Systems and Software,
37(2):101–116, 1997.

[27] C. Van Koten and A. Gray. An application of bayesian
network for predicting object-oriented software
maintainability. Information and Software Technology,
48(1):59–67, 2006.

[28] Y. Zhou and H. Leung. Predicting object-oriented
software maintainability using multivariate adaptive
regression splines. Journal of Systems and Software,
80(8):1349–1361, 2007.

109

