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1 Introduction 

The speed of transmission of information over a 
communication system is limited due to the ef- 
fects of intersymbol interference (ISI) and ad- 
ditive noise. The process of removing these ef- 
fects from the received signal to faithfully gener- 
ate the transmitted information at the receiving 
end is called equalization. The structure of this 
communication system is depicted in Figure 1. 
The information symbol to  be transmitted s ( k )  
is transmitted through a linear dispersive chan- 
nel described by: 

n h  -1 

Z=O 

Here nh is t,he channel tap length with ai be- 
ing the individual taps and e ( k )  refers to the ad- 
ditive white Gaussian noise (AWGN). The noise 
free received sample of the channel is referred to 
as F ( k )  and the received samples are referred as 
r ( k ) .  The equalizer reconstructs the transmitted 
symbols s ( t )  by observing the received signal vec- 
tor r(t)  = [ ~ ( k ) ,  r(k - l),  ..., r ( k  - m + l)]. Here 
m is the order of the equalizer. Normally a delay 
is associated with detection and hence the equal- 
izer output is a delayed form of the transmitted 
sequence and can represented as 2(k - d) .  
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The general symbol decision equalizer depicted 
in Figure 1 is characterised by equalizer order m 
and delay d. The optimal decision function for 
this equalizer can be represented as [l] 

Here U: represents the channel noise variance, 
cf and ea are the positive and negative channel 
states respectively. The terms n t  and n; are the 
number of positive and negative channel states re- 
spectively and they are equal. Here it is assumed 
that the transmitted symbol s ( k )  is binary taking 
the value from +1/ - 1. This equation can also 
be presented as : 

Here n, is the number of channel states equal 
to 2nh+m-1 pi are the weights associated with 
each of the centers. pi is +1 if ci correspond 
to  a positive channel state and -1 if it repres- 
ents a negative channel state. It is also observed 
that each of the channel state vector has m com- 
ponents. We can represent any channel state ci 
as ci = [cia, til, ci2, ..., C ~ ( ~ - ~ I ] .  Rewriting the 
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squared norm in Eqn(3) as a summation and ex- 
ploiting thc properties of the exp function yields: 

(4) 
Here c , ~  is the ( l+l) th  component of channel state 
vector ci corresponding to the ( l+l) th  component 
of the input vector r(k). 

Equations (2) and (3) provide alternate realisa- 
tions of the Bayesian decision function. In (3) the 
Euclidian distance between input vector r(k) and 
each of the channel state ci is first calculated. 
The result is then scaled by - l / ( 2 4  and the 
exponential function is evaluated. These are lin- 
early combined to provide the decision function. 
Alternately in (4), scalar distances are calculated, 
multiplied by - l/(2a:) and exponential function 
evaluated. The products of exponential functions 
associated with particular channel states are lin- 
early combined to provide the decision function. 
Both of these equations require the knowledge of 
channel states for estimating the decision func- 
tion. How ever (4) could be preferred for actual 
implementation [2]. 
A similar argument can be applied to the nor- 
malised Bayesian equalizer of Cha and Kassam 
[3] which forms an estimate of the transmitted 
symbol themselves rather than a decision func- 
tion. This, we represent as a normalised Bayesian 
equalizer with scalar states(NBEST) shown in 
eqn.5. 

(5) 
It is seen that the equalizer represented in eqn.(3) 
can be implemented with a radial basis function 
(RBF)[4] and the equalizer represented by eqn.(5) 
can be implemented as a combination of a set of 
fuzzy basis functions [5] with singleton fuzzifier, 
product inference, Gaussian membership function 
and centroid defuzzifier. In RBF implementa- 
tion the RBF centers are placed at the equalizer 
channel states and the linear weights of the out- 
put layer are equated to  pi .  Here we implement 
the decision function of (5) as a normalised radial 
basis function with scalar centers (NRBF-SC). 

3 Channel States Estimation 

From the previous section it has been observed 
that knowledge of the channel states is essential 
for evaluation of the optimum decision function 
for the equalizer. T h e  channel s t a t e  estimation 
needs the knowledge of the channel. But un- 
der most circumstances knowledge of the channel 
may not be available. Under these circumstances 
the channel states can be estimated during the 
training period when the transmitted symbols are 
known to the receiver. This can be achieved in 
two ways [I]. 

_ .  NO. ~ ( k )  s ( k - I )  ~ ( k - 2 )  ;'(k) ~ ( k -  1) 
1 1 1 1 1.5 1.5 Positive 
2 1 1 -1 1.5 -0.5 channel 
3 1 -1 1 -0.5 0.5 states 
4 1 -1 -1 -0.5 -1.5 
5 -1 1 1 0.5 1.5 Negative 
6 -1 1 -1 0.5 -0.5 channel 
7 -1 -1 1 -1.5 0.5 states 
8 -1 -1 -1 -1.5 -1.5 

Table 1: T h e  channel  s tates  calculation 
The channel model can be estimated using some 
algorithms like least mean square (LMS). With 
the knowledge of the channel its staight forward 
to calculate the channel states. This technique 
may fail if the channel is non-linear in nature. 

The channels states can be directly calculated 
based on some clustering algorithm[4]. The com- 
putational complexity of this could be very high 
if the order of the channel states is large and the 
convergence time for this is also large. 

The channel states can be computed from the 
scalar channel states. The scalar channel states 
refers to  the possible noise free received samples. 
The scalar states can be calculated by a cluster- 
ing algorithm. Calculation of the scalar channel 
states is simple and computational complexity for 
this is independent of the order of the equalizer. 
These scalar states can be suitably combined to  
form the vector states[B]. Once the channel state 
vectors have been estimated finding the decision 
function of the equalizer is straightforward. We 
take an example to  illustrate the relationship of 
scalar and vector channel states. Table 1 provides 
the channel state calculation for a equalizer of or- 
der m = 2, delay d = 0. The channel transfer 
function is Hch(z )  = 0.5+z-l .  Here nh is 2. Fol- 
lowing observations are made from the channel 
state calculation: 

0 

0 

0 

0 

4 

There are 2"ht"-1=8 vector channel states 
which can be represented as [?(k),?(k - l)]. 
There are 2"h=4 possible scalar channel states 
which correspond to each of the elements of ? ( k )  
or ?(IC - I). 
The weights p e  of the decision functions eqns.3 
and 4 assume the value +1 or -1 for positive 
and negative states respectively. 

A change in the decision delay only changes some 
of the positive states to negative states and equal 
number of negative states to positive state. The 
decision function can be obtained by suitable ad- 
justment of the parameter p e  for the states that 
have changes from positive to negative states or 
vice- verse. 

Normalised Radial Basis Function 
Equalizer with Scalar Centers 

A NRBF-SC equalizer with scalar channel states 
represented by eqn.5 is shown in Figure 2. Here 
the incoming signal sample is presented to  the 
basis function generator. Each of the compon- 
ent of the basis function generator produces an 
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output Sij , characterised by its scalar center cs j  
which are placed at the scalar channel states. 
Here i corresponds to  the equalizer input num- 
ber and i = 0 for r ( k ) .  The value of j ranges 
from 0 to  (Ad - 1) where M is the number of the 
scalar center and M = 2 n h .  If some of the tap 
weights of the channel are same M 5 2"h. Each 
of the component of the basis function generator 
compute the following function with the received 
signal r (%)  and its center. 

The basis function generator for the other ( m  - 
1) inputs to  the equalizer are not needed as 
their output would be the delayed output of 
the basis function generator for r ( k ) .  The cor- 
responding output for r ( k  - 1) which can be 
generated by delaying SOO,SO~, ... S O ( M - ~ )  can 
be represented as 5'10, Sll, ... S l ( M - 1 ) .  Simil- 
arly the output for r ( k  - m + 1) would be 

block of the NRBF-SC has n, sub-blocks. Each 
of these sub-blocks receive only one of the Sij 
corresponding to  each of the m inputs to the 
equalizer. The specific element corresponding to 
each input is selected by the combination of the 
scalar centers which construct the specific vector 
states. The output of the product sub-blocks cor- 
responding to the +ve channel states are added 
to provide a and the -ve channel state are added 
to provide b .  The output of the NRBF-SC is com- 
puted by the function (a - b ) / ( ~  + b) .  The output 
of the NRBF-SC passed through the sigmoid non- 
linearity forms the detected sample. If it is not 
possible to  find to  which group of states a channel 
state belongs the weights pi can be estimated by 
the LMS algorithm. 

S(m- 1)0  , S ( m  - 1)1, . . . S ( m - l ) ( M - l ) .  The product 

Pr(duct Bkxk 

1 ~. . . . . . . . . . . . NIUJIUW BBE witt.scalar.centers.. . . . . . . . . . . . . . . . .: 

Figure 2: NRBF-SC Equalizer 
We consider the previously discussed example 

to illustrate the working of this equalizer. Here 
again the equalizer order is assumed to  be m = 2 
for simplicity. As per Table 1 the scalar cen- 

+1.5, $0.5, -0.5 and -1.5 which correspond to 
the values of cSo, csl, c,2, c,3. The basis func- 
tion output for the input r(% - 1), will be 
s10, s11, 5'12, s13 and these can be generated by 
delaying the functions SOO,SO~ , S02, So3 corres- 
ponding to  7- (k ) .  The multiplier block will con- 

ters for the basis function block are placed at 

Equalizer Add/ Mu1 Div. e-p  
Type Sub 
RBF 2mns ( m  - l ) n s  ns ns 

NRBF-SC M + n ,  M + ( m - l ) n ,  M + l  M 

NRBF-SC 2" + 2 (m  - 1)am 3 2  
(Sub-set) 

Table 2: Computational Complexity Comparison 

sist of nS = 8 sub-blocks. The sub-blocks 1 to  
8 compute the products S o o S l o ,  S o o S 1 2 ,  sozsll, 

ively. The products S o o S l o ,  S o o S 1 2 ,  S 0 2 S 1 1 ,  

s 0 2 s 1 3  are added to  provide U and SolSlo, So1S1z1 
SO3Sl1, s 0 3 s 1 3  are added to provide b. The calcu- 
lation of the decision function is straight-forward. 
In the next section we discuss the advantages 
of the NRBF-SC equalizer over the conventional 
RBF equaliser. 

s 0 2 s 1 3 ,  SOlSlO, S O l S 1 2 ,  S 0 3 S l 1 ,  s 0 3 s 1 3  respect- 

5 Advantages of Normalised Radial Basis 
Function with Scalar Centers 

We have seen in the previous sections that the 
NRBF-SC provides the same decision function as 
the RBF implementation of Bayesian equaliser. 
But it can be seen from the decision functions 
that NRBF-SC can provide the same decision 
function with less computational complexity per 
sample calculation. The computations deman- 
ded by the two equalisers is presented in Table 
2. These can be summarised as under. 

The number of addition in NRBF-SC is M + n, 
compared to 2mn0 in a RBF. 

The number of multiplications in NRBF-SC are 
slightly higher than the RBF but this is com- 
pensated by the reduction in the number of di- 
visions. 
The number of exp(-z) evaluations is reduced 
considerably in the NRBF-SC compared to the 
RBF. 
The parameter n,  is related to the equalizer or- 
der in an exponential term but M is independent 
of the equalizer order. Hence with the increase 
in the equalizer order the reduction in compu- 
tational complexity for NRBF-SC over the RBF 
equalizer can be exponentially related. 
It is straight forward to employ subset center 
selection with scalar centers compared to the 
equalizer with vector centers. This is described 
in details in the next sub-section. 

5.1 Subset Center Selection 
On observing the decision function of the RBF 
implementation of Bayesian equalizer in eqn.(3) 
i t  is seen that the contribution of RBF centers to 
the decision function is inversely related to  its dis- 
tance from the input vector. If the centers nearer 
to the received signal vector can be found the 
computation involved in calculating the decision 
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function can be greatly reduced without notice- 
able drop in the performance criterion, by neg- 
lecting the RBF centers far from the received vec- 
tor. In a multidimensional signal space it is not 
efficient to find the nearby channel states and the 
scheme may not provide sufficient reduction in 
the computations involved. On the other hand, 
the decision function provided by NRBF-SC by 
selecting a subset of the total centers will not 
be difficult as the centers are in one-dimensional 
space. In this case if we select only 2 scalar 
centers that are nearest to  the received samples 
r ( k )  the reduction in the computational require- 
ment can be enormous with small degradation in 
the performance. In the next section we have 
shown by simulations that the performance de- 
gradation for the equalizer would be small com- 
pared to  the reduction in the computational re- 
quirement. The computation required by sub- 
set center NRBF-SC equalizer to compute each 
sample is also presented in Table 2. From this it 
is evident that there is a substantial reduction in 
the computational complexity for the NRBF-SC 
with a sub-set center selection. 

6 Simulation Results 

In order to  demonstrate the performance of the 
NRBF-SC equalizer proposed in this paper fol- 
lowing simulations were carried out. In all the 
tests s ( k )  was an equiprobable random binay 
number taking the value from +1/ - 1. The chan- 
nel considered for the simulation studies has a 
transfer function Heh = 0.3482 + 0 . 8 7 0 4 ~ - ~  + 
0.34822-’. The equalizer order and the detec- 
tion delay were chosen to be 2 and 0 respect- 
ively. The hit error rate (BER) was chosen as 
the performance criteria in all cases. The res- 
ults of the simulations are presented in Figure 3.  
Here the Ba.yesian equalizer was simulated with 
knowledge of the channel and the channel states. 
The weights pi of eqn.3 were taken as +l/-1 as 
per the channel states. The NRBF-SC equalizer 
was assumed to have the proper knowledge of the 
channel and the scalar channel states and also the 
combinations of the scalar states which provide 
the vector st,ates. The weights of the NRBF-SC 
equalizer were trained by LMS algorithm with 
the initial weights being 0. In the third case 
the NRBF-SC with subset of its centers was con- 
sidered for simulation. Here channel knowledge 
was not ava.ilable and the scalar channel states 
were generat,ed from the received sample during 
the training period. Additionally t h e  weights pi 
were also trained by LMS algorithm. For all in- 
puts only the two nearest scalar centers of the 
NRBF-SC to the received sample were considered 
to  be active and the contribution from all the 
other centers were neglected. From the simula- 
tion curves it is seen that the performance of the 

proposed equalizers are close to  performance of 
the Bayesian equalizers. The small performance 
degradations can be attributed to  the limitations 
of the LMS algorithm used for weight update. 
The performance degradation was nearly 1dB at 
20dB SNR. 

0 I I I I I I I I I 

0 2 4 6 X 10 12 14 16 1X 20 
SNR in dB 

Figure 3: Performance of different equalizers 

7 Conclusion 

Here we have proposed a normalised RBF equal- 
izer with scalar centers which provides a advant- 
age over the conventional RBF equalizer with vec- 
tor centers in terms of computational complexity. 
We have also shown how this NRBF-SC can be 
used with a subset of its centers. We have demon- 
strated that the performance of this equalizers is 
close to the Bayesian equalizer with vector chan- 
nel states. 
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