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Abstract

In this paper, we propose a mammogram classification schenctassify the breast tissues as normal, benign or
malignant. Feature matrix is generated using GLCM to alldbtiled coéicients from D-DWT of the region of
interest (ROI) of a mammogram. To derive the relevant featdrom the feature matrix, we take the helptaést
and F-testseparately. The relevant features are used in a BPNN ctaskifi classification. Two standard databases
MIAS and DDSM are used for the validation of the proposed sahelt is observed thattestbased relevant features
outperforms to that oF-testwith respect to accuracy. In addition to the suggested sehéime competent schemes
are also simulated for comparative analysis. It is obsethatithe proposed scheme has a better say with respect to
accuracy and area under curvdJC) of receiver operating characteristic (ROC). The accuraegsures are computed
with respect to normal vs. abnormal and benign vs. maligrfemt MIAS database these accuracy measures a@898
and 942% respectively, whereas for DDSM database they arg29&nd 974%.
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1. Introduction

Breast cancer is still the most common cancer throughouivtiréd and a frequent cause of cancer death among
women. According to Globocan project, it has been estimfateithe year 2012 that,.&7 million new cancer cases were
diagnosed worldwide, which is 25% of all types of cancerdntiia, the breast cancer is considered as the most common
cancer andin the year 2012, 1287 women were newly detected with this cancer an@18 patients died among them.
So, it can be noticed that, one patient is dying out of everyriewly diagnosed women [1]. It has been studied that, the
recovery of the breast cancer as well as survival rate campemied by the early detection through periodic screening.
Regarding this context, mammography is the mdBtative and reliable method for an accurate detection ofdbrea
cancer in recent years [2]. Mammograms are x-ray imageseafsts. Reading of mammograms is a very important task
for radiologists as they suggest patients for biopsy. H@rgdwman interpretation of mammograms varies as it depends
on training and experience. This leads tffatient judgments by fierent radiologists. Mammogram interpretation
is a repetitive task which requires maximum attention fasidance of misinterpretation. Therefore, computer-aided
diagnosis (CAD) system is currently a very popular afiitient method which analyzes the digital mammograms with

the use of image processing. CAD system helps radiologistedurate interpretation of mammograms for detection
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of suspicious lesions and classification. It has been obsdetivat 60 to 90% of the biopsies of cancers predicted
by radiologists found benign later [3]. So, it is very import to develop a CAD system, which can distinguish

normal-abnormal as well as benign-malignant mammograims niain objective of CAD system is to increase diagnosis
accuracy and enhancing the mammogram interpretation. , TWB system can reduce the variability in judgments

among radiologists by providing an accurate diagnosis gftalimammograms. Regarding this responsibility, one

important step is to find out a set of significant features ftbenmammographic images that can distinguish the normal
mammograms from abnormal as well as the benign lesions fralignant ones. Dierent techniques and methods have

been studied for this purpose.

For mammogram feature extraction and classification, aévesearches have been carried out over the year. One
of the dfective methods is the multiresolution analysis in whicte tdriginal mammographic image is decomposed
into several sub-images that preserve informations abatlit ligh and low frequencies. Wavelet transform is one of
the important methods for the texture analysis of the imadany researchers worked on multiresolution analysis of
mammograms based on wavelets by usirfipdent types of feature spaces. Dhawan et al. used waveletngesition
and gray level image structure features for classificatfom@mmograms and obtained an area under cuiléQ) of
0.81 in a receiver operating characteristic (ROC) curve [4¢i @ al. achievedUC of 0.96 through ROC analysis in
the classification of abnormal-normal mammographic tisgassification by using multiresolution texture featurgls [

In their method, wavelet transform has been used to decaarthesmammographic region of interest (ROI) to collect
different detail coficients and consequently, texture features were extraobted these coicients. Liu et al. used

a set of statistical features based on wavelets and fourZ¥B4ccuracy rate by using binary tree as classifier in
mammogram classification [6]. Rashed et al. obtaine@@5 of classification accuracy by usingfdrent types of
Daubechies wavelets in the classification of mammogramdHigthibha et al. used multiscale wavelet transformation
for extraction of texture features from the mammographiages. They obtained the classification performande &8

of 0.95 in ROC to classify normal and abnormal mammograms by usiagiearest neighbor classifier [8]. Buciu et
al. achievedAUC values as @9 and 078 for classification of normal-abnormal and benign-maigmmammogram
classes respectively [9]. They have used Gabor waveleltspsihicipal component analysis for reduction in dimension
of directional features with the help of support vector maetas classifier. Gorgel et al. used wavelet based support
vector machine (SVM) in their proposed method for mammogi@mass classification and achieved an accuracy
of 84.8% [10]. In another proposed method, Gorgel et al. found®6and 9359% classification accuracy rates
for normal-abnormal and benign-malignant mammogram ifieagon using spherical wavelet transform (SWT) for
extraction of features and SVM as the classifier [11]. Inrthedposed method, a local seed region growing algorithm
has been used to detect ROIs of mammograms.

Texture of a mammographic image is the quantitative siedistneasurements of pixel intensities in a region. The
textural information of mammographicimages is very impottor distinguishing the abnormal pattern from the normal
A popular method for texture analysis can be taken into eache gray-level co-occurrence matrix (GLCM) which
estimates the second order-statistical properties of @ngfy2] [13] [14]. Chan et al. achieved performance index
value of AUC = 0.89 by using texture morphology features based on GLCM in kassdication of mammograms and

[15]. In their proposed method, a feature selection teamnlmased on genetic algorithm (GA) has been used to select



effective features from multidimensional feature spaces.alrlet al. developed a method in which the textural features
were extracted from ROI using GLCM [16]. Utilizing these tigees, they discriminated the benign and malignant
mammograms with the help of neural network and achieved emracy of 9167% sensitivity. Jona et al. used GLCM
to extract the features from the mammographic images [1AgyDptimized the feature set by using a hybrid particle
swarm optimization and genetic algorithm, and obtained @ %assification accuracy by using SVM to classify the
normal and abnormal mammograms.

The literature survey reveals about the existing classificaschemes for digital mammogram images. However,
most of them are not able to provide a good accuracy. It has been that the dimension of extracted feature space
is so high due to large varieties of normal and abnormal éisquresent in the breast. The use of high dimensional
feature space may degrade the performance of the cladsificotheme. From a large feature space, only some of the
features are féective and significant for the mammogram classification. réfoge, in addition to feature extraction,
feature selection is also the key step in mammogram claasific which selects only the significant features from
available feature space. So there is a need to develop samfeagire extraction and selection algorithms to increase
the accuracy of classification rate. In this paper, we hagpgsed an fective feature extraction algorithm using two
dimensional discrete wavelet transfornDEDWT) based multiresolution analysis along with gray-les@occurrence
matrix (GLCM) to compute texture features for mammograjiages. A feature selection algorithm has been applied
using two statistical feature selection methods sudtvassample aindF-testto select significant features from extracted
features. Utilizing these significant features, a back agapion neural network (BPNN) has been used as classifier to
predict the mammogram, whether it is a normal or abnormaladdition, the severity with respect to malignant or
benign is also estimated in abnormal cases. The rest of #psrps organized as follows: Section 2 deals with the
proposed scheme, where extraction and selection of fesimebclassification is discussed in detail. Section 3 deseri

the results obtained on standard databases. Section 4tly@/esncluding remarks.

2. Proposed method

The proposed method of mammographic image classificatioludes two major algorithms such as feature
extraction and selection. The feature extraction algoritioncentrates on the texture point in the mammographicémag
utilizing 2D-DWT and GLCM in succession on region of interest (ROI) to find the feature descriptors of each detail
codficient of 2-level DWT. In the feature selection algorithrfipetive and significant features are selected and provided
to the neural network for the classification of mammogramsamal, benign or malignant. The overall block diagram

of the scheme is shown in Figure 1.

2.1. Extraction of Region of Interest (ROI)

It may be noted that mammographic image is composedftdrdint types of noises, artifacts in their background.
The object area also contains the pectoral muscles. Alethesas are unwanted portions for the texture analysis due
to which; the full mammographic image is unsuitable for fieatextraction and subsequent classification. Therefore,
a cropping operation has been applied on mammogram imagesraxt the regions of interests (ROIs) which contain

the abnormalities, excluding the unwanted portions of thage. This process is performed by referring the center
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Figure 1: Block diagram of the proposed scheme for classificaof mammograms using back propagation neural

network (BPNN).

of the abnormal area as the center of ROl and taking the ajpabd& radius (in pixels) of a circle enclosing the
abnormal area as shown in Figure 2. For the extraction of abR®I, the same cropping procedure is performed
on normal mammographic images with random selection oftioea Thus, in this phase, the ROIs extracted are free
from the background information and noises. Figures 3 arfitbdvsome extracted ROIs containingfdrent classes of

abnormality.

Original mammogram

Extracted ROI

Figure 2: Cropping of ROI from mammographic image refertimg center of the abnormal area.

2.2. Multiresolution Analysis using two dimensional DeterWavelet Transforn2D-DWT)

In the multiresolution technique, the underlaying textfrmammographic ROIs are analyzed by zooming in and out

process. The discrete wavelet transform decomposes thenographic ROI into a number of sub-images iffetient
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Figure 3: Mammographic ROIs of MIAS database [18]. The sghrfs indicate dierent types tissues present in

mammograms. The levels 1, 2 and 3 of ROIs represents noreragiand malignant classes respectively.

(a) Almost entirely fatty tissues (b) Scattered fibro-glandular tissues
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(c) Hetereogeneously dense tissues (d) Extremely dense tissues

Figure 4: Mammographic ROIs of DDSM database from IRMA pcojd9]. The sub-figures indicateftiérent types
tissues present in mammograms. The levels 1, 2 and 3 of RPtesents normal, benign and malignant classes

respectively.

resolution levels preserving the high and low frequencgrimfation. This property leads the wavelet to extract better
texture information from the mammographic ROIls. Given atcmmous, square integrable functidr(x), its wavelet

transform is calculated as the inner product @ind a real valued wavelet functiop (X)) [20] given by,
WIF (s 9] = (F.05) = [ £09uk (9dx @

wherey () = Zy* (%£) is a wavelet familys € Z, r andk € {h,v,d} are scale (resolution level), translation and
orientation parameters respectively. The orientatioampaters, v andd represents to horizontal, vertical and diagonal
directions respectively. Now the dyadic wavelet decomjmsis achieved whes = 2/ andr = 2i.n, j,ne Z. Using

the wavelet functiony (x) and scaling functiop (x), the wavelet and scaling families are constructed as,

‘plj(,n (x) = %lpk(x;zzjl_n) and tp'in (X) = \/_12_1_90(x—2211,n) @
These are orthonormal basis of sub-spaces and relatedolaties 2. The wavelet atoms are defined by scaling and

translating three mother atoms liké, ¢ andy®. These oriented mother atoms are computed as the tensargpiafd

one dimensional (x) andy (X) given by,

() =0 (x) @ (%), ¥" (X) = ¥ (x2) ¢ (X2) ,

3
W' (%) = ¢ (x) ¥ (x2) andy? (x) = ¢ (1) ¥ (X2)



A two dimensional discrete wavelet transform is implemdntsing the combination of digital filter banks and
down-samplers. The digital filter banks consist of highsp@g$ and low-passh) filters. In the configuration of DWT
structure, the number of banks is set as per the desiredutieso|21]. As the image is al2 signal, separable wavelet
functions compute the discrete wavelet transform (DWTE fidws and columns of the image are separately undergone
through the D wavelet transform to establish th®2DWT. As shown in Figure 5, the original imade;.. f at resolution

21+1 is decomposed into four sub-band images in the frequencyagomAmong them, three sub-band imangj, f,

Dy f, D‘z‘j f are the detail images at resolutioni horizontal, vertical, and diagonal directions respesti. The Fourth

one is the approximation imag#,; f found at coarse resolution. So the whole imége: f is represented as,
Agiaf =D £+ DY f+DY f+Ayf 4

The decomposed sub-images are the representatioD afrthogonal wavelet. Thus, the output of a wavelet
decomposition of an image results into four orthogonal sabd components like Low-Low (LL), Low-High (LH),

High-Low (HL) and High-High (HH), that correspond to subeigesl:)gj f,D f, D‘z’j f andAy; f respectively as shown

in Figure 5.
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Figure 5: Wavelet decomposition using analysis filter banks

2.3. Gray-Level Co-occurrence Matrix (GLCM)

The gray-level co-occurrence matrig(C M) is used to extract the texture in an image by doing the triamsof
gray level between two pixels. THeLCM gives a joint distribution of gray level pairs of neighbagipixels within
an image [13]. The co occurrence matrix of the ROI is usefudl@ssification of types of breast tissues by extracting
descriptors from the matrix. For the computation@ECM, first a spatial relationship is established between two
pixels, one is the reference pixel, and the other is a neigplxel. This process forms tHeLCM containing diferent
combination of pixel gray values in an image. lcgd, j) is the element o6LCM of a given imagef of sizeM x N

containing the number of gray leveBsranging from 0 tdG — 1. Thenq can be defined as the matrix element and given

by,
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- i NOf 1, if f(xy) =iand f(x+Ax, y+Ay) = |
ql,)) =
0, otherwise

x=1 y=1
where &, y) and Kk + Ax,y + Ay) are the locations of reference pixel and its neighboringlpiespectively. Each

element ofGLCM, q(i, j |Ax, Ay) represents the relative frequency with which two pixels igiveen neighborhood

separated by a distan¢ax, Ay) having gray level valueisand j respectively [14]. It can be representedds | |D, 9),

where the parametd is the distance of separation between two neighboringuéeal cells with two pixels having

intensities andj in the image. The other parametarepresents the direction of neighboring pixel with respegixel

of reference. The directionality used@LCM is shown in Figure 6. The paramet@ris also called as set distance as

it specifies the distance of all neighboring resolutionpaontain in a set. For the texture calculation; 816CM must

be symmetrical, and each entry of 8&CM should be a probability value. For this purpose, a normtdingrocess is

followed. Each element of the normalized gray-level coummence matrix NGLCM) is defined as,

G-1G-1
pG.))=aGi)/ > > ad. i) (6)
i=0 j=0
wheren represents the size BfGLCM.
135°-D,-D] 90°[-D,0] 45°[-D,D]

1 1 0°[0,D]

Reference pixel

Figure 6: Directionality used in the gray-level co-occuige matrix.

The size ofGLCM is same as the number of gray levels of input image. Gh€ M is highly dependent on the
parameter® andd. Several matrices can be obtained with small changes indreeteD andé. For the digital
mammograms, the distance paramées limited to integral multiples of the pixel size, and thdugof a direction
parameted can be 0,45°,90° and 135. Figure 7 describes the process of computatio® b€ M of a given test image
intensity matrix. Here, the number of gray level is four ahd tfset values are taken as, |4, [-1,0], [-1, 1], and
[-1,-1]. The dfset values represent set distafixe- 1 in four possible neighboring pixel directiofis= 0°, 9(°, 45°
and 135 with respect to reference pixel. It can be seen that the oecoe of resolution cells pair (R) in the intensity
matrix of input image is 4 in the horizontal directiof£ 0°) due to the symmetric property. Therefore, the element in
the (Q 2) position of the horizontaELCM is 4 as shown in Figure 7(b). In the same manner other BigeMs are
computed. Figure 8 shows the normalized gray-level co1weage matricesNGLC M) where each cell in the matrices
contains probability value. Each elementdGLCM is computed by dividing 24 in case of horizontal and vertical
directions, and 18 in case of left diagonal and right diagidivactions to each element of corresponding symmetrical
GLCM.
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Figure 7: Computation of co-occurrence matrices. (a) itgrvalues of input image with 4 gray levels. fi&rent
co-occurrence matrice&{C M) for set distanc® = 1 at four diferent directions such as (b) horizont@l£ 0°), (c)

vertical @ = 90°), (d) right diagonal{ = 45°), (e) left diagonal{ = 135).
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Figure 8: Normalized co-occurrence matricBs3LC M) of corresponding co-occurrence matric€s.C M) in Figure 7
at directions (ap = 0°, (b) 8 = 907, (c) 8 = 45° and (d)9 = 135".

2.4. Feature Extraction usingD-DWT and GLCM

In the discrete wavelet decomposition, the output detadlges give the detail ciicients of the original image.
It is found that, the approximation sub-image carriesdithergy due to which it is not taken in the texture analysis
of mammographic ROI. But the wavelet detail odents provide the texture descriptors of the mammograRiit
Using 2-D DWT, the three detail ciicient matrices at each resolution level are obtained, wigphesent horizontal,
vertical, and diagonal sub-structures of the ROI as showfigare 9. Then the gray-level co-occurrence matrices are
calculated at each resolution level by taking the absolateevof each cd@cient in the corresponding matrices. For
analysis of texture patterns of each ROI, the following faettire descriptors such as energy, correlation, entropy, s
variance, and sum average are calculated [13]. The texgatares of ROIs are computed usiBGCM. Now p(i, j) is
the (, j)th entry of normalize@LCM. Let py (i) is thei™" entry in the marginal probability matrix by summing the rows
of p(i, j), defined aspy (i) = j§1 p(i, j), whereG is the number of distinct gray levels in the quantized ROmigirly,

i=1j=1
i+j=k
(FD) are givenin Table 1. The feature matrix of each ROI gendnaséng the B-DWT andGLC M method is described

G G G
py(j) = X p(i, ) andpwy(K) = > > p(.)), k=23, ..., 2G. The expressions for fierent texture feature descriptors
i=1



in Algorithm 1.
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Figure 9: D discrete wavelet transform of mammographic ROI, (a) wawddeomposition at two resolution level, (b)

original ROI (mdb015) and (c) transformed ROI.

Table 1: Computation of feature descriptors for mammogaiRDIs.

Feature Descriptor Name Computation
G G
FD; Energy L A G, i)y
i=1i=
G G
% % (0P )=y
FD, Correlation i e
G G - . - .
FDs Entropy Zl Zl p (. j)log(p(i, i)
i=1]j=
. ZG . .
FD4 Sum variance > (i —sum entrop)?pxw(l)
i=2
2G )
FDs Sum average > iPxay (i)
i=2

where uy, 1y, ox andoy are the means and standard deviationg,aind py, and

2G . .
sum entropy= - 3, peiy (1) 109 {pesy ()}
1=

In Algorithm 1, a D-DWT is applied onN mammographic ROIs to producefidirent detail cogicient matrices
(DM) atr different directions such as horizontal, vertical and diagdimettions forl resolution levels. A co-occurrence
matrix (GLC M) and its corresponding normalized co-occurrence maiz I(C M) are calculated from eaddM in four
directions ¢ = 4) i.e at 0,45°,90° and 135 at a set distancB. Then all the feature descriptor8[) mentioned in
Table 1 are computed from eatliGLCM and combined to form a feature descriptor matbM). Thus, a feature

matrix is generated by concatenating all teMs from allNGLC Ms for wholeN ROlIs.



Algorithm 1 Feature matrix generation

Require: N: Total number of images in dataset
j andl: resolution level and total number of resolution levelpegively
DM: Detail codficient matrix for various resolution level
r: Total number of directions in whicBM is to be computed, here= 3
GLCM: Co-occurrence matrix
NGLCM: Normalized co-occurrence matrix
6 andp: Direction and number of directions for computiNgs LC M respectively
D: Set distance for computingLCM
FD andFDMJ[1: S,1: N]: Feature descriptor and feature descriptor matrix
s. Number of feature descriptors
M: Total number of features
Ensure: featurematrix{1: M, 1 : N]

Function wavedec() does wavelet transform of ROI. Fundiettoef() extracts three detail and one approximation
codficient matrix from transformed ROI at lower resolution levalsing DWT technique. And function
graycomatrix() computeSLCM from DM

1: Initialize the required values tor, p ands

2 Melxrxpxs

3: fori < 1toNdo

4:  ReadROJ;

5 De«1

6: for j« 1toldo

7: TRO} « wavedecROl) {TROI is the wavelet transform dROl;}

8: for d « 1tor do

9: DMjq « detcoef{ ROV)
10: for k — 1topdo
11: GLCMjqg, < graycomatrixPMjq, 6k, D)
12: NGLCMgg, < GLCMjqq, / sum(elements d&LC Mgy, )
13: for g« 1tosdo
14: ComputeFDs from NGLC Mjgg, and append t& DM jqg,
15: end for
16: end for
17: end for

18: D~D+1
19: end for
20: end for

21: featurematrix « concatenateDMs)

10



2.5. Feature Selection and Classification

The features extracted from the textures of ROIs are expdess mathematical descriptions. This helps the classifier
to distinguish the breast tissues as normal, benign or meatiy However, one major problem lies with the large number
of features that is very ficult to determine which feature or combination of featureBieves better classification
accuracy rate [3]. Therefore, it is important to select aadlé and optimized set of features from a high dimensional
feature matrix that has the ability to distinguish betweifedent types of mammograms. In this scheme, two statistical
methods such atwvo-sample tand F-testhave been used comparatively to select the most signifiesttifes from
the fetaure matrixTwo-sample aindF-testsare performed on two classes, and a test decision is retdiondioe null
hypothesis that the data in two vectegsandv, come from normal distributions with equal means. The tetdrdgines
whether the data from two vectovg andv, are related or not. In the proposed feature selection akgoria null
hypothesis valuey = 1 indicates that the null hypothesis is incorrect and rebcAn incorrect null hypothesis implies
that, data from two vectong andv, are diferent and independent. In thevo-sample andF-testmethod, the andF

values are computed as,

|,UV1 - #Vz|

te ————= ©)
2 2
/ (vall) + (vazz)
SZ
F=_— ®)
sz

Where,N,, andN,, are the numbers of ROIs in two classes. Hete, andy,, are meansgy, ando, are standard
deviations, an&,, andS,, are the variances of two classes. A highendF value indicates more significantfiérences
between the means of the two vectors. For a certain threstesid F value, corresponding; and p, values define
probabilities of obtaining aandF value more than the threshold. A significance lewalefines the lower threshold for
the p; andp; values. The value af is in the range 0 and 1. As thevalue decreases from one to zero, the selection of
the number of features reduces. The selection of signiffeattres has been described in Algorithm 2.

In this paper, the artificial neural network has been usedciesaifier. Artificial neural network is a powerful parallel
dynamic system consisting of multiple simple and intereared processing units, that performs tasks like the bicédg
brains. A neural network can perform the necessary tramsfton operation automatically by means of neuron’s state
response to their input information. These networks aliedthwith a set of samples known as the training set. The
network is trained by learning the values of its internagpaeter from the training set so that, an input leads to apeci
output. A feed-forward back-propagation multilayer németwork (BPNN) is one of the most common arfteetive
network structures used for classification in the featucep A set ofR selected significant features are supplied
to BPNN for the classification purpose. flrent measures of classification are obtained with tifferéint number
of significant features by varying the values and changing the number of neuramsirf the hidden layer of neural
network as shown in Figure 1. The performance of the classifievaluated with the help of a confusion matrix [22].
The confusion matrix is a table that shows the output andshctass classification accomplished by the classifier. The

confusion matrix for two class-problem and correspondirgsures of performance are represented in Figure 10.
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Algorithm 2 Feature Selection
Require: featurematri{1l: M, 1 : N], targetclasgl : N]

a: Significance level
Ensure: selectedfeaturg[l: R, 1 : N] andselectedfeature[l: R 1:N]

R: Total number of selected features
Functions ttest() and vartest() compute the null hypothesiues of two vectors atfiiérent values of significance
level, bytwo-sample andF-testrespectively

1: Create two empty vectorg andv,

2: Initializea, 0<a < 1

3 fori < 1toMdo

4:  Clear contents of vecta; and vectown,

5. for j« 1toNdo

6: if targetclasgj] = 1then

7 AppendfeaturematriXi, j] to v;
8: else

9: Appendfeaturematrixi, j] to v,
10: end if

11:  end for

12:  hy[i] « ttestfs, v2, @)
13:  hy[i] « vartestyy, Vo, @)

14: for |l « 1to 2do

15: if he[i] = 1then

16: Appendfeaturematrixi, 1 : N] to selectedfeatureg
17: end if

18:  end for

19: end for

12
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Figure 10: Confusion matrix for two-class problem witlterent performance measures.

Among the diferent measures mentioned in Figure 10, specificity andtsgtysare two important parameters for
performance evaluation. Sensitivity determines the paege of true positive rate while specificity determines the
percentage of true negative rate. Positive predictiveevalod negative predictive value calculate the percentage of
positive and negative characteristics in case of posititereegative tests respectively. For an ideal performaratd, b
specificity and sensitivity should be high. The evaluatiba olassifier performance can also be accomplished by means
of receiver operating characteristics (ROC) curves [3]is l& two dimensional plot of true positive rate (sensitiyity
versus false positive rate (1-specificity) in vertical arationtal axes respectively. The area under the ROC curve
referred by an indeAUC is an important factor for evaluating the classifier perfante. The value cAUCis 1.0 is a

perfect performance of the classifier.

3. Experimental Results and Analysis

To validate the proposed feature extraction and mammogtassification scheme, simulations have been carried
out in the MATLAB environment. For the analysis of the propdsnethod, mammographic images are taken from
two databases such as Mammographic Image Analysis SobiAS) database [18] and Image Retrieval and Medical
Applications (IRMA) project [19]. The MIAS database is by Suckling et al. and openly available for scientific
research. The mammographic image database in IRMA praggentade by Deserno et al., who collected images
from several other databases including Digital DatabaseSfmeening Mammography (DDSM). Both MIAS and
IRMA databases provide appropriate informations basegpestof background tissues, and the class of abnormalities
present in the mammograms. The class of abnormality censistormal-abnormal class, and again based upon the
severity of abnormality; the abnormal class is divided itwtio sub-classes such as benign and malignant. The MIAS

database contains 322 images, which are categorized irte #trcording to tissue types like fatty, fatty-glandulad a
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dense-glandular. Out of 322 images, 207 images are norrbaljmages are abnormal; and again among abnormal
images the number of benign and malignant types are 64 andspkctively. We considered all the images for our
experiment from this database. In IRMA project, the databaglivided into 12 and 20 class problems. In 12 class
problem, the mammograms are categorized according teetdsasity, and each category is divided into three classes;
normal, benign and malignant. In 20 class problem, the magnamos are of two categories offidirent types of lesions.
The 12 class database consists of mammograms of four tigpes;talmost entirely fatty, scattered fibro glandular,
heterogeneously dense and extremely dense. This datadrasists of 2796 images out of which 2576 images are from
DDSM database. We have taken a total of 550 DDSM images fromldss problem, out of which 300 images are
normal and 250 images are abnormal. The abnormal classst®$i129 benign images and 121 malignant images.
Each mammographic ROI has been taken of sizexi 288 used in the feature extraction phase to find several tyjpes

features.

3.1. Results for feature extraction

In this paper, the symmetric biorthogonal 4.4 wavelet hanlesed to compute DWT of images. It has been observed
that atl = 2, the D-DWT gives the suitable results on feature extraction. Athe@solution level §) the DWT results
three detail cofficient matrices and thus a total of six detail fla@ent matrices@M) such aH;, V;, D; atj = 1, and
Ha, Vo, Dy at j = 2 are obtained in threefiiérent directions. Furthermore, foBLC M and correspondinGLCM are
computed from each detail cihieient matrix OM) at each resolution level. The resolution levglgf wavelet transform
act as the distance parametBy) for GLCM computation. The value dd has been taken 1 and 2 for resolution level
j = 1 andj = 2 respectively. From eaddGLC M, a total of five feature descriptors € 5) such as energy, correlation,
entropy, sum variance and sum average are extracted angp@rgly, form a feature descriptor matrix. Thus,lfer2,
r=3,p=4ands=>5,atotal 120/ = | x r x p x s) features are extracted frofhnumber of ROIs. Thidv number
of features are kept in rows with corresponddgumber of ROIs in columns to generate a feature matrix, wisi¢h
be used in feature selection algorithm. Tables 2, 3, 4, arfitb®v $he values of dierent texture feature descriptors for

different types of ROIs at each resolution levig! (

3.2. Results for mammogram type classification using mgsifigiant features and neural network

During the experiment, ffierent number of significant featureR)(have been selected througho-sample tand
F-testmethods. Figure 11 shows the variation of the number of tsddeatures with respect the various valueg of
for MIAS and DDSM databases. It has been observed that, theceel number of selected featur& is obtained at
lower values of significance levek) using both statistical methods. It is also observed thaséme value ok, the
dimension reduction is more in DDSM images as compared to3/ilAages. The selected features were used in the
classifier to find the optimal classification accuracy ratiergetting several sets of significant features, we cotatlic
the classification experiments on both MIAS and DDSM datasitg a three-layer BPNN. In the experiment, 70% of
the total dataset have been used for training. From the rengadataset, 15% data were used for validation and rest
15% were used for testing purposes. Thiedent number of images are used in the three phases of tisffielahich

is shown in Table 6.

14



Table 2: Diterent values of various feature descriptorg at0° with set distanc® = 1 for j = 1 andD = 2 for j = 2.

Feature Descriptors

MIAS DDSM
Type of  Detail
ROI codlicien FD; FD, FD3 FD,4 FDs FD; FD, FD3 FD4 FDs
H,  0.2779 487.5895 2.0317 68.9951 9.7276  0.3516 280.752323.86.6090 8.0955
H,  0.0970 692.6964 2.8604 41.6123 8.1096  0.1532 844.491232.24.2830 11.0730
V;  0.1877 466.5697 1.9693 61.5468 9.0858  0.1731 459.281012.5%.5010 8.7921
Normal V,  0.0996 767.3355 2.8207 51.9270 8.8618  0.1101 653.750002.62.4534 8.5875
D; 0.2179 444.1351 1.8202 65.0145 9.2864  0.1450 549.611002.3G.1411 8.9572
D, 0.2331 347.4291 2.2023 43.2433 7.9591  0.2361 325.89006Q.@7.0090 8.0912
H,  0.2281 419.9608 1.9828 52.9509 8.6760  0.9296 219.460329.28.9842 9.9898
H,  0.0968 874.2193 2.7809 57.3901 9.2558  0.2355 294.73084.63.1920 6.9669
. V;  0.3602 239.8866 1.6763 48.3035 8.0619  0.9139 213.110160.2%.1445 9.9783
Benign V,  0.0884 741.4346 2.8748 47.4457 8.5482  0.5363 184.521369.14.6322 7.7436
D, 0.2263 432.9716 1.8142 65.5525 9.3108  0.7223 148.480089.58.3605 7.8384
D, 0.1219 668.9592 2.5554 56.7644 9.0768  0.9639 130.38218H.52.9740 7.9811
H,  0.2096 669.7592 1.9406 88.8764 10.8185 0.9341 217.441270.97.1415 9.9778
H, 0.1253 663.9185 2.4817 56.4908 9.0556  0.3882 246.083312.32.7977 7.5013
. V;  0.4441 216.5229 1.4351 51.0913 8.0865 0.9127 214.580028.2%.3071 9.9841
Malignant \, 02024 498.4734 2.0593 65.2262 9.4488  0.2998 239.776614.88.7870 7.4602
D, 0.3583 258.8663 1.5051 53.2372 8.3248  0.3350 284.915423.58.8471 8.5895
D, 0.1205 645.2020 2.6058 53.9703 8.8808  0.7726 143.564809.56.7352 7.8725

Hi, V1, D;1: horizontal, vertical and diagonal detail ¢beient matrices af = 1.
Ha, V2, D2: horizontal, vertical and diagonal detail ¢beient matrices af = 2.
FD1, FD,, FD3, FD4 andF D5 are feature descriptors defined in Table 1.

Table 3: Diterent values of various feature descriptorg at90° with set distanc® = 1 for j = 1 andD = 2 for j = 2.

Feature Descriptors

MIAS

DDSM

Typeof  Detail
ROI codlicien FD;

FD>

FDs3

FD4 FDs

FD; FD, FDs3 FD4

FDs

H,  0.0903 677.5727 2.8725 42.0656 8.1228  0.1745 819.970102.B8.9453 11.0805

A 0.1969 468.5895 1.9439 60.1313 9.0849 0.1951 461.460862.@8.6023 8.7895

Normal (VA 0.1015 762.7643 2.7947 51.3033 8.8450  0.1123 675.132102.88.5760 8.5925
D:  0.2177 442.5444 1.8138 65.2780 9.2845  0.1451 548.762202.35.3110 8.9543

D, 0.2250 346.4965 2.2173 43.3453 7.9539 0.2515 324.400152.@4.2960 8.0953

H,  0.2011 413.7083 2.0464 55.6596 8.6787 0.9139 213.240080D.2%.4910 9.9834

H,  0.0897 864.0826 2.8057 58.5130 9.2778  0.2197 270.710534.7%.3020 6.9534

. A 0.4352 241.9732 1.5906 48.3573 8.0619 0.9259 219.88028D.85.9100 9.9857
Benign (VA 0.1005 746.1557 2.8445 47.4000 8.5461 0.5974 194.762838.%®.0120 7.7476
D;  0.2291 433.3259 1.8093 65.8895 9.3106 0.7195 148.525498.5%.3786 7.8380

D, 0.1213 674.2864 2.5647 57.0645 9.0855  0.9639 130.341089.52.9856 7.9811

H,  0.1930 664.6917 1.9807 92.7172 10.8194  0.9127 212.210818.®5.1182 9.9746

H,  0.1234 637.6616 2.4486 56.7353 9.0446 0.3230 231.876943.88.3890 7.4696

. A 0.5052 216.8881 1.3503 50.3845 8.0858  0.9182 222.93007D.2%.7241 9.9957
Malignant v, 0.2093 506.7676 2.0243 64.7834 9.4423 0.3256 254.596398.4P.2070 7.4696
D  0.3559 258.9083 1.5028 53.5048 8.3264  0.3324 285.021493.58.7192 8.5893

D, 0.1279 634.4545 2.5620 53.8055 8.8830  0.7804 142.978649.4%.9823 7.8772
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Table 4: Diterent values of various feature descriptorg at45° with set distanc® = 1 for j = 1 andD = 2 for j = 2.

Feature Descriptors

MIAS DDSM

Typeof  Detail
ROI codficien FD;y FD, FDs FDy4 FDs FD;y FD, FDs FDy4 FDs

H,  0.2264 480.5639 2.1465 70.6623 9.7249  0.2847 276.816286.9%.7880 8.0924

H,  0.0879 681.0941 2.8792 42.3220 8.1304  0.1485 827.691022.241.6770 11.0822

V,  0.1864 467.7653 1.9784 60.9509 9.0844  0.1721 459.988262.55.0801 8.7910

Normal \A 0.0926 766.4563 2.8347 51.7463 8.8526 0.0978 671.187482.7D.0870 8.5902

D, 0.2174 443.6977 1.8201 64.9795 9.2851  0.1449 550.220022.%%.8473 8.9557

D, 0.2095 348.9067 2.2437 43.2632 7.9568  0.2114 329.761822.4@.7035 8.0979

H,  0.1974 415.2558 2.0749 54.6695 8.6772  0.9139 213.22459D.2%.4060 9.9831

H,  0.0906 858.3919 2.8054 58.5568 9.2685  0.2050 271.697368.83.2631 6.9557

. V;  0.3516 241.0157 1.6931 47.6765 8.0624  0.9139 213.151276.8K.0765 9.9784

Benign \YA 0.0898 748.6347 2.8727 47.1760 8.5424 0.5371 184.281499.¥5.4170 7.7424

D:  0.2249 434.0044 1.8205 65.2272 9.3105  0.7210 148.742119.59.2596 7.8378

D, 0.1199 668.5166 2.5641 56.9308 9.0802  0.9657 130.411856.52.1110 7.9824

H,  0.1883 666.8222 2.0078 91.3533 10.8204  0.9123 212.234848.35.0021 9.9747

H,  0.1233 643.4498 2.4670 56.9562 9.0486  0.3243 231.113288.3@.1360 7.4945

. V,  0.4392 216.4788 1.4470 50.4909 8.0867  0.9123 214.630030.2%.1750 9.9846

Malignant  /, 0.2056 494.2931 2.0431 65.5455 9.4444  0.3078 239.736993.39.3093 7.4633

D, 0.3515 259.9105 1.5157 52.6011 8.3250  0.3352 285.172413.%8.1961 8.5885

D, 0.1197 643.0346 2.6010 53.7630 8.8819  0.7873 143.351208.5%.8630 7.8764

Table 5: Diterent values of various feature descriptorg at 135> with set distancd® = 1 for j = 1 andD = 2 for

j=2.
Feature Descriptors
MIAS DDSM
Typeof  Detail
ROI codlicien FD; FD, FD3 FD4 FDs FD; FD, FD3 FD4 FDs

H,  0.2269 480.7278 2.1466 70.6295 9.7249 0.2881 276.660064.90.0070 8.0924
H,  0.0900 684.9990 2.8778 42.1644 8.1296  0.1502 828.89664@.%4.3992 11.0817
A 0.1861 467.8358 1.9786 60.8743 9.0849 0.1733 459.833462.55.1521 8.7912
Normal (VA 0.0954 760.9155 2.8241 51.8240 8.8542 0.0978 671.120052.7D.0154 8.5895
D; 0.2164 443.6506 1.8209 65.1938 9.2854  0.1448 549.921312.76.9170 8.9548
D, 0.2122 347.3934 2.2333 43.1518 7.9576 0.2160 329.530142.13.8295 8.0979
H,  0.1970 414.9199 2.0684 54.9266 8.6774  0.9139 213.277378.35.4790 9.9833
H,  0.0910 859.0862 2.8037 58.3728 9.2670  0.2068 271.74512171.83.4358 6.9550
_ Vi 0.3523 240.9230 1.6918 47.7658 8.0624  0.9139 2132.089266.35.1265 9.9782
Benign Vs 0.0901 743.2662 2.8825 47.8501 8.5424 0.5364 184.261518.147.362 7.7424
D;  0.2239 433.9719 1.8191 65.1063 9.3110 0.7229 148.661219.59.2346 7.8348
D, 0.1183 672.4989 2.5709 56.7228 9.0802 0.9671 130.490640.52.0631 7.9820
H,  0.1880 666.9464 2.0085 91.2963 10.8207 0.9123 212.230835.®5.0051 9.9747
H,  0.1227 647.4172 2.4699 56.9847 9.0494  0.3285 232.264434.3D.9761 7.4945
. \A 0.4382 216.5055 1.4477 50.4490 8.0867 0.9123 214.578340.25.1964 9.9838
Malignant  /, 0.2016 492.9544 2.0538 65.8033 9.4437 0.3088 239.612306.80M.2593 7.4645
D;  0.3474 259.8169 1.5155 52.7306 8.3250  0.3358 285.130011.3®.2996 8.5887
D, 0.1165 642.1973 2.6072 53.6483 8.8819 0.7916 143.474288.45%.8124 7.8766
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Figure 11: Feature selection byo-sample andF-testmethod. The reduced number of selected featiReis Obtained

at lower values of significance levet)

Table 6: Various Numbers of mammographic images usedieardnt phases of BPNN classifier.

Number of mammographic images

Mammogram Mammogram g

database image number of Training Testing  validation
used class images (70%)  (15%) (15%)

Normal-

abnormal 322 226 48 48
MIAS .

Benign—

malignant 115 81 17 17

Normal—

malignant 550 384 83 83
DDSM .

Benign—

malignant 250 174 38 38

As mentioned in the proposed model (Figure 1), the magnitddggnificance leveld) for feature selection and
number of neurons in the hidden laye) of the BPNN influence the performance of the classifier. tasy difficult
to find the best significant feature set through which thestfias achieves optimal performance. Therefore, several
feature sets obtained at various values of significanced (eyeare used in the classifier to find the optimum results.
In fact, for the same value af, the classifier achievesftirent performance results at théfdrent number of hidden
layer neuronsr). In our experiments, the values nfthave been chosen as 5, 10, 15 and 20 to investigate the best
performance. It has been found thatnat 15 with respect to dierenta, the classifier attains its best performance.

Different performance measures, including sensitivity, $ipégi and test classification accuracy using two feature
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selection methods are presented in Table 7. It is obseratgttie higher classification accuracy rates are obtaintd wi
two-sample t-tedieature selection method for both the databases. Thesesvata as 98% (normal-abnormal), 92%

(benign-malignant) for MIAS datbase, and.8% (normal-abnormal), 94% (benign-malignant) for DDSM database.

Table 7: Diterent values of performance measures of the classifier tsmfgature selection methods with= 15.

Performance measures (%)

normal-abnormal benign-malignant

Mammogranselection Significancé
Database method level (@) R Sensitivity Specificity Accuracy R Sensitivity Specificity Accuracy

0.9 112 77.8 93.3 875 116 875 88.9 88.2

0.5 107 88.2 93.3 91.7 96 100 90.0 94.2

Two-sample
t-test 0.2 80 100 97.0 98.0 46 778 87.5 82.4
0.05 60 85.7 97.1 938 24 75.0 77.8 76.5
MIAS 0.01 52 100 77.4 854 08 66.7 54.5 58.9
0.9 105 69.2 100 91.7 113 875 77.8 82.4
0.5 81 75.0 93.8 875 84 100 66.7 82.4

Two-sample
F-test 0.2 46  88.2 100 958 78 88.9 87.5 88.2
0.05 25 826 96.0 89.6 51 875 66.7 76.5
0.01 24 64.7 93.5 833 32 625 77.8 70.6
0.9 110 935 86.4 90.3 109 933 86.9 89.4
0.5 94 914 83.3 879 60 941 90.4 92.1

Two-sample
t-test 0.2 76 100 97.9 98.8 22 100 94.7 97.4
0.05 40 100 95.1 976 09 923 96.0 94.7
0.01 30 97.8 89.4 939 07 933 91.3 92.1

DDSM

0.9 108 93.6 84.6 89.1 105 86.6 86.9 86.8
0.5 83 933 89.4 915 77 933 86.9 89.4

Two-sample

F-test 02 40 100 951 976 58 938 90.9 921
005 18 956 92.1 939 44 867 91.7  89.4
001 11 954 84.6 903 16 923 88.0 895

We have also evaluated the performance of two feature gataoiethods by comparing the obtain&d C values of
ROC curves at dierent magnitudes of significance leve) (vith respect to the dierent number of hidden layer neurons
(n). A heat-map has been used to demonstrate the comparisbiowas 81 Figure 12. It is clearly observed that, the
best values oAU C have been accomplished with the significance lewgbf 0.2 for classification of MIAS and DDSM
datasets. One tenuous deviation in AUC is observed-at0.5 for benign-malignant classification in MIAS data. This
is due to some irregular tissue pattern in mammograms.

During our experiment, we compared the performances aetiiby the BPNN classifier along with statistical
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Figure 12: Heat-maps @&UC measurements using selective feature sets by varyindisamie levelsd) in two-sample

t and F-test methods with respect téfdient numbers of hidden layer neuronsit BPNN classifier.

two-sample tand F-testmethod with random forest method [23]. ROC curves obtairedguthe proposed scheme,
and the random forest method are shown in Figure 13. It has inderred that the proposed scheme outperforms
the random forest method with respectAd C measurements. Table 8 presents the comparison of the teshaes
and AUC measurements for BPNN classifier and random forest technidihe maximumAUC values obtained by
the BPNN and-test method are ®899 and 31504 in MIAS, and 1945 and ®761 in DDSM database for both
normal-abnormal and benign-malignant pattern classifinatt is clearly observed that thevo-sample t-teghas quite

higher-performance values in comparison to other methasfgioned for both databases.

19



1 1
o . gt T - "
09¢ 1 09 1
4
08 1 08 1
4
0.74 1 07 1
: ¥ E
& o.64 1 g o 1
© ©
= 0] o
@ 0. T ] T
e ¥ &
3 O.Ai § 3 0. 1
S 1 S
03§ 1 o 1
g
0.2¢ 1 0. 1
1! —%— random forest (AUC=0.9277) —%— random forest (AUC=0.9619)
0. —#— two-sample F-test (AUC=0.9810) [] 0.3 —#— two-sample F-test (AUC=0.9888) |]
! —e— two-sample t-test (AUC=0.9899) —e— two-sample t-test (AUC=0.9945)
i i i i T T T , T i i ; i T T T , T
01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
False Positve Rate False Positve Rate

(a

=

ROC for prediction of abnormal tissues using MIAS dasabéd) ROC for prediction of abnormal tissues using DDSM dasaba

1 T T T T — T 1 ¥ --;l-

o o o o
> N ®» ©
T T T T
i i i i
o o o
I ® ©
T T T

o
@
T

True Positive Rate
o o
@

T T

i i
True Positive Rate

o

2

T

03f 1 0.3: 1
02t 1 0.21} 1
—¥%— random forest (AUC=0.8371) —%— random forest (AUC=0.9304)
0.1 —#— two-sample F-test (AUC=0.9055) || 0-1‘ —#— two-sample F-test (AUC=0.9556) ||
—e— two-sample t-test (AUC=0.9504) —e— two-sample t-test (AUC=0.9761)
i i i i T : T T : i i i i T : T T :
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
False Positve Rate False Positve Rate

(c) ROC for prediction of malignant tissues using MIAS datsd(d) ROC for prediction of malignant tissues using DDSM datsb

Figure 13: Comparison of ROC curves of mammogram classiitatsing proposed scheme and random forest method

utilizing optimal selected feature set.

Table 8: Comparison of optimal test accuracy rates AkdC measurements between proposed and random forest

methods.
Test accuracy rate (%) AUC measurements
Mammogram Mammogram oo\ 204 BPNNand Random  BPNNand BPNNand Random
database Image t-test F-test forest t-test F-test forest
used class method method method method method method
Normal—
abnormal 98.0 95.8 93.3 0.9899 0.9810 0.9277
MIAS Benign—
malignant 94.2 88.2 82.4 0.9504 0.9055 0.8371
Normal—
abnormal 98.8 97.6 92.8 0.9945 0.9888 0.9619
DDSM Benign_
malignant 97.4 92.1 89.5 0.9761 0.9556 0.9304
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Further, a training error comparison for the proposed sehand random forest method is shown in Figure 14 to
evaluate the training convergence. The training error efdlassifier is expressed as mean squared error (mse) values
at multiple numbers of training iteration in BPNN classifeerd number of growing trees in the random forest method.
The mean squared error is the average squaristeince between output classes generated by the classtfiexisting
actual classes. The training error curvesvwad-sample t-testnethod shows that it converges faster than other methods
for both normal-abnormal and benign-malignant mammogrkasses. Finally, a comparative analysis between the
proposed scheme with other existing schemes has been mdddann in Table 9. It has been clearly observed that
the proposed scheme performs better classification tham stihemes with respect tofirent performance measures.
However, the proposed scheme requires an additional featliection phase using statistical tests unlike randoasfor

and DWT methods, which are simple to implement.
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Figure 14: Training error comparison by proposed neuralvoit usingtwo-sample tand F-test feature selection

methods and random forest classification method.
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Table 9: Performance comparison byfdirent methods with the proposed scheme.

Method reference Techniques Classification performance nasure

Prathibha et al. (2010) [8] DWT, AUC = 0.95
Nearest negihbor classifier (normal-abnormal)
Buciu et al. (2011) [9] Gabor wavelets and PCA,  sensitiv@y.56%, Specificity-60.86%
SVM classifier AUC=0.79
(normal-abnormal)
sensitivity=84.61%, Specificity-80.0%

AUC=0.78
(benign-malignant)
Mutaz et al. (2011) [16] GLCM, Sensitivig01.6%, Specificity=84.17%
ANN classifier (benign-malignant)
Jonaetal. (2012) [17] GLCM, Accuraep4.0% (normal-abnormal)
SVM classifier
Gorgel etal. (2012) [10] DWT, Accuracy rat84.8%
SVM classifier (benign-malignant)
Gorgel etal. (2013)[11]  SWT, Accuracy rai6.0%
SVM classifier (normal-abnormal)
Accuracy rate93.59%
(benign-malignant)
Proposed scheme Combination of sensitivitp0%, Specificity97.0%
DWT and GLCM, Accuracy=98.0%, AUC = 0.9899
BPNN (normal-abnormal,MIAS)

sensitivity=100%, Specificity90.0%
Accuracy=94.2%,AUC = 0.9504
(benign-malignant, MIAS)
sensitivity=100%, Specificity97.9%
Accuracy=98.8%,AUC = 0.9945
(normal-abnormal, DDSM)
sensitivity=100%, Specificity:94.7%
Accuracy=97.4%,AUC = 0.9761
(benign-malignant, DDSM)

4. Conclusion

In this paper, we propose aifffieient mammogram classification scheme to support the deciH radiologists.

The scheme utilizes2-DWT and GLCM in succession to derive feature matrix form maograms. To select the
relevant features from the feature matrix, bttiestand F-testare applied. It is observed that, t-test based relevant
features achieves higher classification accuracy with BN that ofF-test To validate the fficacy of the suggested
scheme, simulation has been carried out using MIAS and DD&tdbéses. Its competent schemes are also simulated
in the similar platform. Comparative analysis with respecaccuracy andhUC of ROC reveals that the suggested
scheme outperforms other schemes. An accuracy @P8&nd 942% have been obtained for normal-abnormal and
benign-malignant respectively in MIAS database. The sinphrameters are 36 and 974% are achieved in DDSM

database.
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