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APPROXIMATE SOLUTION OF NONLINEAR FRACTIONAL
ORDER BIOCHEMICAL REACTION MODEL BY MULTISTAGE
NEW ITERATIVE METHOD

S. K. DAMARLA, M. KUNDU

ABSTRACT. Nonlinear fractional order mathematical models usually do not
have closed form solutions. Fractional order biochemical reaction model is such
a model that cannot be solved analytically, hence, valid approximate solution
is desired. Multistage new iterative method is proposed to acquire bounded
approximate solution of fractional order biochemical reaction model. The frac-
tional order biochemical process is simulated using the proposed method for
various combinations of fractional order and dimensionless reaction parame-
ters. The results have shown that the proposed method is reliable and com-
putationally effective.

1. INTRODUCTION

Enzymes are responsible for all chemical reactions take place within a biologi-
cal cell. Enzymes enhance rates of reactions without consuming in reactions they
catalyse and do not alter equilibrium of reactions. Modeling the transient behavior
of cellular processes under difficult situations like heterogeneous and in vivo condi-
tions with classical calculus may not be realistic approach. To accurately represent
such processes having inherent fractional order description, fractional derivative
which has non-local property can be applied ([I] -[9]). Abdullah ([I0]) employed
fractional derivative to derive realistic time fractional Michaelis-Menten kinetics
which describes the behaviour of macromolecules in two dimensional disordered
medium in presence of obstacles. To have clear understanding regarding the role
of fractional order as well as influential reaction parameters on enzymatic reaction,
fractional order biochemical reaction model must be solved. It is impossible to
have an exact solution for every fractional differential equation therefore it is indis-
pensable to use numerical techniques. In this regard, Ahmed ([I1]) and Molliq et
al. ([I2]) extended the application of multistep generalized differential transform
method and modified step variational iteration method, respectively, to predict the
behaviour of time-fractional enzyme kinetics in relatively large time region.

New iterative method (NIM) is an effective semi analytical technique that offers
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precise approximate solutions in terms of rapidly convergent infinite series for a
class of integer and non-integer order differential equations ([I3] -[I7]). To achieve
fast convergence, revised new iterative method can be utilized ([18]). The advan-
tage of new iterative method over widely used technique; Adomain Decomposition
Method is that new iterative method does not require the computation of Adomain
polynomials. However, new iterative method suffers from global convergence prob-
lem i.e. approximated solution tends to be unbounded as time domain increases.
In this work, multistage new iterative method is introduced to obtain bounded and
convergent approximate solutions that represent the true behaviour of fractional
order biochemical reaction model in large time span. The rest of the paper is or-
ganised as follows. Basic definitions and useful properties of fractional calculus are
provided in section [2] Section [3] describes nonlinear fractional order biochemical
reaction model. New iterative method for solving system of fractional order dif-
ferential equations is explained in section Section [5] introduces multistage new
iterative method. Section [f] discusses the convergence of multistage new iterative
method. In section [7} new iterative method and multistage new iterative method
are implemented on fractional order biochemical reaction model. Finally section [§]
concludes the paper.

2. BASIC DEFINITIONS AND PROPERTIES

This section provides two extensively utilized definitions and some operational prop-
erties of fractional calculus ([I], [19]).

Definition 2.1 A real function f(t), ¢t > 0, is said to be in the space C,,, u € R if
there exists a real number p(> p), such that f(t) = t? f1(t), where f1(t) € C[0, c0),
and it is said to be in the space C;" iff f™ € Cy, m € N.

Definition 2.2 The Riemann-Liouville fractional integral of order «(> 0) of func-
tion f(t) € Cy, p > —1 is defined as

1 t
J“ft:—/ t—7)" f(r) dr, t >t 1
(t) a) to( ) (7) 0 (1)
The Riemann-Liouville fractional derivative is
1 am [t
DXF#)=D"J" ft) = ———— | (t—7)" ! dr, t >t 2
WDE ) = D70 1) = e 4 [ e >0 )

where « is a non-integer that satisfies the relation m — 1 < a <m,m € N.
We mention here few properties of Riemann-Liouville fractional integral operator,
J%, which will be utilized in next sections.

For function f(t) € Cy, p > -1, o, >0 and v > —1

2.2.1 JYJBf(t) = JOTBf(t)
2.2.2 JYJBf(t) = JBJf(t)

_ T+ e
2.2.3 JMY = Mﬂ’*”

Definition 2.3 The fractional derivative of function f(¢) in the Caputo sense is
defined as

WD f() = — /’(t—f)m—a—lfm(f) dr, t >t 3)

L(m—a) Jy,
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Although the Riemann-Liouville fractional derivative is mathematically rigorous,
it cannot be applied to model a physical process since it requires the evaluation of
fractional derivatives and integrals at the initial time 3 = 0. Yet these fractional
initial conditions do not have meaningful physical explanation and impossible to
determine. But the Caputo fractional derivative needs only the values of function
f(t) and its m —1 integer order derivatives at the initial time ¢ty = 0. The Riemann-
Liouville fractional derivative performs first fractional integration and then integer
order differentiation to achieve derivative of order o whereas the Caputo fractional
derivative computes in reverse manner. However, both the definitions will coincide
for homogeneous initial conditions.

3. NONLINEAR FRACTIONAL ORDER BIOCHEMICAL REACTION MODEL

In this paper, we consider nonlinear fractional order biochemical reaction model
which is generalization of classical model proposed by Meena et al. (J20]) to describe
single substrate-enzyme reaction scheme:

E+S<~ES—E+P (4)

where FE is the enzyme, S is the substrate, ES is the enzyme-substrate intermedi-
ate complex and P is the product. The reaction mechanism given in equation
implies that the target molecules i.e. substrates are bind to enzymes’ active site
to form enzyme-substrate intermediate complex, which in turn, decomposes irre-
versibly into the original enzyme and product. The reversible reaction can occur
between enzyme-substrate intermediate complex and reactants when the concen-
tration of reactants and E'S achieve equilibrium stage.

Let s, e, ¢ and p be the concentrations of S, E, ES and P, respectively. From
the law of mass action, we get the following biochemical reaction model comprises
system of nonlinear ordinary differential equations.

ds
i —kies+ k_yc (5a)
de
i —kies+ (ko + k_1)c (5Db)
dc
= kies — (k1 + ka)c (5¢)
dp
E = kQC (5d)
with initial conditions;
5(0) = so,€(0) = co, ¢(0) = 0,p(0) = 0 (6)

The parameters ki, k_1 and ko in the above model are positive rate constants for
each reaction.
Combining equations and and using initial conditions (equation @) leads
to

e(t) + c(t) = eo (7)
Using the above algebraic equation and the system of differential equations given
in equations to , the following two equations for s and ¢ can be obtained.

ds __
at = 7k1605+(k18+]€_1)6 } (8)

% = kieps — (kls +k_1+ ]{32)0



110 S. K. DAMARLA, M. KUNDU JFCA-2014/5(2)

The initial conditions for this system are s(0) = so and ¢(0) = 0.
Substitution of parameters presented in equation (|9) in equations (@ and results
in dimensionless model provided by equations (10) and .

7'=M U(T)Zﬂ,U(T)Z@ w(T):M A= k2 k—k_1+k2 6—60}

s = =

€ S0 €0 €0 ’ k180 ’ k150 ’ S0

9)

%:d?fuf (KJrk)v (10)
ar = v
u(0) =
v(((()))) = % (11)

By introducing non-integer order into the above classical model, fractional order
biochemical reaction model is obtained as

D y(r) = —ue +e(u+k— Mo
D2y(r) =u— (u+ k)v (12)
D&sw(T) =M

u(0) =1
v(((()))> = (()) (13)

where a1, ao and ag are non-integer orders satisfying the relation 0 < o, as, a3 <1
and D, is Caputo fractional derivative. The fractional orders oy, ag and ag will be
altered together and independently to analyze their impact on the fractional order
biochemical reaction model.

4. NEW ITERATIVE METHOD (NIM)

Let us consider the following general form of system of fractional order differential

equations:

D&vai(t) = Li (t, 21, @2, .« Xp)+N; (6,21, Tay oy xn)+g: (B), i =1,2,...,n, t € [0,T]
(14)

where D¢ is the Caputo fractional derivative of order «; satisfies the relation

0 < a; <1, L; is a linear operator, IN; is a nonlinear operator and g¢;(¢) is a given

function.

The initial conditions for the aforementioned system are

zi(0) = a; (15)
Multiplication with the inverse operator J“ on both sides of equation yields

x;(t) = x;(0) + J¥ (Li(t, 1, @2, . ., Tn)) + TV (Ni(t, 21,22, .., Tp)) + T (94(2))

(16)
According to new iterative method, solution z;(t) can be approximated by the
infinite series:

7 (1) = wim () (7)
m=0
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The non-linear term N; (¢, 1,22, ...,,) in equation can be decomposed as

N; <t, Z Timy .-y Z $mn> = N (t,z10,..-,2Tno) + Z (N;1 — Ny2) (18)
m=0 m=0 m=1

where Nil = Ni (t, Z;rL:O T1jyenny E;n:() xnj)
Nip = N; (t, Z;n:_ol Tjseees Z;n:_ol xnj)
Replacing z; (t) and nonlinear term N; (¢, z1, 2, ..., Z,) in equation (16) with equa-
tions (17) and (18), respectively, leads to
Dm0 Tim = x; (0) + J* (Lix) 4+ J* (Nig) 4 J* (3o (Nin — Niz)) + T (gi(t))
(19)
where NiO = Ni (t, T10y - - - ,l‘no)
Nil = ]\]z (t7 Z;nzo :L‘lj, ey Z;ﬂ:o J,'nj)
m—1 m—1
Nig = Nl (t, Ej:O SL‘lj, ey Zj:O .Z'n])

o0 o0
Lil = Lz (t, Zmzo LTimy -+ Zmzo mnm)
From the following recurrence relations, components of series solution can be de-
termined.

zio = x; (0) + J% (g: (1)) (20)
xi = JY (L (t, 210, - - ., Tno) + Ni (L, 210, - - -, Tno)) (21)
Time1 = J (Li(t, Z1imy - Tnm)) + T (Ni1 — Ni2) ,m > 1 (22)

m m
where Nil = Ni (t, Zj:O T1jyeeny E]’:O xnj)

—1 —1
Nip = N; (t, D0 s D xnj)
Truncating the series solution rendered in equation (17) to N finite terms gives
practical solution.

5. MULTISTAGE NEW ITERATIVE METHOD (MNIM)

As we shall notice in section [7] new iterative method can provide valid approximate
solution only in the neighborhood of initial time. This drawback prevents its appli-
cation to real processes. To overcome this difficulty, multistage strategy is applied
to new iterative method. This multistage approach makes new iterative method ca-
pable of predicting the behaviour of any kind of fractional order process in arbitrary
time interval. The steps of multistage new iterative method are as follows. Divide
the time interval [0,7] into M subintervals i.e. [to,t1], [t1,t2],..., [tam—1,tm = T
with constant step size h = % At each stage, a set of differential equations of
fractional order will be solved using new iterative method with arbitrary initial
conditions. In order to compute approximate solution in each stage, we need to
know arbitrary initial conditions at the left end point of every subinterval. Usually
we do not have these information except at the initial time tg = 0. Therefore,
knowledge of a process at initial time ¢y = 0 is used to calculate approximate solu-
tion in first subinterval [to, ¢1] and this solution serves as initial condition for next
subinterval [t1,ts]. Likewise, we can obtain approximate solution in every subin-
terval and this procedure will continue untill desired time span is reached. The
number of terms (V) of series solution and the step size, h, greatly influence the
efficiency of multistage new iterative method. As h decreases, convergence quickly
achieves. It is to be noted that very small step size causes high computational time.
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6. ANALYSIS OF CONVERGENCE

In this section, we show the convergence of multistage new iterative method prior
to its implementation on fractional order biochemical reaction model.

For simplicity, we consider system of nonlinear fractional order differential equations
of the form

DYixi(t) =F; (t,x1,...,2,); 1=1,2,....,n, 0<a; <1, t€l[0,T] (23)

subject to initial conditions; x; (0) = a;.
From sections {4 and |5} the solution x; (t) can be approximated in any time interval
by the infinite series:

()= @i (1) (24)

whose components are "
T (t) = x; (t7) (25)
i =ty Jie (6= )T F (7,10, @20, -, Tno) T (26)
Tim1(t) = wihy fi (6= 7)4 7N (Fpy = Fia))) drym > 1 (27)
where Fj1 = (T, ) 1o T1ks - - 5 2 opeo Tnk), Fiz = (7, ZZL:_Ol Tlky - Zzn:_ol Tnk)

We now prove that the series solution Y.~ z;, converges to z; (t), the exact
solution of given initial value problem.
Let us consider

M= , m>0, i€]ll,n] (28)

m m
F; T,E 331k7~-~72 Tnk
k=0 k=0

K_KWMﬂZ?wmwa?WM)

m ?mZ]"Z?]E[]‘?n]
8(Zk=0 jk) )Zg"olxu,...,zg"olacnl

(29)
From equations and ,
|£Ci1 (t)| = ‘ﬁ ftt* (t — T)aiil Fz (T,.’ﬂlo, ey CEno) dT‘
t a;—1
< e[S =T IR (o, o) dr (30)
t a; —1
< F(J\(i) fg* (t—m7) dr
M (t=t*)%i
S F(OtiJrl)
t a;—1
@iz (O] = |y Ji- (6= 1) (Fa = Fio) dr|
= ‘F(}xi) ‘ [t =7)* T Fy = Fyl dr
< F(Li) f:* (t — 7')017:—1 Fiyo + 2?21 (DF) Tj1 — Fio dr (31)
t a; —1 n
< iy Jie (=) S (DF) i) dr
nk t a;—1 M(r—t*)%i
Sr@yb(“_T) T@ﬁn)‘h
< nK M (t—t*)?>i
— F(2ai+1)
where Fjy = (7, %10, 20 - - -y Tno)
Fi = (1,210 + 211, .., Tpo + Tn1)
DF = (5525
0(@30%211) ) 410,220, no
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¢ o
Ixim-i-l (t)| = ‘r(%m) ft* (t — T) i—l (Fi — iml) dT
t o
‘F(}xi) ‘ [t = 1) Fypy — Fipa| dr
t oG — n
ﬁ j;t* (t - T) it ‘Fzml + Zj:l (DF) Tjm — Fi'ml dr (32)

1 t L
e Ji (= T) T 0 IDF| 2| dr
(Kn)™M (t—t*)(m+De:
T'(1+(m+1)a;)
where Fim = Fi(T, ZZI:O Tlkyo-y Z;nzo .’L‘nk)
-1 -1
Fiml = Fi(Ta Z’Zl:o Tlky ooy Z;n:() xnk)
DF = (‘mm
(i,
(Zkzo w]k) Z?;BI T1lseees Z?;Bl Ty ( )
. . Kn)™ M (t—t*)(m+Da;
It is known that the series >°°_ < ”%(1+Em+1))ai)
solution domain ¢ € [0,00), hence, the series solution; Y.~ 2, (t) is absolutely
and uniformly convergent in any large time domain.

IANIN A

IN

is convergent for entire

7. APPLICATION OF NIM AND MNIM

The fractional order biochemical reaction model bestowed in equations and
can be written in form of system of second kind Volterra integral equations as

u(r) =u(0)+ J* (—ue+e(u+k—N)) (33)
v(1)=0v(0)+J* (u— (u+k)v) (34)
w (1) =w(0) + J* (M) (35)

with initial conditions; « (0) = 1, v (0) = 0 and w (0) = 0.

As per new iterative method discussed in section [] and using the initial approx-
imations; ug = 1,v9g = 0,wy = 0, we get the following analytical expressions for
normalized concentration of substrate (u), enzyme-substrate intermediate complex
(v) and product (w).

7o ) 7.2(11 o1tz
u(r)=1—c¢ +e€ +elk—N)07F———"7-— oo 36
<) F(a1+1) F(Qal—l—l) ( )F(a1+a2+1) ( )
702 Faitaz 7202
v(iT) = — € — k + .................. 37
(7) I(ag+1) I'(ag+as+1) I (200 +1) 37
Toztas rtaztas r2aztas
w(T)=A — €A — Ak 4
(7) F(a2+a3+1) F(a1+a2+a3+1) I'(2ae + a3 + 1)
(38)
For special case of @y = as = az = 1, normalized concentrations of substrate

(u), enzyme-substrate intermediate complex (v) and product (w) obtained using
the NIM are plotted in figure From figure [1} it can be observed that the con-
centration of substrate, enzyme-substrate intermediate complex and product are
unbounded. By employing the multistage new iterative method with N = 3 and
h = 0.1, we get bounded approximate solutions which are in good agreement with
solutions obtained by Runge-Kutta method (fourth order) as illustarted in figure
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In comparison to new iterative method, the multistage new iterative method exhib-
ited superior performance in representing the real transient behaviour of fractional
order biochemical reaction model. Hence, the multistage new iterative method with
N = 3 will be utillized for further analysis of time fractional enzyme kinetics for
three different sets of dimensionless reaction parameters and for various values of
fractional orders; oy, as and ag.

We now assume that the fractional orders; aq, as and «vg are equal (a; = @y = ag = 1).
The fractional order biochemical reaction model is simulated using MNIM for
ks =1, = 0.5,¢ = 0.6 and for different values of « (0.97,0.9,0.8,0.7). The response
of normalized concentration of substrate, enzyme-substrate intermediate complex
and product are shown in figure[3] For each value of v, normalized concentration of
substrate and enzyme-substrate intermediate complex are slowly decreasing from
their initial values to approach zero. On the other hand, normalized product concen-
tration is slowly increasing and eventually attains constant value. Figure 4| displays
the effect of increased dimensionless reaction parameters; k3 = 2,A = 1,e = 0.5
and fractional order, a, on time fractional enzymatic kinetics. The increase in di-
mensionless reaction parameters increases the product concentration and decreases
the maximum value of concentration of enzyme-substrate intermediate complex.
The response of concentration of u, v and w for k3 = 5,A = 3,¢ = 0.8 and
a = {0.97,0.9,0.80.7} are depicted in figure 5| The additional increase in dimen-
sionless reaction parameters has significant impact on the process variables; u, v
and w. As the value of « decreasing, the normalized concentration of substrate and
enzyme-substrate intermediate complex are quickly approaching zero. The profile
of normalized product concentration follows same trend for each value of o and
achieves lowest steady state value 1.250 at 7 > 13.

In order to investigate the individual effect of fractional orders; a1, s and a3 on
the concentration of substrate, enzyme-substrate intermediate complex and prod-
uct, we consider different values of ay, as and ag for dimensionless reaction pa-
rameters; k3 = 1,\ = 0.5, = 0.6. The response of fractional order biochemical
reaction model to a; = 0.87, as = 0.97 and a3 = 0.75 is shown in figure @ The
unequal fractional orders cause product concentration to reach highest value of
2.265. At 7 > 9.6, the substrate concentration is constant at minimum value of
4.0209x10~". The concentration of enzyme-substrate intermediate complex reaches
maximum value of 0.3592 at 7 = 1.4 after that slowly reduces to 0.0047. Figures
and |8 show the response of normalized process variables; u, v and w for two differ-
ent sets of fractional orders. It is again noticed that low value of fractional order
induces process variables; u and v to reach their respective steady states quickly
and gives highest product concentration for normal values of dimensionless reaction
parameters.

The inference can be derived from this analysis that the approximate solutions
are continuously depending on fractional order. When the value of « tend to 1,
the approximate solutions are converging to the exact solutions. As the value of
« diminishing, the concentrations of substrate and enzyme-substrate intermediate
complex are quickly coming close to zero and the product concentration reaches to
its highest value.
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a = 0.97 (solid), 0.9 (dashed), 0.8 (dotted), 0.7 (dashed-dotted)
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8. CONCLUSIONS

The nonlinear fractional order biochemical reaction model is simulated by using
multistage strategy with new iterative method. Comparison between approximate
solutions obtained by multistage new iterative and Runge-Kutta method shows that
the proposed method is reliable. The approximate solutions derived using MNIM
for various combinations of fractional order and dimensionless reaction parameters
could represent the true behaviour of fractional order biochemical reaction model in
large time domain. However, NIM method failed to achieve the solution for this real
process over large time span. The real process was assumed as a multistage process
of equal time span and each stage was assumed to contain a set of non-integer order
differential equations. The solutions we got here as analytical solution in discrete
form over each and every stage of the process. This study reveals that this method
takes few terms and less time to compute approximate solution and recommends
its application as a powerful alternative to a wide variety of real processes.
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