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NUMERICAL SOLUTION OF FRACTIONAL ORDER

DIFFERENTIAL-ALGEBRAIC EQUATIONS USING

GENERALIZED TRIANGULAR FUNCTION OPERATIONAL

MATRICES

S.K. DAMARLA, M. KUNDU

Abstract. This article introduces a new application of piecewise linear or-

thogonal triangular functions to solve fractional order differential-algebraic

equations. The generalized triangular function operational matrices for approx-
imating Riemann-Liouville fractional order integral in the triangular function

(TF) domain are derived. Error analysis is carried out to estimate the upper

bound of absolute error between the exact Riemann-Liouville fractional order
integral and its TF approximation. Using the proposed generalized operational

matrices, linear and nonlinear fractional order differential-algebraic equations
are solved. The results show that the TF estimate of Riemann-Liouville frac-

tional order integral is accurate and effective.

1. Introduction

Many physical problems in mechatronics, chemical kinetics, optimal control, electric
circuit design, chemical process control, molecular dynamics, incompressible fluids,
power systems and industrial production processes etc. are successfully modelled
by the use of differential-algebraic equations [1, 2].
Generally the differential-algebraic equations are expressed in a fully implicit form
given by

F
(
t, Y, Y

′
)

= 0 (1)

where Y is a vector of dependent variables, F is a vector of functions of time
t, dependent variables and their derivatives and ∂F/∂Y

′
may be singular. The

special case of differential-algebraic equations in 1, which is frequently appearing
in practical applications, is semi-explicit differential-algebraic equation or ordinary
differential equation with algebraic constraints defined as follows.

Y
′

= F (t, Y, Z)
0 = g (t, Y, Z)

(2)
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The mathematical theory and properties of differential-algebraic equations can be
found in Brenan et al. [3], Campbell et al. [4] and Gear [5]. The complexity in solving
differential-algebraic equation is usually indicated by differential index. The differ-
ential index is the minimum number of differentiations required to convert a given
differential-algebraic equation into a system of ordinary differential equations. The
differential index of semi-explicit differential-algebraic equation in 2 is 1 if ∂g/∂Z
is non-singular. The high index (index greater than 1) differential-algebraic models
are difficult to solve so that an alternative is to utilize index reducing method which
transforms high index problems into low index (or to one) problems by successive
differentiation of algebraic constraints [6].
Several real world phenomena, which exhibit fractional dynamics, in biology, elec-
trochemistry, electromagnetism, acoustics, material science, control theory, physics
etc. are well represented by fractional order derivative than the classical one
[7, 8, 9, 10, 11]. The non-local nature of fractional order derivative made it ca-
pable of explaining the inherent fractional order description of such physical pro-
cesses. Electrochemical processes, non-integer order optimal controller design, com-
plex biochemical processes may find application of fractional differential algebraic
equations.
In this article, we consider the following fractional order differential-algebraic equa-
tions.

Dαi
∗ xi (t) = fi (t, x1, x2, . . . , xn)

0 = g (t, x1, x2, . . . , xn)
(3)

with initial conditions xi (0) = ai, i = 1, 2, . . . , n.
Here Dαi

∗ is Caputo fractional derivative of order αi satisfying the relation m−1 <
αi ≤ m,m ∈ N .
In general, most fractional order differential-algebraic equations do not have ex-
act solutions. Therefore, development of effective numerical techniques, which offer
precise approximate solutions, has become an active research area. In this regard,
Ibis and Bayram [12], Ibis et al. [13], Zurigat et al. [14] and Ding and Jiang [15]
extended the application of Adomian Decomposition Method (ADM), Variational
Iteration Method (VIM), Fractional Differential Transform Method (FDTM), Ho-
motopy Analysis Method (HAM) and waveform relaxation method to solve frac-
tional order differential-algebraic equations.
The idea of Fourier to use arbitrary functions, even the one defined by different
equations in its adjacent segments of its range, which a single analytical function
cannot represent actually paved the way of using family of orthogonal functions. The
processes having jump, delay and discontinuity may be better represented by or-
thogonal functions. The orthogonal triangular function sets developed by Deb et al.
[16] are a complementary pair of piecewise linear polynomial function sets evolved
from a simple dissection of block pulse function (BPF) set [17]. The authors have de-
rived a complementary pair of operational matrices for first order integration in the
TF domain and demonstrated that the TF domain technique for dynamical systems
analysis is computationally more effective than the BPF domain technique. Besides
system analysis, the orthogonal TFs also find applications in system identification,
optimal controller design and numerical analysis of classical integral and differential
equations [18, 19, 20, 21, 22]. Those successful applications have made us strongly
believe that the TFs having enough potential to be applicable in fractional order
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systems. To the best of our knowledge, there is no literature until date in frac-
tional calculus that reported the use of orthogonal TFs for solving fractional order
differential-algebraic equations. These facts motivated us to extend the application
of orthogonal TFs to solve fractional order differential-algebraic equations shown
in 3. To accomplish our goal, we have proposed the generalized triangular function
operational matrices for estimating the Riemann-Liouville fractional order integral
in the TF domain. The rest of the paper is prepared as follows. Useful definitions
of fractional calculus are provided in section 2. Generation of complementary pair
of TF sets from BPF set is discussed in section 3. Section 4 presents the basic
properties of orthogonal TF sets. The method of estimating classical and fractional
integration in the TF domain is explained in section 5. An upper bound of abso-
lute error between the exact Riemann-Liouville fractional order integral and its TF
estimate is computed in section 6. Section 7 implements the proposed operational
matrices on illustrative examples. Finally, the paper is concluded in section 8.

2. Basic definitions of fractional calculus

In this section, we provide widely used definitions of fractional calculus [23].
Definition 2.1 A real function f (t) , t > 0, is said to be in the space Cµ, µ ∈ R if
there exists a real number p (> µ), such that f (t) = tpf1 (t), where f1 (t) ∈ C [0,∞)
and it is said to be in the space Cmµ if and only if f (m) ∈ Cµ, m ∈ N .
Definition 2.2 The Riemann-Liouville fractional order integral of α (> 0) of func-
tion f (t) ∈ Cµ, µ > −1 is defined as

Jαf (t) =
1

Γ (α)

∫ t

0

(t− τ)
α−1

f (τ) dτ (4)

Definition 2.3 The Riemann-Liouville fractional order derivative (RL) of function
f (t) is defined as

Dα
t f (t) = DmJm−αf (t) =

1

Γ (m− α)

dm

dtm

∫ t

0

(t− τ)
m−α−1

f (τ) dτ, t > 0 (5)

where α is a non-integer satisfying the relation m− 1 < α ≤ m, m ∈ N .
Definition 2.4 The fractional order derivative of f (t) in Caputo sense is defined
as

Dα
∗ f (t) = Jm−αDmf (t) =

1

Γ (m− α)

∫ t

0

(t− τ)
m−α−1

f (m) (τ) dτ, t > 0 (6)

3. Triangular functions

In this section, firstly, we review block pulse functions in brief and then we introduce
the method of dissecting the block pulse function set to formulate a complementary
pair of orthogonal TF sets.

3.1 Review of block pulse functions

Let us consider a square integrable function f (t) of Lebesgue measure, which is
continuous in the interval [0, T ). Divide the interval into m subintervals of constant
width h = T/m as [ti, ti+1) , i = 0, 1, 2, . . . ,m− 1.
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Figure 1. Generation of TFs from BPFs

Let ψm (t) be a set of block pulse functions containing m component functions in
the interval [0, T ).

ψm (t) = [ψ0 (t) , ψ1 (t) , ψ2 (t) , . . . , ψm−1 (t)]
T
1×m (7)

where [· · · ]T signifies transpose.
The ith component of the BPF vector ψm (t) is defined as

ψi (t) =

{
1 ih ≤ t < (i+ 1)h

0 otherwise
i = 0, 1, 2, . . . ,m− 1 (8)

The square integrable function f (t) can be approximated by BPFs as

f (t) ∼=
m−1∑
i=0

fiψi (t) = [f0, f1, . . . , fm−1]ψm (t) = FTψm (t) (9)
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where the constant coefficients fi are defined as fi = 1
h

∫ (i+1)h

ih
f (t) dt.

The BPF estimate for first order integration of function f (t) can be derived as [24]

Jf (t) =

∫ t

0

f (s) ds ∼=
∫ t

0

FTψm (s) ds = FT
∫ t

0

ψm (s) ds = FTPψm (t) (10)

where P is the operational matrix for first order integration in the BPF domain:

P = h
2



1 2 2 · · · · · · 2
0 1 2 2 · · · 2
0 0 1 2 · · · 2

0 0 0 1
. . . 2

... · · · · · ·
. . .

. . . 2
0 0 0 · · · 0 1


m×m

3.2 Complementary pair of TF sets

Let us divide the first component of BPF vector ψm (t) into a complementary pair
of linear polynomial functions as shown in figure 1.

ψ0 (t) = T10 (t) + T20 (t) (11)

where T10 (t) =
(
1− t

h

)
and T20 (t) =

(
t
h

)
and the second component ψ1 (t),

ψ1 (t) = T11 (t) + T21 (t) (12)

where T11 (t) = 1−
(
t−h
h

)
and T21 (t) =

(
t−h
h

)
.

In the same fashion, we can divide the remaining components of ψm (t) into respec-
tive complementary pairs of linear polynomial functions. Thus, for the whole set of
BPFs, we now have two sets of linear polynomial functions, namely, T1m (t) and
T2m (t) each contains m component functions in the interval [0, T ).

ψm (t) = T1m (t) + T2m (t) (13)

where T1m (t) = [T10 (t) , . . . , T1m−1 (t)]
T
, T2m (t) = [T20 (t) , . . . , T2m−1 (t)]

T

The triangular function vectors; T1m (t) and T2m (t) together form the entire set of
BPFs, hence, T1m (t) and T2m (t) are complement to each other as far as BPF set
is considered. We recognize from figure 1 that the shapes of T1i and T2i are left-
handed and right-handed triangles, respectively. So, we name these two sets as left-
handed triangular functions vector (LHTF) and right-handed triangular functions
vector (RHTF), respectively.
Now we define the ith component of the LHTF vector T1m (t) as

T1i (t) =

{
1−

(
t−ih
h

)
ih ≤ t < (i+ 1)h

0 otherwise
i = 0, 1, 2, . . . ,m− 1 (14)

and the ith component of the RHTF vector T2m (t) as

T2i (t) =

{
t−ih
h ih ≤ t < (i+ 1)h

0 otherwise
i = 0, 1, 2, . . . ,m− 1 (15)
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Like BPFs, TFs can also be employed for the approximation of the square integrable
function f (t) in the interval [0, T ).

f (t) ∼= [c0, c1, . . . , cm−1]T1m (t) + [d0, d1, . . . , dm−1]T2m (t)

= CTT1m (t) +DTT2m (t)

}
(16)

where the constant coefficients ci and di can be computed as ci = f (ih), di =
f ((i+ 1)h).
The expressions for the coefficients ci and di emphasis that the function evalua-
tions at the equidistant nodes, ti, i = 0, 1, 2, . . . ,m − 1 are enough to find their
numerical values. Whereas the coefficients in BPF series representation in equation
9 demand the integration of f (t). Thus, the function approximation in TF domain
is computationally more effective compared to that in BPF domain.

4. Basic properties of triangular functions

This section introduces orthogonal and a few operational properties of LHTF set
T1m (t) and RHTF set T2m (t). The proofs of theorems 4.1 to 4.5 are published
elsewhere [17].

Theorem 4.1. If T1i (t) , T1j (t) ∈ T1m (t), i, j ≤ m, the condition of orthogonal-

ity of LHTF set T1m (t) is
∫ T

0
T1i (t)T1j (t) dt =

{
h
3 if i = j

0 otherwise

Theorem 4.2. If T2i (t) , T2j (t) ∈ T2m (t), i, j ≤ m, the condition of orthogonal-

ity of RHTF set T2m (t) is
∫ T

0
T2i (t)T2j (t) dt =

{
h
3 if i = j

0 otherwise

Theorem 4.3. If T1i (t) , T1j (t) ∈ T1m (t), i, j ≤ m, then

T1i (t)T1j (t) =

{
0 if i 6= j

T1i (t) if i = j

Theorem 4.4. If T2i (t) , T2j (t) ∈ T2m (t), i, j ≤ m, then

T2i (t)T2j (t) =

{
0 if i 6= j

T2i (t) if i = j

Theorem 4.5. If T1i (t) ∈ T1m (t) and T2j (t) ∈ T2m (t), then T1i (t)T2j (t) = 0,
∀i, j ≤ m

Theorem 4.6. If g (t) is a square integrable function of Lebesgue measure and
continuous in the interval [0, T ), then the TF estimate of nth power of g (t) is
(g (t))

n ∼=
[
cn0 , c

n
1 , . . . , c

n
m−1

]
T1m (t) +

[
dn0 , d

n
1 , . . . , d

n
m−1

]
T2m (t), n ∈ N .

Proof. Using equation 16, expanding the function g (t) in the orthogonal TF domain
as

g (t) ∼= CTT1m (t) +DTT2m (t) (17)

The product g (t) × g (t) can be expressed in terms of complementary pair of TF
sets as

g (t)× g (t) ∼= CT . ∗ CT (T1m (t)T1m (t)) + CT . ∗DT (T1m (t)T2m (t)) +

DT . ∗ CT (T2m (t)T1m (t)) +DT . ∗DT (T2m (t)T2m (t))

}
(18)
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Here the operator (.∗) denotes element-by-element product.
Employing theorems 4.3 to 4.5, the above equation can be simplified into the fol-
lowing form.

g (t)× g (t) ∼=
[
c20, c

2
1, . . . , c

2
m−1

]
T1m (t) +

[
d2

0, d
2
1, . . . , d

2
m−1

]
T2m (t) (19)

In the same manner, nth power of g (t) can be estimated in the TF domain as shown
in equation 20.

(g (t))
n ∼=

[
cn0 , c

n
1 , . . . , c

n
m−1

]
T1m (t) +

[
dn0 , d

n
1 , . . . , d

n
m−1

]
T2m (t) (20)

�

Theorem 4.7. Suppose the square integrable functions; h1 (t),h2 (t), h3 (t),. . . ,
hn (t) are approximated via TFs. Then their product can be expressed as

h1 (t)h2 (t) · · ·hn (t) ∼=
[
c10c20 · · · cn0 , . . . , c1m−1c2m−1 · · · cnm−1

]
T1m (t) +[

d10d20 · · · dn0 , . . . , d1m−1d2m−1 · · · dnm−1

]
T2m (t)

}
Proof. The piecewise linear approximation of h1 (t), h2 (t) and h3 (t) by TFs are

h1 (t) ∼= CT1 T1m (t) +DT
1 T2m (t)

h2 (t) ∼= CT2 T1m (t) +DT
2 T2m (t)

h3 (t) ∼= CT3 T1m (t) +DT
3 T2m (t)

 (21)

Employing theorems 4.3 to 4.5, the product h1 (t)h2 (t) is estimated as

h1 (t)h2 (t) ∼=
(
CT1 . ∗ CT2

)
T1m (t) +

(
DT

1 . ∗DT
2

)
T2m (t)

=
[
c10
c20
, c11

c21
, . . . , c1m−1

c2m−1

]
T1m (t) +[

d10
d20

, d11
d21

, . . . , d1m−1
d2m−1

]
T2m (t)

 (22)

The product h1 (t)h2 (t)h3 (t) in the TF domain is expressed as

h1 (t)h2 (t)h3 (t) ∼=
[
c10c20c30 , c11c21c31 , . . . , c1m−1c2m−1c3m−1

]
T1m (t) +[

d10d20d30 , d11d21d31 , . . . , d1m−1d2m−1d3m−1

]
T2m (t)

}
(23)

Likewise, the product of n square integrable functions can be expressed as

h1 (t)h2 (t) · · ·hn (t) ∼=
[
c10
c20
· · · cn0

, . . . , c1m−1
c2m−1

· · · cnm−1

]
T1m (t) +[

d10
d20
· · · dn0

, . . . , d1m−1
d2m−1

· · · dnm−1

]
T2m (t)

}
(24)

�

5. Triangular function operational matrices for classical and
fractional integration

In the following subsections, we establish the method of approximating classical as
well as fractional integration in the TF domain.

5.1 The TF estimate of first order integral of function f (t)

One-fold integration of square integrable function f (t) is

Jf (t) =

∫ t

0

f (s) ds (25)
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Substituting the TF estimate of f (t) in equation 25 leads to∫ t
0
f (s) ds ∼= CT

∫ t
0
T1m (s) ds+DT

∫ t
0
T2m (s) ds

= CT
[∫ t

0
T10 (s) ds, . . . ,

∫ t
0
T1m−1 (s) ds

]T
T1m (t) +

DT
[∫ t

0
T20 (s) ds, . . . ,

∫ t
0
T2m−1 (s) ds

]T
T2m (t)

 (26)

Therefore, the integration of function f (t) is now changed to the integration of
LHTF set and RHTF set. Since the function f (t) is square integrable, its estimate
is also square integrable.
The graph of T1i (t) versus t and T2i (t) versus t depicted in figure 1 can be ex-
pressed mathematically as

T1i (t) = u (t− ih)− t− ih
h

u (t− ih) +
t− (i+ 1)h

h
u (t− (i+ 1)h) (27)

T2i (t) =
t− ih
h

u (t− ih)− t− (i+ 1)h

h
u (t− (i+ 1)h)− u (t− (i+ 1)h) (28)

We now integrate each component of LHTF set T1m (t) using equation 27 and ex-
press the result in terms of LHTF set T1m (t) and RHTF set T2m (t).∫ t

0
T10 (s) ds =

∫ t
0

(
1− s

h

)
u (s) ds+

∫ t
h

(
s−h
h

)
u (s− h) ds

= h
2 [0 1 . . . 1 1]T1m (t) + h

2 [1 1 . . . 1 1]T2m (t)

}
(29)∫ t

0

T11 (s) ds =
h

2
[0 0 1 . . . 1 1]T1m (t) +

h

2
[0 1 1 . . . 1 1]T2m (t)

(30)
...
...∫ t

0

T1m−1 (s) ds =
h

2
[0 0 . . . 0 0]T1m (t) +

h

2
[0 0 . . . 0 1]T2m (t)

(31)
Therefore, the first order integration of LHTF set T1m (t) is∫ t

0

T1m (s) ds = P1T1m (t) + P2T2m (t) (32)

where

P1 = h
2



0 1 1 · · · · · · 1
0 0 1 1 · · · 1
0 0 0 1 · · · 1

0 0 0 0
. . .

...
...

...
...

...
. . . 1

0 0 0 0 · · · 0


m×m

, P2 = h
2



1 1 1 · · · · · · 1
0 1 1 1 · · · 1
0 0 1 1 · · · 1

0 0 0 1
. . .

...
...

...
...

...
. . .

...
0 0 0 0 · · · 1


m×m

Following the same procedure, the first order integration of RHTF set T2m (t) using
equation 28 is∫ t

0

T2m (s) ds = P1T1m (t) + P2T2m (t) =

∫ t

0

T1m (s) ds (33)
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Equation 25 becomes∫ t

0

f (s) ds ∼=
(
CTP1 +DTP1

)
T1m (t) +

(
CTP2 +DTP2

)
T2m (t) (34)

Here P1 and P2 are complement to each other as far as P is considered. This com-
plementary pair is acting as a first order integrator in the TF domain.

5.2 The TF estimate of Riemann-Liouville fractional order integral
of function f (t)

Replacing f (t) with its TF estimate in equation 4,

Jαf (t) ∼= CT (JαT1m (t)) +DT (JαT2m (t))

= CT


JαT10 (t)
JαT11 (t)

...
JαT1m−1 (t)

+DT


JαT20 (t)
JαT21 (t)

...
JαT2m−1 (t)




(35)

Similar to equation 29, we compute the α - order Riemann-Liouville fractional
integral of T10 (t) and express the result by means of complementary pair of TF
sets.

JαT10 (t) = hα

Γ(α+2) [0 ς1 ς2 · · · · · · ςm−1]T1m (t) +
hα

Γ(α+2) [ς1 ς2 ς3 · · · · · · ςm]T2m (t)

}
(36)

where ςj =
(
jα (1 + α− j) + (j − 1)

α+1
)

, j = 1, 2, . . . ,m.

JαT11 (t) = hα

Γ(α+2) [0 0 ς1 · · · ςm−2]T1m (t) +
hα

Γ(α+2) [0 ς1 ς2 · · · ςm−1]T2m (t)

}
(37)

...

...

JαT1m−1 (t) = hα

Γ(α+2) [0 0 0 · · · 0]T1m (t) +
hα

Γ(α+2) [0 0 0 · · · ς1]T2m (t)

}
(38)

Therefore, the Riemann-Liouville fractional integral of order α of LHTF set T1m (t)
is

1

Γ (α)

∫ t

0

(t− τ)
α−1

T1m (τ) dτ = Pα1 T1m (t) + Pα2 T2m (t) (39)

where

Pα1 = hα

Γ(α+2)



0 ς1 ς2 ς3 · · · ςm−1

0 0 ς1 ς2 · · · ςm−2

0 0 0 ς1 · · · ςm−3

0 0 0 0
. . .

...
...

...
...

...
. . . ς1

0 0 0 0 · · · 0


, Pα2 = hα

Γ(α+2)



ς1 ς2 ς3 · · · · · · ςm
0 ς1 ς2 ς3 · · · ςm−1

0 0 ς1 ς2 · · · ςm−2

0 0 0 ς1
. . .

...
...

...
...

...
. . .

...
0 0 0 0 · · · ς1


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Following the same procedure as we applied for LHTF set, the Riemann-Liouville
fractional order integral of RHTF set using equation 28 is derived as

JαT2m (t) =
1

Γ (α)

∫ t

0

(
(t− τ)

α−1
T2m (τ)

)
dτ = Pα3 T1m (t) + Pα4 T2m (t) (40)

where

Pα3 = hα

Γ(α+2)



0 ξ1 ξ2 ξ3 · · · ξm−1

0 0 ξ1 ξ2 · · · ξm−2

0 0 0 ξ1 · · · ξm−3

0 0 0 0
. . .

...
...

...
...

...
. . . ξ1

0 0 0 0 · · · 0


, Pα4 = hα

Γ(α+2)



ξ1 ξ2 ξ3 · · · · · · ξm
0 ξ1 ξ2 ξ3 · · · ξm−1

0 0 ξ1 ξ2 · · · ξm−2

0 0 0 ξ1
. . .

...
...

...
...

...
. . .

...
0 0 0 0 · · · ξ1


ξj = jα+1 − (j + α) (j − 1)

α

From equations 35 , 39 and 40,

JαTF f (t) = 1
Γ(α)

∫ t
0

(t− τ)
α−1

f (τ) dτ
∼=
(
CTPα1 +DTPα3

)
T1m (t) +

(
CTPα2 +DTPα4

)
T2m (t)

}
(41)

For the special case of α = 1,

Pα1 = Pα3 = P1, P
α
2 = Pα4 = P2 (42)

The TF estimate of fractional order integral is reduced to the TF estimate of
first order integral when α = 1. Theorefore, the classical complementary pair of
operational matrices is a particular case of generalized operational matrices.

6. Error analysis

Let us denote the TF estimate of function f (t) as

fTF (t) = CTT1m (t) +DTT2m (t) (43)

From equations 14 to 16, we can approximate f (t) in the interval [ih, (i+ 1)h) as

fTF (t) = f (ih)T1i (t) + f ((i+ 1)h)T2i (t)
= f (ih)

(
1− t−ih

h

)
+ f ((i+ 1)h)

(
t−ih
h

)
= f (ih) + f ((i+ 1)h)

(
t−ih
h

)
− f (ih)

(
t−ih
h

)
= f (ih) +

(
f((i+1)h)−f(ih)

h

)
(t− ih)

∼= f (ih) + f
′
(ih) (t− ih) as h→ 0


(44)

Expanding the exact function f (t) by Taylor series with the center ih as

f (t) = f (ih) + (t− ih) f
′
(ih) +

(t− ih)
2

2
f
′′

(ih) +

∞∑
k=3

(t− ih)
k

k!
f (k) (ih) (45)

From equations 44 and 45, the absolute error between the function and its TF
estimate can be determined as

|f (t)− fTF (t)| = (t− ih)
2

2

∣∣∣f ′′ (ih)
∣∣∣+ O (t− ih)

3
(46)

Because (t− ih) < h and mh = T , the above equation becomes

|f (t)− fTF (t)| ≤ T 2

2m2

∣∣∣f ′′ (ih)
∣∣∣+ O

(
1

m3

)
(47)
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We replace f (t) with fTF (t) in equation 4 and we call the resulting integral the
mth approximate of the α - order Riemann-Liouville fractional integral of f (t).

JαTF f (t) =
1

Γ (α)

∫ t

0

(t− τ)
α−1

fTF (τ) dτ (48)

The absolute error between the exact fractional integral Jαf (t) and the mth ap-
proximate JαTF f (t) is

εm = |Jαf (t)− JαTF f (t)|
= 1

Γ(α)

∫ t
0

(t− τ)
α−1 |f (τ)− fTF (τ)| dτ

= 1
Γ(α)

[∑r=i−1
r=0

∫ (r+1)h

rh
(t− τ)

α−1 |f (τ)− fTF (τ)| dτ
]

+
1

Γ(α)

∫ t
ih

(t− τ)
α−1 |f (τ)− fTF (τ)| dτ

≤ 1
Γ(α)

[∑r=i−1
r=0

∫ (r+1)h

rh
(t− τ)

α−1
(
T 2

2m2

∣∣∣f ′′ (ih)
∣∣∣+ O

(
1
m3

))
dτ
]

+

1
Γ(α)

∫ t
ih

(t− τ)
α−1

(
T 2

2m2

∣∣∣f ′′ (ih)
∣∣∣+ O

(
1
m3

))
dτ

≤ 1
Γ(α)

(
T 2

2m2

∣∣∣f ′′ (ih)
∣∣∣+ O

(
1
m3

)) ∫ t
0

(t− τ)
α−1

dτ

≤ tα

Γ(α+1)
T 2

2m2

∣∣∣f ′′ (ih)
∣∣∣+ O

(
1
m3

)


(49)

We now consider the following assumption.

Max
∣∣∣f ′′ (ih)

∣∣∣ ≤M, i = 0, 1, 2, . . . ,m− 1 (50)

where M is finite positive value.
From equations 49 and 50, the upper bound of absolute error between Jαf (t) and
JαTF f (t) can be estimated as

εm ≤
MT 2+α

2m2Γ (α+ 1)
+ O

(
1

m3

)
(51)

To confirm whether the maximal absolute error caused by TFs is smaller than
or equal to the theoretical upper bound derived in equation 51, we consider the
function f (t) = t in the interval [0, 1], which is divided into five equal subintervals
m = 5. We select the value of fractional order as 0.5.
The exact fractional integral of function f (t) is

J0.5t =
Γ (2)

Γ (2.5)
t1.5 (52)

Using equation 41, the TF estimate is obtained as

J0.5
TF
∼=


0

0.0672835339205376
0.190306572389629
0.349615497789465
0.538268271364301


T

T1m (t) +


0.0672835339205376
0.190306572389629
0.349615497789465
0.538268271364301
0.752252778063675


T

T2m (t) (53)
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In the BPF domain [25],

J0.5
BPF

∼=


0.0336417669602688
0.128795053155083
0.269961035089547
0.443941884576883
0.645260524713988
0.870557367621520



T

ψm (t) (54)

Table 1 presents the absolute error given by TF domain analysis and BPF domain
analysis. It can be noticed that the TF solution and the samples of exact frac-
tional integral are precisely equal that demonstrates the accuracy and efficiency of
the proposed TF approximation of Riemann-Liouville fractional order integral. For
the selected step size, BPFs could not offer approximate solution with resonable
accuracy due to its piecewise constant nature.

7. Applications and results

In this section, we solve linear and nonlinear fractional order differential-algebraic
equations by employing the basic properties of orthgonal TFs and the derived gner-
alized triagular function operational matrices. In the following examples, the Matlab
built-in function ’fsolve’ is used for solving system of algbraic equations.

Example 1

Let us consider the following linear fractional order differential-algebraic equation
[15] 

D
1/2
∗ x1 (t) + 2x1 (t)− Γ (7/2)

Γ (3)
x2 (t) + x3 (t) = f1 (t) ,

D
1/2
∗ x2 (t) + x2 (t) + x3 (t) = f2 (t) ,

2x1 (t) + x2 (t)− x3 (t) = f3 (t) , t ∈ [0, 1]

(55)

with initial conditions x1 (0) = x2 (0) = x3 (0) = 0.

where f1 (t) = 2t5/2+sin t, f2 (t) = Γ(3)
Γ(5/2) t

3/2+t2+sin t and f3 (t) = 2t5/2+t2−sin t.

The exact solution is x1 (t) = t5/2, x2 (t) = t2, x3 (t) = sin t.

Solution:

Performing fractional integration on both sides of equation 55 results in the follow-
ing form.

x1 (t) = J1/2 (f1 (t))− J1/2 (2x1 (t)) +
Γ (7/2)

Γ (3)
J1/2 (x2 (t))− J1/2 (x3 (t))

x2 (t) = J1/2 (f2 (t))− J1/2 (x2 (t))− J1/2 (x3 (t))

x3 (t) = −f3 (t) + 2x1 (t) + x2 (t)

 (56)

Expanding the known functions; f1 (t), f2 (t) and f3 (t) and the unknowns functions;
x1 (t), x2 (t) and x3 (t) by means of TFs,

f1 (t) ∼= CT01T1m (t) +DT
01T2m (t) , f2 (t) ∼= CT02T1m (t) +DT

02T2m (t)

f3 (t) ∼= CT03T1m (t) +DT
03T2m (t) , x1 (t) ∼= CT1 T1m (t) +DT

1 T2m (t)

x2 (t) ∼= CT2 T1m (t) +DT
2 T2m (t) , x3 (t) ∼= CT3 T1m (t) +DT

3 T2m (t)

 (57)
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By substituting equations 41 and 57 in 56 and comparing the coefficients of LHTF
and RHTF set of resulting equation, we have the following expressions.

CT1 =
(
CT01P

1/2
1 +DT

01P
1/2
3

)
− 2

(
CT1 P

1/2
1 +DT

1 P
1/2
3

)
+ Γ(7/2)

Γ(3) C
T
2 P

1/2
1 +

Γ(7/2)
Γ(3) D

T
2 P

1/2
3 −

(
CT3 P

1/2
1 +DT

3 P
1/2
3

)
DT

1 =
(
CT01P

1/2
2 +DT

01P
1/2
4

)
− 2

(
CT1 P

1/2
2 +DT

1 P
1/2
4

)
+ Γ(7/2)

Γ(3) C
T
2 P

1/2
2 +

Γ(7/2)
Γ(3) D

T
2 P

1/2
4 −

(
CT3 P

1/2
2 +DT

3 P
1/2
4

)
CT2 =

(
CT02P

1/2
1 +DT

02P
1/2
3

)
−
(
CT2 P

1/2
1 +DT

2 P
1/2
3

)
−
(
CT3 P

1/2
1 +DT

3 P
1/2
3

)
DT

2 =
(
CT02P

1/2
2 +DT

02P
1/2
4

)
−
(
CT2 P

1/2
2 +DT

2 P
1/2
4

)
−
(
CT3 P

1/2
2 +DT

3 P
1/2
4

)
CT3 = −CT03 + 2CT1 + CT2
DT

3 = −DT
03 + 2DT

1 +DT
2


(58)

Upon solving the above system of linear algebraic equations, the approximate solu-
tion of x1 (t), x2 (t) and x3 (t) are obtained. The maximal absolute errors produced
by TFs for various values of h are calculated and tabulated in table 2. The time
taken by TFs for computing approximate solutions in each run is recorded and
shown in table 2. As the number of subintervals is increasing, accuracy is increas-
ing, hence, the approximate solutions are converging to the exact solutions.

Table 1. Absolute error using TFs and BPFs

t |Jαf (t)− JαTF f (t)| |Jαf (t)− JαBPF f (t)|
0 0 0.0336417669602

0.2 0 0.0615115192345
0.4 0 0.0796544626999
0.6 0 0.0943263867874
0.8 0 0.106992253349
1 0 0.118304589557

Table 2. Absolute error using TFs for example 1

h
Maximal absolute error CPU time

(seconds)
x1 (t) x2 (t) x3 (t)

0.1 5.7540940e-04 7.42963900e-04 0.00167301 0.4212
0.02 40528065e-05 4.13615672e-05 6.63586143e-05 1.2480
0.01 6.05908342e-06 1.11465507e-05 1.70625007e-05 3.4632
0.002 6.66389858e-07 7.44211153e-07 1.76015764e-06 127.296

Example 2

Consider the nonlinear fractional order differential-algebraic equation
Dα
∗ x (t)− x (t) + z (t)x (t) = 1,

Dα
∗ z (t)− y (t) + x2 (t) + z (t) = 0,

y (t)− x2 (t) = 0, t ∈ [0, 1] , 0 < α ≤ 1

(59)
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Table 3. Approximate solution of x (t) for α = 1

t FDTM ADM VIM HAM TF Exact
0 1 1 1 1 1 1

0.1 1.1051709 1.1051709 1.1051709 1.1051709 1.1051709 1.1051709
0.2 1.2214028 1.2214027 1.2214027 1.2214027 1.2214028 1.2214027
0.3 1.3498588 1.3498588 1.3498588 1.3498588 1.3498589 1.3498588
0.4 1.4918247 1.4918246 1.4918246 1.4918246 1.4918249 1.4918246
0.5 1.6487213 1.6487212 1.6487212 1.6487212 1.6487215 1.6487212
0.6 1.8221188 1.8221188 1.8221188 1.8221188 1.8221191 1.8221188
0.7 2.0137527 2.0137527 2.0137527 2.0137527 2.0137531 2.0137527
0.8 2.2255409 2.2255409 2.2255409 2.2255409 2.2255415 2.2255409
0.9 2.4596031 2.4596031 2.4596031 2.4596031 2.4596038 2.4596031
1 2.7182818 2.7182818 2.7182818 2.7182818 2.7182827 2.7182818

subject to initial conditions x (0) = y (0) = z (0) = 1.
For the special case of α = 1, the given problem has analytical solution; x (t) =
et, y (t) = e2t, z (t) = e−t.

Solution:

The given problem can be simplified as

Dα
∗ x (t) = 1 + x (t)− z (t)x (t)

Dα
∗ z (t) = −z (t)

}
(60)

Multiplying with fractional integrator Jα on both sides of above equation gives

x (t) = x (0) + Jα (1) + Jα (x (t))− Jα (z (t)x (t))

z (t) = z (0)− Jα (z (t))

}
(61)

In the TF domain, the approximations for x (0), x (t) and z (t) are attained as
follows.

1 ∼= CT0 T1m (t) +DT
0 T2m (t)

x (t) ∼= CT1 T1m (t) +DT
1 T2m (t)

z (t) ∼= CT2 T1m (t) +DT
2 T2m (t)

 (62)

From theorem 4.7 and equations 41, 61 and 62, we get the following system of
nonlinear algebraic equations.

CT1 = CT0 +
(
CT0 P

α
1 +DT

0 P
α
3

)
+
(
CT1 P

α
1 +DT

1 P
α
3

)
−
(
CT1 . ∗ CT2

)
Pα1 −(

DT
1 . ∗DT

2

)
Pα3

DT
1 = DT

0 +
(
CT0 P

α
2 +DT

0 P
α
4

)
+
(
CT1 P

α
2 +DT

1 P
α
4

)
−
(
CT1 . ∗ CT2

)
Pα2 −(

DT
1 . ∗DT

2

)
Pα4

CT2 = CT0 −
(
CT2 P

α
1 +DT

2 P
α
3

)
DT

2 = DT
0 −

(
CT2 P

α
2 +DT

2 P
α
4

)


(63)

The above system of nonlinear algebraic equations are solved using step size of
0.002 and the approximate solutions of x (t) and z (t) for different values of α are
given in tables 3 to 8. The TF solutions are in good agreement with the solutions
obtained by FDTM [13], ADM [12], VIM [12] and HAM [13].
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Example 3

Consider the following nonlinear fractional order differential-algebraic equation
Dα
∗ y (t) = y (t)− z (t)w (t) + sin t+ t cos t,

Dα
∗ z (t) = tw (t) + y2 (t) + sec2 t− t2

(
cos t+ sin2 t

)
,

0 = y (t)− w (t) + t (cos t− sin t) , t ∈ [0, 1] , 0 < α ≤ 1
(64)

with initial conditions y (0) = z (0) = w (0) = 0.
In case of α = 1, we have analytical solution; y (t) = t sin t, z (t) = tan t, w (t) =
t cos t.

Solution:

Simplifying equation 64,{
Dα
∗ y (t) = y (t)− z (t) y (t)− z (t) f1 (t) + f2 (t)

Dα
∗ z (t) = ty (t) + y2 (t) + f3 (t)

(65)

where f1 (t) = t cos t − t sin t, f2 (t) = sin t + t cos t and f3 (t) = sec2 t − t2 sin t −
t2 sin2 t.
Rewriting equation 65,

y (t) = Jα (y (t))− Jα (z (t) y (t))− Jα (z (t) f1 (t)) + Jα (f2 (t))
z (t) = Jα (ty (t)) + Jα

(
y2 (t)

)
+ Jα (f3 (t))

}
(66)

Table 4. Approximate solution of x (t) for α = 0.75

t FDTM ADM VIM HAM TF
0 1 1 1 1 1

0.1 1.2187069 1.2187068 1.2187068 1.2187068 1.2187043
0.2 1.4000280 1.4000278 1.4000278 1.4000279 1.4000262
0.3 1.5841270 1.5841268 1.5841268 1.5841270 1.5841259
0.4 1.7769089 1.7769086 1.7769086 1.7769089 1.7769081
0.5 1.9813870 1.9813865 1.9813865 1.9813869 1.9813866
0.6 2.1997453 2.1997446 2.1997447 2.1997452 2.1997453
0.7 2.4338838 2.4338829 2.4338829 2.4338838 2.4338842
0.8 2.6856249 2.6856238 2.6856234 2.6856248 2.6856256
0.9 2.9568125 2.9568110 2.9568095 2.9568130 2.9568136
1 3.2493684 3.2493666 3.2493623 3.2493749 3.2493700

The following equation gives the TF estimates of f1 (t), f2 (t), f3 (t), t, y (t) and
z (t).

f1 (t) ∼= CT10T1m (t) +DT
10T2m (t) , f2 (t) ∼= CT20T1m (t) +DT

20T2m (t)
f3 (t) ∼= CT30T1m (t) +DT

30T2m (t) , t ∼= CT40T1m (t) +DT
40T2m (t)

y (t) ∼= CT1 T1m (t) +DT
1 T2m (t) , z (t) ∼= CT2 T1m (t) +DT

2 T2m (t)

 (67)
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Figure 2. Comparison between TF solution and exact solution
for α = 1

Figure 3. TF solutions for example 3



JFCA-2015/6(2) NUMERICAL SOLUTION OF 47

Table 5. Approximate solution of x (t) for α = 0.5

t FDTM ADM VIM HAM TF
0 1 1 1 1 1

0.1 1.4678849 1.4678849 1.4678849 1.4678849 1.4678635
0.2 1.7411322 1.7411321 1.7411320 1.7411321 1.7411215
0.3 1.9927891 1.9927891 1.9927879 1.9927891 1.9927834
0.4 2.2392557 2.2392557 2.2392487 2.2392557 2.2392532
0.5 2.4871415 2.4871415 2.4871134 2.4871415 2.4871415
0.6 2.7401183 2.7401183 2.7400292 2.7401183 2.7401203
0.7 3.0006469 3.0006469 3.0004093 3.0006469 3.0006508
0.8 3.2706054 3.2706053 3.2700447 3.2706053 3.2706109
0.9 3.5515666 3.5515664 3.5503632 3.5515665 3.5515737
1 3.8450346 3.8449407 3.8455419 3.8450350 3.8449494

Table 6. Approximate solution of z (t) for α = 1

t FDTM ADM VIM HAM TF Exact
0 1 1 1 1 1 1

0.1 0.9048374 0.9048374 0.9048374 0.9048374 0.9048373 0.9048374
0.2 0.8187308 0.8187307 0.8187307 0.8187307 0.8187306 0.8187307
0.3 0.7408182 0.7408182 0.7408182 0.7408182 0.7408181 0.7408182
0.4 0.6703201 0.6703200 0.6703200 0.6703200 0.6703199 0.6703200
0.5 0.6065307 0.6065306 0.6065306 0.6065306 0.6065305 0.6065306
0.6 0.5488116 0.5488116 0.5488116 0.5488116 0.5488115 0.5488116
0.7 0.4965853 0.4965853 0.4965853 0.4965853 0.4965851 0.4965853
0.8 0.4493290 0.4493289 0.4493289 0.4493289 0.4493288 0.4493289
0.9 0.4065697 0.4065696 0.4065696 0.4065696 0.4065695 0.4065696
1 0.3678794 0.3678794 0.3678794 0.3678794 0.3678793 0.3678794

Table 7. Approximate solution of z (t) for α = 0.75

t FDTM ADM VIM HAM TF
0 1 1 1 1 1

0.1 0.8282505 0.8282506 0.8282505 0.8282505 0.8282476
0.2 0.7325847 0.7325847 0.7325847 0.7325847 0.7325825
0.3 0.6603375 0.6603375 0.6603375 0.6603374 0.6603357
0.4 0.6021211 0.6021211 0.6021211 0.6021210 0.6021196
0.5 0.5536026 0.5536026 0.5536026 0.5536025 0.5536012
0.6 0.5122851 0.5122852 0.5122853 0.5122850 0.5122839
0.7 0.4765549 0.4765551 0.4765557 0.4765549 0.4765539
0.8 0.4452924 0.4452926 0.4452945 0.4452924 0.4452915
0.9 0.4176821 0.4176823 0.4452945 0.4176820 0.4176812
1 0.3931083 0.3931086 0.3931206 0.3931083 0.3931076

We now substitute equations 41 and 67 in 66 and equate the coefficients of LHTF
and RHTF sets on both sides of resulting equation.

CT1 =
(
CT20P

α
1 +DT

20P
α
3

)
+
(
CT1 P

α
1 +DT

1 P
α
3

)
−
(
CT2 . ∗ CT1

)
Pα1 −(

DT
2 . ∗DT

1

)
Pα3 −

((
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)
Pα1 +

(
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2 . ∗DT
10

)
Pα3
)

DT
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2 +DT

20P
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)
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α
2 +DT

1 P
α
4

)
−
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)
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DT
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1

)
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((
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)
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(
DT

2 . ∗DT
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)
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1 +DT
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+
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)
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)
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
(68)
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Table 8. Approximate solution of z (t) for α = 0.5

t FDTM ADM VIM HAM TF
0 1 1 1 1 1

0.1 0.7235784 0.7235784 0.7235784 0.7235784 0.7235556
0.2 0.6437883 0.6437882 0.6437886 0.6437882 0.6437750
0.3 0.5920184 0.5920184 0.5920222 0.5920184 0.5920090
0.4 0.5536063 0.5536062 0.5536241 0.5536062 0.5535990
0.5 0.5231566 0.5231565 0.5232163 0.5231565 0.5231507
0.6 0.4980246 0.4980245 0.4981839 0.4980245 0.4980196
0.7 0.4767027 0.4767027 0.4770678 0.4767027 0.4766985
0.8 0.4582460 0.4582460 0.4589938 0.4582460 0.4582423
0.9 0.4420214 0.4420214 0.4424279 0.4420214 0.4420181
1 0.4275836 0.4275835 0.4270570 0.4275835 0.4275806

Table 9. Approximate solution of x (t) for α = 1

t FDTM ADM VIM HAM TF Exact
0 1 1 1 1 1 1

0.1 0.9148208 0.9148207 0.9148207 0.9148208 0.9148207 0.9148208
0.2 0.8584646 0.8584646 0.8584646 0.8584646 0.8584645 0.8584646
0.3 0.8294743 0.8294742 0.8294742 0.8294743 0.8294741 0.8294743
0.4 0.8260874 0.8260873 0.8260873 0.8260874 0.8260872 0.8260874
0.5 0.8462434 0.8462434 0.8462434 0.8462434 0.8462431 0.8462434
0.6 0.8875971 0.8875971 0.8875971 0.8875971 0.8875968 0.8875971
0.7 0.9475377 0.9475376 0.9475376 0.9475377 0.9475373 0.9475377
0.8 1.0232138 1.0232138 1.0232138 1.0232138 1.0232134 1.0232138
0.9 1.1115639 1.1115638 1.1115638 1.1115639 1.1115633 1.1115639
1 1.2093504 1.2093504 1.2093504 1.2093505 1.2093498 1.2093504

Table 10. Approximate solution of x (t) for α = 0.75

t FDTM ADM VIM HAM TF
0 1 1 1 1 1

0.1 0.8492996 0.8492996 0.8492996 0.8492995 0.8492966
0.2 0.8016697 0.8016697 0.8016697 0.8016696 0.8016674
0.3 0.7978999 0.7978998 0.7978998 0.7979000 0.7978979
0.4 0.8250871 0.8250871 0.8250871 0.8250873 0.8250855
0.5 0.8760144 0.8760143 0.8760143 0.8760146 0.8760129
0.6 0.9454582 0.9454581 0.9454581 0.9454582 0.9454568
0.7 1.0290757 1.0290756 1.0290756 1.0290755 1.0290744
0.8 1.1229595 1.1229594 1.1229594 1.1229592 1.1229582
0.9 1.2234368 1.2234365 1.2234365 1.2234363 1.2234354
1 1.3269767 1.3269759 1.32697591 1.3269757 1.3269747

The approximate solution of y (t) and z (t) for α = 1 are obtained by solving 68
with step size of 0.003 and compared with analtyical solutions in figure 2. Figure
3 shows TF solutions for different values of α.
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Table 11. Approximate solution of x (t) for α = 0.5

t FDTM ADM VIM HAM TF
0 1 1 1 1 1

0.1 0.7642925 0.7642924 0.7642924 0.7642925 0.7642694
0.2 0.7545096 0.7545096 0.7545096 0.7545097 0.7544962
0.3 0.7903162 0.7903161 0.7903161 0.7903162 0.7903066
0.4 0.8524950 0.8524950 0.8524950 0.8524950 0.8524876
0.5 0.9323247 0.9323246 0.9323246 0.9323247 0.9323186
0.6 1.0242052 1.0242051 1.0242051 1.0242052 1.0242000
0.7 1.1237906 1.1237905 1.1237905 1.1237906 1.1237861
0.8 1.2273291 1.2273291 1.2273291 1.2273291 1.2273251
0.9 1.3313915 1.3313915 1.3313915 1.3313916 1.3313879
1 1.4327552 1.4327552 1.4327552 1.4327552 1.4327519

Table 12. Approximate solution of x (t) for α = 1

t FDTM ADM VIM HAM TF Exact
0 1 1 1 1 1 1

0.1 0.9048374 0.90483742 0.90483742 0.9048374 0.9048373 0.9048374
0.2 0.8187308 0.81873076 0.81873076 0.8187308 0.8187307 0.8187308
0.3 0.7408182 0.74081822 0.74081822 0.7408182 0.7408181 0.7408182
0.4 0.6703201 0.67032005 0.67032005 0.6703201 0.6703199 0.6703201
0.5 0.6065307 0.60653066 0.60653066 0.6065307 0.6065305 0.6065307
0.6 0.5488116 0.54881164 0.54881164 0.5488116 0.5488115 0.5488116
0.7 0.4965853 0.49658531 0.49658531 0.4965853 0.4965852 0.4965853
0.8 0.4493290 0.44932897 0.44932896 0.449329 0.4493288 0.449329
0.9 0.4065697 0.40656966 0.40656966 0.4065697 0.4065695 0.4065697
1 0.3678795 0.36787944 0.36787944 0.3678794 0.3678793 0.3678794

Example 4

Consider the following linear fractional order differential-algebraic equation{
Dα
∗ x (t)− ty′ (t) + x (t)− (t+ 1) y (t) = 0,
y (t)− sin t = 0, t ∈ [0, 1] , 0 < α ≤ 1

(69)

with initial conditions x (0) = 1, y (0) = 0.
For α = 1, the given problem has exact solution; x (t) = e−t+t sin t and y (t) = sin t.

Solution:

Equation 69 can be reduced to the following form.

Dα
∗ x (t) = t cos t+ (1 + t) sin t− x (t) (70)

Peforming fractional integration on both sides of above equation,

x (t) = x (0) + Jα (f1 (t))− Jα (x (t)) (71)
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where f1 (t) = t cos t+ (1 + t) sin t.
Approximating the functions; x (0), f1 (t) and x (t) in the TF domain,

x (0) ∼= CT10T1m (t) +DT
10T2m (t)

f1 (t) ∼= CT20T1m (t) +DT
20T2m (t)

x (t) ∼= CT1 T1m (t) +DT
1 T2m (t)

 (72)

From equaions 41, 71 and 72, we get the following expressions for CT1 and DT
1 .

CT1 = C10 + (C20P
α
1 +D20P

α
3 )− (C1P

α
1 +D1P

α
3 )

DT
1 = D10 + (C20P

α
2 +D20P

α
4 )− (C1P

α
2 +D1P

α
4 )

}
(73)

As shown in tables 9 to 11, the TF solutions are in good agreement with the
solutions obatined by FDTM [13], ADM [12], VIM [12] and HAM [13].

Table 13. Approximate solution of x (t) for α = 0.75

t FDTM ADM VIM HAM TF
0 1 1 1 1 1

0.1 0.8373931 0.8373929 0.837393 0.8373931 0.8373884
0.2 0.7494391 0.7494390 0.7494389 0.7494391 0.7494360
0.3 0.6816129 0.6816128 0.6816129 0.6816129 0.6816107
0.4 0.6250322 0.6250320 0.6250321 0.6250322 0.6250306
0.5 0.5760122 0.5760123 0.5760121 0.5760122 0.5760109
0.6 0.5326238 0.5326236 0.5326237 0.5326238 0.5326228
0.7 0.4937128 0.4937126 0.4937126 0.4937128 0.4937119
0.8 0.4585198 0.4585196 0.4585196 0.4585197 0.4585190
0.9 0.4265076 0.4265077 0.4265076 0.4265076 0.4265070
1 0.3972738 0.3972732 0.3972735 0.3972736 0.3972731

Table 14. Approximate solution of x (t) for α = 0.5

t FDTM ADM VIM HAM TF
0 1 1 1 1 1

0.1 0.760891 0.7608910 0.7608910 0.760891 0.7608617
0.2 0.6909262 0.6909261 0.6909260 0.6909262 0.6909113
0.3 0.6396502 0.6396501 0.6396501 0.6396505 0.6396406
0.4 0.5970877 0.5970876 0.5970877 0.5970878 0.5970808
0.5 0.5599926 0.5599927 0.5599928 0.5599926 0.5599872
0.6 0.5268894 0.5268890 0.5268894 0.5268894 0.5268850
0.7 0.496964 0.4969651 0.4969653 0.4969640 0.4969604
0.8 0.4697024 0.4697065 0.4697067 0.4697022 0.4696991
0.9 0.4447444 0.4447740 0.4447576 0.4447448 0.4447420
1 0.4218206 0.4219688 0.4218510 0.4218207 0.4218184

Example 5

The linear fractional order differential-algebraic equation{
x (t) + y (t) = e−t + sin t, t ∈ [0, 1] , 0 < α ≤ 1
Dα
∗ x (t) + x (t)− y (t) + sin t = 0,

(74)
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Table 15. Computational times for Examples 2-5

Example h CPU time (seconds)
2 0.002 117.516
3 0.003 114.130
4 0.002 15.802
5 0.002 13.182

subject to initial conditions x (0) = 1, y (0) = 0.
For the special case of α = 1, we have analytical solution; x (t) = e−t and y (t) =
sin t.

Solution:

Equation 74 can be written as

x (t) = x (0) + Jα
(
e−t
)
− Jα (2x (t)) (75)

In the TF domain,

x (0) ∼= CT10T1m (t) +DT
10T2m (t)

e−t (t) ∼= CT20T1m (t) +DT
20T2m (t)

x (t) ∼= CT1 T1m (t) +DT
1 T2m (t)

 (76)

From equaions 41, 75 and 76, we get the following expressions for CT1 and DT
1 .

CT1 = C10 + (C20P
α
1 +D20P

α
3 )− 2 ∗ (C1P

α
1 +D1P

α
3 )

DT
1 = D10 + (C20P

α
2 +D20P

α
4 )− 2 ∗ (C1P

α
2 +D1P

α
4 )

}
(77)

The approximate numerical solution of x (t) for different values of α are obtained
by solving equation 77 and compared with the solutions by FDTM [13], ADM [12],
VIM [12] and HAM [13] in tables 12 to 14.

8. Conclusions

Present work proposes the application of orthogonal triangular function for solv-
ing differential algebraic equations (DAEs); the fractional DAEs in specific. The
proposed generalized TF operational matrices are successfully implemented on set
of test problems consisting of linear and non-linear fractional order differential-
algebraic equations. The implementation of the TF estimate for Riemann-Liouville
fractional order integral appears to be complicated and time consuming. However
the solutions in examples 1 to 5 (tables 2 and 15) ultimately utilizes algebraic
equation solvers and do not require much CPU time to yield approximate numeri-
cal solutions with good accuracy. The proposed generalized TF operational matrices
can be deployed for the analysis of real process dynamics; including non-linear one
consisting of fractional DAEs.
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