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Abstract

In this paper, we propose a mammogram classification scheme to classify the breast tissues as normal, benign or

malignant. Feature matrix is generated using GLCM to all thedetailed coefficients from 2D-DWT of the region of

interest (ROI) of a mammogram. To derive the relevant features from the feature matrix, we take the help oft-test

andF-testseparately. The relevant features are used in a BPNN classifier for classification. Two standard databases

MIAS and DDSM are used for the validation of the proposed scheme. It is observed thatt-testbased relevant features

outperforms to that ofF-test with respect to accuracy. In addition to the suggested scheme, the competent schemes

are also simulated for comparative analysis. It is observedthat the proposed scheme has a better say with respect to

accuracy and area under curve (AUC) of receiver operating characteristic (ROC). The accuracymeasures are computed

with respect to normal vs. abnormal and benign vs. malignant. For MIAS database these accuracy measures are 98.0%

and 94.2% respectively, whereas for DDSM database they are 98.8% and 97.4%.
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1. Introduction

Breast cancer is still the most common cancer throughout theworld and a frequent cause of cancer death among

women. According to Globocan project, it has been estimatedfor the year 2012 that, 1.67 million new cancer cases were

diagnosed worldwide, which is 25% of all types of cancers. InIndia, the breast cancer is considered as the most common

cancer and in the year 2012, 144, 937 women were newly detected with this cancer and 70, 218 patients died among them.

So, it can be noticed that, one patient is dying out of every two newly diagnosed women [1]. It has been studied that, the

recovery of the breast cancer as well as survival rate can be improved by the early detection through periodic screening.

Regarding this context, mammography is the most effective and reliable method for an accurate detection of breast

cancer in recent years [2]. Mammograms are x-ray images of breasts. Reading of mammograms is a very important task

for radiologists as they suggest patients for biopsy. However, human interpretation of mammograms varies as it depends

on training and experience. This leads to different judgments by different radiologists. Mammogram interpretation

is a repetitive task which requires maximum attention for avoidance of misinterpretation. Therefore, computer-aided

diagnosis (CAD) system is currently a very popular and efficient method which analyzes the digital mammograms with

the use of image processing. CAD system helps radiologists in accurate interpretation of mammograms for detection
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of suspicious lesions and classification. It has been observed that 60 to 90% of the biopsies of cancers predicted

by radiologists found benign later [3]. So, it is very important to develop a CAD system, which can distinguish

normal-abnormal as well as benign-malignant mammograms. The main objective of CAD system is to increase diagnosis

accuracy and enhancing the mammogram interpretation. Thus, CAD system can reduce the variability in judgments

among radiologists by providing an accurate diagnosis of digital mammograms. Regarding this responsibility, one

important step is to find out a set of significant features fromthe mammographic images that can distinguish the normal

mammograms from abnormal as well as the benign lesions from malignant ones. Different techniques and methods have

been studied for this purpose.

For mammogram feature extraction and classification, several researches have been carried out over the year. One

of the effective methods is the multiresolution analysis in which; the original mammographic image is decomposed

into several sub-images that preserve informations about both high and low frequencies. Wavelet transform is one of

the important methods for the texture analysis of the image.Many researchers worked on multiresolution analysis of

mammograms based on wavelets by using different types of feature spaces. Dhawan et al. used wavelet decomposition

and gray level image structure features for classification of mammograms and obtained an area under curve (AUC) of

0.81 in a receiver operating characteristic (ROC) curve [4]. Wei et al. achievedAUC of 0.96 through ROC analysis in

the classification of abnormal-normal mammographic tissueclassification by using multiresolution texture features [5].

In their method, wavelet transform has been used to decompose the mammographic region of interest (ROI) to collect

different detail coefficients and consequently, texture features were extracted from these coefficients. Liu et al. used

a set of statistical features based on wavelets and found 84.2% accuracy rate by using binary tree as classifier in

mammogram classification [6]. Rashed et al. obtained 87.06% of classification accuracy by using different types of

Daubechies wavelets in the classification of mammograms [7]. Prathibha et al. used multiscale wavelet transformation

for extraction of texture features from the mammographic images. They obtained the classification performance asAUC

of 0.95 in ROC to classify normal and abnormal mammograms by usingthe nearest neighbor classifier [8]. Buciu et

al. achievedAUC values as 0.79 and 0.78 for classification of normal-abnormal and benign-malignant mammogram

classes respectively [9]. They have used Gabor wavelets with principal component analysis for reduction in dimension

of directional features with the help of support vector machine as classifier. Görgel et al. used wavelet based support

vector machine (SVM) in their proposed method for mammographic mass classification and achieved an accuracy

of 84.8% [10]. In another proposed method, Görgel et al. found 96.0% and 93.59% classification accuracy rates

for normal-abnormal and benign-malignant mammogram classification using spherical wavelet transform (SWT) for

extraction of features and SVM as the classifier [11]. In their proposed method, a local seed region growing algorithm

has been used to detect ROIs of mammograms.

Texture of a mammographic image is the quantitative statistical measurements of pixel intensities in a region. The

textural information of mammographic images is very important for distinguishing the abnormal pattern from the normal.

A popular method for texture analysis can be taken into notice is the gray-level co-occurrence matrix (GLCM) which

estimates the second order-statistical properties of images [12] [13] [14]. Chan et al. achieved performance index

value ofAUC = 0.89 by using texture morphology features based on GLCM in the classification of mammograms and

[15]. In their proposed method, a feature selection technique based on genetic algorithm (GA) has been used to select
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effective features from multidimensional feature spaces. Mutaz et al. developed a method in which the textural features

were extracted from ROI using GLCM [16]. Utilizing these features, they discriminated the benign and malignant

mammograms with the help of neural network and achieved an accuracy of 91.67% sensitivity. Jona et al. used GLCM

to extract the features from the mammographic images [17]. They optimized the feature set by using a hybrid particle

swarm optimization and genetic algorithm, and obtained 94%of classification accuracy by using SVM to classify the

normal and abnormal mammograms.

The literature survey reveals about the existing classification schemes for digital mammogram images. However,

most of them are not able to provide a good accuracy. It has been seen that the dimension of extracted feature space

is so high due to large varieties of normal and abnormal tissues present in the breast. The use of high dimensional

feature space may degrade the performance of the classification scheme. From a large feature space, only some of the

features are effective and significant for the mammogram classification. Therefore, in addition to feature extraction,

feature selection is also the key step in mammogram classification, which selects only the significant features from

available feature space. So there is a need to develop some new feature extraction and selection algorithms to increase

the accuracy of classification rate. In this paper, we have proposed an effective feature extraction algorithm using two

dimensional discrete wavelet transform (2D-DWT) based multiresolution analysis along with gray-level co-occurrence

matrix (GLCM) to compute texture features for mammographicimages. A feature selection algorithm has been applied

using two statistical feature selection methods such astwo-sample tandF-testto select significant features from extracted

features. Utilizing these significant features, a back propagation neural network (BPNN) has been used as classifier to

predict the mammogram, whether it is a normal or abnormal. Inaddition, the severity with respect to malignant or

benign is also estimated in abnormal cases. The rest of this paper is organized as follows: Section 2 deals with the

proposed scheme, where extraction and selection of features and classification is discussed in detail. Section 3 describes

the results obtained on standard databases. Section 4 givesthe concluding remarks.

2. Proposed method

The proposed method of mammographic image classification includes two major algorithms such as feature

extraction and selection. The feature extraction algorithm concentrates on the texture point in the mammographic image

utilizing 2D-DWT and GLCM in succession on region of interest (ROI) to findout the feature descriptors of each detail

coefficient of 2-level DWT. In the feature selection algorithm; effective and significant features are selected and provided

to the neural network for the classification of mammograms asnormal, benign or malignant. The overall block diagram

of the scheme is shown in Figure 1.

2.1. Extraction of Region of Interest (ROI)

It may be noted that mammographic image is composed of different types of noises, artifacts in their background.

The object area also contains the pectoral muscles. All these areas are unwanted portions for the texture analysis due

to which; the full mammographic image is unsuitable for feature extraction and subsequent classification. Therefore,

a cropping operation has been applied on mammogram images toextract the regions of interests (ROIs) which contain

the abnormalities, excluding the unwanted portions of the image. This process is performed by referring the center
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Figure 1: Block diagram of the proposed scheme for classification of mammograms using back propagation neural

network (BPNN).

of the abnormal area as the center of ROI and taking the approximate radius (in pixels) of a circle enclosing the

abnormal area as shown in Figure 2. For the extraction of normal ROI, the same cropping procedure is performed

on normal mammographic images with random selection of location. Thus, in this phase, the ROIs extracted are free

from the background information and noises. Figures 3 and 4 show some extracted ROIs containing different classes of

abnormality.

Figure 2: Cropping of ROI from mammographic image referringthe center of the abnormal area.

2.2. Multiresolution Analysis using two dimensional Discrete Wavelet Transform (2D-DWT)

In the multiresolution technique, the underlaying textureof mammographic ROIs are analyzed by zooming in and out

process. The discrete wavelet transform decomposes the mammographic ROI into a number of sub-images in different
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(a) Fatty tissues (b) Fatty-glandular tissues (c) Dense-glandular tissues

Figure 3: Mammographic ROIs of MIAS database [18]. The sub-figures indicate different types tissues present in

mammograms. The levels 1, 2 and 3 of ROIs represents normal, benign and malignant classes respectively.

(a) Almost entirely fatty tissues (b) Scattered fibro-glandular tissues

(c) Hetereogeneously dense tissues (d) Extremely dense tissues

Figure 4: Mammographic ROIs of DDSM database from IRMA project [19]. The sub-figures indicate different types

tissues present in mammograms. The levels 1, 2 and 3 of ROIs represents normal, benign and malignant classes

respectively.

resolution levels preserving the high and low frequency information. This property leads the wavelet to extract better

texture information from the mammographic ROIs. Given a continuous, square integrable functionf (x), its wavelet

transform is calculated as the inner product off and a real valued wavelet function (ψ (x)) [20] given by,

W
[

f (s, τ)
]

= 〈 f , ψk
s,τ〉 =

∞
∫

−∞

f (x)ψk
s,τ (x) dx (1)

whereψk
s,τ (x) = 1√

s
ψk
(

x−τ
s

)

is a wavelet family,s ∈ Z, τ andk ∈ {h, v, d} are scale (resolution level), translation and

orientation parameters respectively. The orientation parametersh, v andd represents to horizontal, vertical and diagonal

directions respectively. Now the dyadic wavelet decomposition is achieved whens = 2 j andτ = 2 j .n, j, n ∈ Z. Using

the wavelet functionψ (x) and scaling functionϕ (x), the wavelet and scaling families are constructed as,

ψk
j,n (x) = 1√

2j
ψk
(

x−2j .n
2j

)

and ϕk
j,n (x) = 1√

2j
ϕ
(

x−2j .n
2j

)

(2)

These are orthonormal basis of sub-spaces and related to resolution 2j . The wavelet atoms are defined by scaling and

translating three mother atoms likeψh, ψv andψd. These oriented mother atoms are computed as the tensor product of

one dimensionalψ (x) andϕ (x) given by,

ϕ (x) = ϕ (x1)ϕ (x2) , ψh (x) = ψ (x1)ϕ (x2) ,

ψv (x) = ϕ (x1)ψ (x2) and ψd (x) = ψ (x1)ψ (x2)
(3)
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A two dimensional discrete wavelet transform is implemented using the combination of digital filter banks and

down-samplers. The digital filter banks consist of high-pass (g) and low-pass (h) filters. In the configuration of DWT

structure, the number of banks is set as per the desired resolution [21]. As the image is a 2D signal, separable wavelet

functions compute the discrete wavelet transform (DWT). The rows and columns of the image are separately undergone

through the 1D wavelet transform to establish the 2D-DWT. As shown in Figure 5, the original imageA2j+1 f at resolution

2 j+1 is decomposed into four sub-band images in the frequency domain. Among them, three sub-band images,Dh
2j f ,

Dv
2j f , Dd

2j f are the detail images at resolution 2j in horizontal, vertical, and diagonal directions respectively. The Fourth

one is the approximation image,A2j f found at coarse resolution. So the whole imageA2j+1 f is represented as,

A2j+1 f = Dh
2j f + Dv

2j f + Dd
2j f + A2j f (4)

The decomposed sub-images are the representation of 2D orthogonal wavelet. Thus, the output of a wavelet

decomposition of an image results into four orthogonal sub-band components like Low-Low (LL), Low-High (LH),

High-Low (HL) and High-High (HH), that correspond to sub-imagesDh
2j f , Dv

2j f , Dd
2j f andA2j f respectively as shown

in Figure 5.

Figure 5: Wavelet decomposition using analysis filter banks.

2.3. Gray-Level Co-occurrence Matrix (GLCM)

The gray-level co-occurrence matrix (GLCM) is used to extract the texture in an image by doing the transition of

gray level between two pixels. TheGLCM gives a joint distribution of gray level pairs of neighboring pixels within

an image [13]. The co occurrence matrix of the ROI is useful inclassification of types of breast tissues by extracting

descriptors from the matrix. For the computation ofGLCM, first a spatial relationship is established between two

pixels, one is the reference pixel, and the other is a neighbor pixel. This process forms theGLCM containing different

combination of pixel gray values in an image. Letq (i, j) is the element ofGLCM of a given imagef of sizeM × N

containing the number of gray levelsG ranging from 0 toG − 1. Thenq can be defined as the matrix element and given

by,
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q (i, j) =
M
∑

x=1

N
∑

y=1



















1 , if f (x, y) = i and f (x+ ∆x, y+ ∆y) = j

0, otherwise
(5)

where (x, y) and (x + ∆x, y + ∆y) are the locations of reference pixel and its neighboring pixel respectively. Each

element ofGLCM, q (i, j |∆x,∆y) represents the relative frequency with which two pixels in agiven neighborhood

separated by a distance(∆x,∆y) having gray level valuesi and j respectively [14]. It can be represented asq (i, j |D, θ ),

where the parameterD is the distance of separation between two neighboring resolution cells with two pixels having

intensitiesi and j in the image. The other parameterθ represents the direction of neighboring pixel with respectto pixel

of reference. The directionality used inGLCM is shown in Figure 6. The parameterD is also called as set distance as

it specifies the distance of all neighboring resolution pairs contain in a set. For the texture calculation; theGLCM must

be symmetrical, and each entry of theGLCM should be a probability value. For this purpose, a normalization process is

followed. Each element of the normalized gray-level co-occurrence matrix (NGLCM) is defined as,

p (i, j) = q (i, j) /
G−1
∑

i=0

G−1
∑

j=0

q (i, j) (6)

wheren represents the size ofNGLCM.

[-D,-D]

Reference pixel

Figure 6: Directionality used in the gray-level co-occurrence matrix.

The size ofGLCM is same as the number of gray levels of input image. TheGLCM is highly dependent on the

parametersD andθ. Several matrices can be obtained with small changes in the parameterD andθ. For the digital

mammograms, the distance parameterD is limited to integral multiples of the pixel size, and the value of a direction

parameterθ can be 0◦, 45◦, 90◦ and 135◦. Figure 7 describes the process of computation ofGLCM of a given test image

intensity matrix. Here, the number of gray level is four and the offset values are taken as [0, 1], [−1, 0], [−1, 1], and

[−1,−1]. The offset values represent set distanceD = 1 in four possible neighboring pixel directionsθ = 0◦, 90◦, 45◦

and 135◦ with respect to reference pixel. It can be seen that the occurrence of resolution cells pair (0, 2) in the intensity

matrix of input image is 4 in the horizontal direction (θ = 0◦) due to the symmetric property. Therefore, the element in

the (0, 2) position of the horizontalGLCM is 4 as shown in Figure 7(b). In the same manner other threeGLCMs are

computed. Figure 8 shows the normalized gray-level co-occurrence matrices (NGLCM) where each cell in the matrices

contains probability value. Each element ofNGLCM is computed by dividing 24 in case of horizontal and vertical

directions, and 18 in case of left diagonal and right diagonal directions to each element of corresponding symmetrical

GLCM.
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0 1 2 3

0 0 2 1 2

1 2 3 2 0

2 0 1 3 2

3 2 0 2 1

(a)

0 1 2 3

0 0 1 4 0

1 1 0 3 1

2 4 3 0 3

3 0 1 3 0

(b)

0 1 2 3

0 0 1 5 0

1 1 0 2 1

2 5 2 0 3

3 0 1 3 0

(c)

0 1 2 3

0 0 0 0 3

1 0 0 2 1

2 0 2 6 0

3 3 1 0 0

(d)

0 1 2 3

0 2 1 0 1

1 1 0 2 1

2 0 2 4 0

3 1 1 0 2

(e)

Figure 7: Computation of co-occurrence matrices. (a) Intensity values of input image with 4 gray levels. Different

co-occurrence matrices (GLCM) for set distanceD = 1 at four different directions such as (b) horizontal (θ = 0◦), (c)

vertical (θ = 90◦), (d) right diagonal (θ = 45◦), (e) left diagonal (θ = 135◦).

0 1 2 3

0 0 0.0417 0.1667 0

1 0.0417 0 0.1250 0.0417

2 0.1667 0.1250 0 0.1250

3 0 0.0417 0.1250 0

(a)

0 1 2 3

0 0 0.0417 0.2083 0

1 0.0417 0 0.0833 0.0417

2 0.2083 0.0833 0 0.1250

3 0 0.0417 0.1250 0

(b)

0 1 2 3

0 0 0 0 0.1667

1 0 0 0.1111 0.0556

2 0 0.1111 0.3333 0

3 0.1667 0.0556 0 0

(c)

0 1 2 3

0 0.1111 0.0556 0 0.0556

1 0.0556 0 0.1111 0.0556

2 0 0.1111 0.2222 0

3 0.0556 0.0556 0 0.1111

(d)

Figure 8: Normalized co-occurrence matrices (NGLCM) of corresponding co-occurrence matrices (GLCM) in Figure 7

at directions (a)θ = 0◦, (b) θ = 90◦, (c) θ = 45◦ and (d)θ = 135◦.

2.4. Feature Extraction using2D-DWT and GLCM

In the discrete wavelet decomposition, the output detail images give the detail coefficients of the original image.

It is found that, the approximation sub-image carries little energy due to which it is not taken in the texture analysis

of mammographic ROI. But the wavelet detail coefficients provide the texture descriptors of the mammographicROI.

Using 2-D DWT, the three detail coefficient matrices at each resolution level are obtained, whichrepresent horizontal,

vertical, and diagonal sub-structures of the ROI as shown inFigure 9. Then the gray-level co-occurrence matrices are

calculated at each resolution level by taking the absolute value of each coefficient in the corresponding matrices. For

analysis of texture patterns of each ROI, the following five texture descriptors such as energy, correlation, entropy, sum

variance, and sum average are calculated [13]. The texture features of ROIs are computed usingGLCM. Now p (i, j) is

the (i, j)th entry of normalizedGLCM. Let px (i) is theith entry in the marginal probability matrix by summing the rows

of p (i, j), defined as,px (i) =
G
∑

j=1
p (i, j), whereG is the number of distinct gray levels in the quantized ROI. Similarly,

py ( j) =
G
∑

i=1
p (i, j) andpx+y (k) =

G
∑

i=1

G
∑

j=1
i+ j=k

p (i, j) , k = 2, 3, ..., 2G. The expressions for different texture feature descriptors

(FD) are given in Table 1. The feature matrix of each ROI generated using the 2D-DWT andGLCM method is described
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in Algorithm 1.

(a) (b) (c)

Figure 9: 2D discrete wavelet transform of mammographic ROI, (a) wavelet decomposition at two resolution level, (b)

original ROI (mdb015) and (c) transformed ROI.

Table 1: Computation of feature descriptors for mammographic ROIs.

Feature Descriptor Name Computation

FD1 Energy
G
∑

i=1

G
∑

j=1
{p (i, j)}2

FD2 Correlation

G
∑

i=1

G
∑

j=1
(i, j)p(i, j)−µxµy

σxσy

FD3 Entropy −
G
∑

i=1

G
∑

j=1
p (i, j) log(p (i, j))

FD4 Sum variance
2G
∑

i=2
(i − sum entropy)2px+y (i)

FD5 Sum average
2G
∑

i=2
ipx+y (i)

where,µx, µy, σx andσy are the means and standard deviations ofpx andpy, and

sum entropy= −
2G
∑

i=2
px+y (i) log

{

px+y (i)
}

.

In Algorithm 1, a 2D-DWT is applied onN mammographic ROIs to produce different detail coefficient matrices

(DM) at r different directions such as horizontal, vertical and diagonaldirections forl resolution levels. A co-occurrence

matrix (GLCM) and its corresponding normalized co-occurrence matrix (NGLCM) are calculated from eachDM in four

directions (p = 4) i.e at 0◦, 45◦, 90◦ and 135◦ at a set distanceD. Then all the feature descriptors (FD) mentioned in

Table 1 are computed from eachNGLCM and combined to form a feature descriptor matrix (FDM). Thus, a feature

matrix is generated by concatenating all theFDMs from allNGLCMs for wholeN ROIs.
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Algorithm 1 Feature matrix generation

Require: N: Total number of images in dataset

j andl: resolution level and total number of resolution levels respectively

DM: Detail coefficient matrix for various resolution level

r: Total number of directions in whichDM is to be computed, herer = 3

GLCM: Co-occurrence matrix

NGLCM: Normalized co-occurrence matrix

θ andp: Direction and number of directions for computingNGLCM respectively

D: Set distance for computingGLCM

FD andFDM[1 : S, 1 : N]: Feature descriptor and feature descriptor matrix

s: Number of feature descriptors

M: Total number of features

Ensure: f eaturematrix[1 : M, 1 : N]

Function wavedec() does wavelet transform of ROI. Functiondetcoef() extracts three detail and one approximation

coefficient matrix from transformed ROI at lower resolution levels using DWT technique. And function

graycomatrix() computesGLCM from DM

1: Initialize the required values tol, r, p ands

2: M ← l ∗ r ∗ p ∗ s

3: for i ← 1 to N do

4: ReadROIi

5: D← 1

6: for j ← 1 to l do

7: TROIi ← wavedec(ROIi) {TROIi is the wavelet transform ofROIi}

8: for d← 1 to r do

9: DM jd ← detcoef(TROIi)

10: for k← 1 to p do

11: GLCMjdθk ← graycomatrix(DM jd, θk,D)

12: NGLCMjdθk ← GLCMjdθk / sum(elements ofGLCMjdθk)

13: for q← 1 to sdo

14: ComputeFDs from NGLCMjdθk and append toFDM jdθk

15: end for

16: end for

17: end for

18: D← D + 1

19: end for

20: end for

21: f eaturematrix← concatenate (FDMs)
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2.5. Feature Selection and Classification

The features extracted from the textures of ROIs are expressed as mathematical descriptions. This helps the classifier

to distinguish the breast tissues as normal, benign or malignant. However, one major problem lies with the large number

of features that is very difficult to determine which feature or combination of features achieves better classification

accuracy rate [3]. Therefore, it is important to select a suitable and optimized set of features from a high dimensional

feature matrix that has the ability to distinguish between different types of mammograms. In this scheme, two statistical

methods such astwo-sample tand F-test have been used comparatively to select the most significant features from

the fetaure matrix.Two-sample tandF-testsare performed on two classes, and a test decision is returnedfor the null

hypothesis that the data in two vectorsv1 andv2 come from normal distributions with equal means. The test determines

whether the data from two vectorsv1 and v2 are related or not. In the proposed feature selection algorithm, a null

hypothesis value,h = 1 indicates that the null hypothesis is incorrect and rejected. An incorrect null hypothesis implies

that, data from two vectorsv1 andv2 are different and independent. In thetwo-sample tandF-testmethod, thet andF

values are computed as,

t =

∣

∣

∣µv1 − µv2

∣

∣

∣

√

(σv1)
2

Nv1
+

(σv2)
2

Nv2

(7)

F =
S2

v1

S2
v2

(8)

Where,Nv1 andNv2 are the numbers of ROIs in two classes. Here,µv1 andµv2 are means,σv1 andσv2 are standard

deviations, andSv1 andSv2 are the variances of two classes. A highert andF value indicates more significant differences

between the means of the two vectors. For a certain thresholdt andF value, correspondingp1 and p2 values define

probabilities of obtaining at andF value more than the threshold. A significance level,α defines the lower threshold for

the p1 andp2 values. The value ofα is in the range 0 and 1. As theα value decreases from one to zero, the selection of

the number of features reduces. The selection of significantfeatures has been described in Algorithm 2.

In this paper, the artificial neural network has been used as aclassifier. Artificial neural network is a powerful parallel

dynamic system consisting of multiple simple and interconnected processing units, that performs tasks like the biological

brains. A neural network can perform the necessary transformation operation automatically by means of neuron’s state

response to their input information. These networks are trained with a set of samples known as the training set. The

network is trained by learning the values of its internal parameter from the training set so that, an input leads to a specific

output. A feed-forward back-propagation multilayer neural network (BPNN) is one of the most common and effective

network structures used for classification in the feature space. A set ofR selected significant features are supplied

to BPNN for the classification purpose. Different measures of classification are obtained with the different number

of significant features by varying theα values and changing the number of neurons (n) in the hidden layer of neural

network as shown in Figure 1. The performance of the classifier is evaluated with the help of a confusion matrix [22].

The confusion matrix is a table that shows the output and actual class classification accomplished by the classifier. The

confusion matrix for two class-problem and corresponding measures of performance are represented in Figure 10.
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Algorithm 2 Feature Selection

Require: f eaturematrix[1 : M, 1 : N], target class[1 : N]

α: Significance level

Ensure: selectedf eature1[1 : R, 1 : N] andselectedf eature2[1 : R, 1 : N]

R: Total number of selected features

Functions ttest() and vartest() compute the null hypothesis values of two vectors at different values of significance

level, bytwo-sample tandF-testrespectively

1: Create two empty vectorsv1 andv2

2: Initialize α, 0< α < 1

3: for i ← 1 to M do

4: Clear contents of vectorv1 and vectorv2

5: for j ← 1 to N do

6: if target class[ j] = 1 then

7: Append f eaturematrix[i, j] to v1

8: else

9: Append f eaturematrix[i, j] to v2

10: end if

11: end for

12: h1[i] ← ttest(v1, v2, α)

13: h2[i] ← vartest(v1, v2, α)

14: for l ← 1 to 2do

15: if hk[i] = 1 then

16: Append f eaturematrix[i, 1 : N] to selectedf eaturek

17: end if

18: end for

19: end for
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Figure 10: Confusion matrix for two-class problem with different performance measures.

Among the different measures mentioned in Figure 10, specificity and sensitivity are two important parameters for

performance evaluation. Sensitivity determines the percentage of true positive rate while specificity determines the

percentage of true negative rate. Positive predictive value and negative predictive value calculate the percentage of

positive and negative characteristics in case of positive and negative tests respectively. For an ideal performance, both

specificity and sensitivity should be high. The evaluation of a classifier performance can also be accomplished by means

of receiver operating characteristics (ROC) curves [3]. Itis a two dimensional plot of true positive rate (sensitivity)

versus false positive rate (1-specificity) in vertical and horizontal axes respectively. The area under the ROC curve

referred by an indexAUC is an important factor for evaluating the classifier performance. The value ofAUC is 1.0 is a

perfect performance of the classifier.

3. Experimental Results and Analysis

To validate the proposed feature extraction and mammogram classification scheme, simulations have been carried

out in the MATLAB environment. For the analysis of the proposed method, mammographic images are taken from

two databases such as Mammographic Image Analysis Society (MIAS) database [18] and Image Retrieval and Medical

Applications (IRMA) project [19]. The MIAS database is built by Suckling et al. and openly available for scientific

research. The mammographic image database in IRMA project is made by Deserno et al., who collected images

from several other databases including Digital Database for Screening Mammography (DDSM). Both MIAS and

IRMA databases provide appropriate informations based on types of background tissues, and the class of abnormalities

present in the mammograms. The class of abnormality consists of normal-abnormal class, and again based upon the

severity of abnormality; the abnormal class is divided intotwo sub-classes such as benign and malignant. The MIAS

database contains 322 images, which are categorized into three according to tissue types like fatty, fatty-glandular and
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dense-glandular. Out of 322 images, 207 images are normal, 115 images are abnormal; and again among abnormal

images the number of benign and malignant types are 64 and 51 respectively. We considered all the images for our

experiment from this database. In IRMA project, the database is divided into 12 and 20 class problems. In 12 class

problem, the mammograms are categorized according to tissue density, and each category is divided into three classes;

normal, benign and malignant. In 20 class problem, the mammograms are of two categories of different types of lesions.

The 12 class database consists of mammograms of four tissue types; almost entirely fatty, scattered fibro glandular,

heterogeneously dense and extremely dense. This database consists of 2796 images out of which 2576 images are from

DDSM database. We have taken a total of 550 DDSM images from 12class problem, out of which 300 images are

normal and 250 images are abnormal. The abnormal class consists of 129 benign images and 121 malignant images.

Each mammographic ROI has been taken of size 128× 128 used in the feature extraction phase to find several typesof

features.

3.1. Results for feature extraction

In this paper, the symmetric biorthogonal 4.4 wavelet has been used to compute DWT of images. It has been observed

that atl = 2, the 2D-DWT gives the suitable results on feature extraction. At each resolution level (j) the DWT results

three detail coefficient matrices and thus a total of six detail coefficient matrices (DM) such asH1, V1, D1 at j = 1, and

H2, V2, D2 at j = 2 are obtained in three different directions. Furthermore, fourGLCM and correspondingNGLCM are

computed from each detail coefficient matrix (DM) at each resolution level. The resolution level (j) of wavelet transform

act as the distance parameter (D) for GLCM computation. The value ofD has been taken 1 and 2 for resolution level

j = 1 and j = 2 respectively. From eachNGLCM, a total of five feature descriptors (s= 5) such as energy, correlation,

entropy, sum variance and sum average are extracted and consequently, form a feature descriptor matrix. Thus, forl = 2,

r = 3, p = 4 ands = 5, a total 120 (M = l × r × p× s) features are extracted fromN number of ROIs. ThisM number

of features are kept in rows with correspondingN number of ROIs in columns to generate a feature matrix, whichis to

be used in feature selection algorithm. Tables 2, 3, 4, and 5 show the values of different texture feature descriptors for

different types of ROIs at each resolution level (j).

3.2. Results for mammogram type classification using most significant features and neural network

During the experiment, different number of significant features (R) have been selected throughtwo-sample tand

F-testmethods. Figure 11 shows the variation of the number of selected features with respect the various values ofα

for MIAS and DDSM databases. It has been observed that, the reduced number of selected features (R) is obtained at

lower values of significance level (α) using both statistical methods. It is also observed that for same value ofα, the

dimension reduction is more in DDSM images as compared to MIAS images. The selected features were used in the

classifier to find the optimal classification accuracy rate. After getting several sets of significant features, we conducted

the classification experiments on both MIAS and DDSM datasetusing a three-layer BPNN. In the experiment, 70% of

the total dataset have been used for training. From the remaining dataset, 15% data were used for validation and rest

15% were used for testing purposes. The different number of images are used in the three phases of the classifier which

is shown in Table 6.
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Table 2: Different values of various feature descriptors atθ = 0◦ with set distanceD = 1 for j = 1 andD = 2 for j = 2.

Feature Descriptors
MIAS DDSM

Type of
ROI

Detail
coefficien FD1 FD2 FD3 FD4 FD5 FD1 FD2 FD3 FD4 FD5

Normal

H1 0.2779 487.5895 2.0317 68.9951 9.7276 0.3516 280.7523 1.8023 46.6090 8.0955
H2 0.0970 692.6964 2.8604 41.6123 8.1096 0.1532 844.4912 2.2438 91.2830 11.0730
V1 0.1877 466.5697 1.9693 61.5468 9.0858 0.1731 459.2810 2.1313 55.5010 8.7921
V2 0.0996 767.3355 2.8207 51.9270 8.8618 0.1101 653.7500 2.6209 51.4534 8.5875
D1 0.2179 444.1351 1.8202 65.0145 9.2864 0.1450 549.6110 2.2607 57.1411 8.9572
D2 0.2331 347.4291 2.2023 43.2433 7.9591 0.2361 325.8900 2.0760 47.0090 8.0912

Benign

H1 0.2281 419.9608 1.9828 52.9509 8.6760 0.9296 219.4603 0.2129 98.9842 9.9898
H2 0.0968 874.2193 2.7809 57.3901 9.2558 0.2355 294.7308 1.6366 34.1920 6.9669
V1 0.3602 239.8866 1.6763 48.3035 8.0619 0.9139 213.1101 0.2764 95.1445 9.9783
V2 0.0884 741.4346 2.8748 47.4457 8.5482 0.5363 184.5213 1.1469 47.6322 7.7436
D1 0.2263 432.9716 1.8142 65.5525 9.3108 0.7223 148.4800 0.5889 54.3605 7.8384
D2 0.1219 668.9592 2.5554 56.7644 9.0768 0.9639 130.3821 0.1285 61.9740 7.9811

Malignant

H1 0.2096 669.7592 1.9406 88.8764 10.8185 0.9341 217.4412 0.1970 97.1415 9.9778
H2 0.1253 663.9185 2.4817 56.4908 9.0556 0.3882 246.0833 1.3712 42.7977 7.5013
V1 0.4441 216.5229 1.4351 51.0913 8.0865 0.9127 214.5800 0.2823 95.3071 9.9841
V2 0.2024 498.4734 2.0593 65.2262 9.4488 0.2998 239.7766 1.5814 40.7870 7.4602
D1 0.3583 258.8663 1.5051 53.2372 8.3248 0.3350 284.9154 1.2925 58.8471 8.5895
D2 0.1205 645.2020 2.6058 53.9703 8.8808 0.7726 143.5648 0.5099 55.7352 7.8725

H1, V1, D1: horizontal, vertical and diagonal detail coefficient matrices atj = 1.
H2, V2, D2: horizontal, vertical and diagonal detail coefficient matrices atj = 2.
FD1, FD2, FD3, FD4 andFD5 are feature descriptors defined in Table 1.

Table 3: Different values of various feature descriptors atθ = 90◦ with set distanceD = 1 for j = 1 andD = 2 for j = 2.

Feature Descriptors
MIAS DDSM

Type of
ROI

Detail
coefficien FD1 FD2 FD3 FD4 FD5 FD1 FD2 FD3 FD4 FD5

Normal

H1 0.2326 479.8930 2.1199 71.5657 9.7237 0.2907 276.4500 1.8987 47.2782 8.0948
H2 0.0903 677.5727 2.8725 42.0656 8.1228 0.1745 819.9701 2.1207 98.9453 11.0805
V1 0.1969 468.5895 1.9439 60.1313 9.0849 0.1951 461.4608 2.0561 54.6023 8.7895
V2 0.1015 762.7643 2.7947 51.3033 8.8450 0.1123 675.1321 2.6809 48.5760 8.5925
D1 0.2177 442.5444 1.8138 65.2780 9.2845 0.1451 548.7622 2.2601 57.3110 8.9543
D2 0.2250 346.4965 2.2173 43.3453 7.9539 0.2515 324.4001 2.0657 47.2960 8.0953

Benign

H1 0.2011 413.7083 2.0464 55.6596 8.6787 0.9139 213.2400 0.2881 95.4910 9.9834
H2 0.0897 864.0826 2.8057 58.5130 9.2778 0.2197 270.7105 1.7934 34.3020 6.9534
V1 0.4352 241.9732 1.5906 48.3573 8.0619 0.9259 219.8802 0.2182 96.9100 9.9857
V2 0.1005 746.1557 2.8445 47.4000 8.5461 0.5974 194.7628 0.9838 50.0120 7.7476
D1 0.2291 433.3259 1.8093 65.8895 9.3106 0.7195 148.5254 0.5898 54.3786 7.8380
D2 0.1213 674.2864 2.5647 57.0645 9.0855 0.9639 130.3410 0.1285 61.9856 7.9811

Malignant

H1 0.1930 664.6917 1.9807 92.7172 10.8194 0.9127 212.2101 0.2813 95.1182 9.9746
H2 0.1234 637.6616 2.4486 56.7353 9.0446 0.3230 231.8769 1.5543 41.3890 7.4696
V1 0.5052 216.8881 1.3503 50.3845 8.0858 0.9182 222.9300 0.2372 96.7241 9.9957
V2 0.2093 506.7676 2.0243 64.7834 9.4423 0.3256 254.5963 1.4196 42.2070 7.4696
D1 0.3559 258.9083 1.5028 53.5048 8.3264 0.3324 285.0214 1.2995 58.7192 8.5893
D2 0.1279 634.4545 2.5620 53.8055 8.8830 0.7804 142.9786 0.4945 55.9823 7.8772
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Table 4: Different values of various feature descriptors atθ = 45◦ with set distanceD = 1 for j = 1 andD = 2 for j = 2.

Feature Descriptors
MIAS DDSM

Type of
ROI

Detail
coefficien FD1 FD2 FD3 FD4 FD5 FD1 FD2 FD3 FD4 FD5

Normal

H1 0.2264 480.5639 2.1465 70.6623 9.7249 0.2847 276.8162 1.9086 46.7880 8.0924
H2 0.0879 681.0941 2.8792 42.3220 8.1304 0.1485 827.6910 2.2421 94.6770 11.0822
V1 0.1864 467.7653 1.9784 60.9509 9.0844 0.1721 459.9882 2.1365 55.0801 8.7910
V2 0.0926 766.4563 2.8347 51.7463 8.8526 0.0978 671.1874 2.7181 49.0870 8.5902
D1 0.2174 443.6977 1.8201 64.9795 9.2851 0.1449 550.2200 2.2622 56.8473 8.9557
D2 0.2095 348.9067 2.2437 43.2632 7.9568 0.2114 329.7618 2.1021 44.7035 8.0979

Benign

H1 0.1974 415.2558 2.0749 54.6695 8.6772 0.9139 213.2245 0.2897 95.4060 9.9831
H2 0.0906 858.3919 2.8054 58.5568 9.2685 0.2050 271.6973 1.8368 33.2631 6.9557
V1 0.3516 241.0157 1.6931 47.6765 8.0624 0.9139 213.1512 0.2776 95.0765 9.9784
V2 0.0898 748.6347 2.8727 47.1760 8.5424 0.5371 184.2814 1.1599 47.4170 7.7424
D1 0.2249 434.0044 1.8205 65.2272 9.3105 0.7210 148.7421 0.5919 54.2596 7.8378
D2 0.1199 668.5166 2.5641 56.9308 9.0802 0.9657 130.4118 0.1256 62.1110 7.9824

Malignant

H1 0.1883 666.8222 2.0078 91.3533 10.8204 0.9123 212.2347 0.2843 95.0021 9.9747
H2 0.1233 643.4498 2.4670 56.9562 9.0486 0.3243 231.1132 1.5688 41.1360 7.4945
V1 0.4392 216.4788 1.4470 50.4909 8.0867 0.9123 214.6300 0.2834 95.1750 9.9846
V2 0.2056 494.2931 2.0431 65.5455 9.4444 0.3078 239.7369 1.5993 40.3093 7.4633
D1 0.3515 259.9105 1.5157 52.6011 8.3250 0.3352 285.1724 1.3013 58.1961 8.5885
D2 0.1197 643.0346 2.6010 53.7630 8.8819 0.7873 143.3512 0.5003 55.8630 7.8764

Table 5: Different values of various feature descriptors atθ = 135◦ with set distanceD = 1 for j = 1 andD = 2 for

j = 2.

Feature Descriptors
MIAS DDSM

Type of
ROI

Detail
coefficien FD1 FD2 FD3 FD4 FD5 FD1 FD2 FD3 FD4 FD5

Normal

H1 0.2269 480.7278 2.1466 70.6295 9.7249 0.2881 276.6600 1.9064 47.0070 8.0924
H2 0.0900 684.9990 2.8778 42.1644 8.1296 0.1502 828.8966 2.2446 94.3992 11.0817
V1 0.1861 467.8358 1.9786 60.8743 9.0849 0.1733 459.8334 2.1368 55.1521 8.7912
V2 0.0954 760.9155 2.8241 51.8240 8.8542 0.0978 671.1200 2.7155 49.0154 8.5895
D1 0.2164 443.6506 1.8209 65.1938 9.2854 0.1448 549.9213 2.2617 56.9170 8.9548
D2 0.2122 347.3934 2.2333 43.1518 7.9576 0.2160 329.5301 2.1044 44.8295 8.0979

Benign

H1 0.1970 414.9199 2.0684 54.9266 8.6774 0.9139 213.2773 0.2873 95.4790 9.9833
H2 0.0910 859.0862 2.8037 58.3728 9.2670 0.2068 271.7451 1.8327 33.4358 6.9550
V1 0.3523 240.9230 1.6918 47.7658 8.0624 0.9139 2132.0892 0.2766 95.1265 9.9782
V2 0.0901 743.2662 2.8825 47.8501 8.5424 0.5364 184.2615 1.1616 47.362 7.7424
D1 0.2239 433.9719 1.8191 65.1063 9.3110 0.7229 148.6612 0.5919 54.2346 7.8348
D2 0.1183 672.4989 2.5709 56.7228 9.0802 0.9671 130.4906 0.1244 62.0631 7.9820

Malignant

H1 0.1880 666.9464 2.0085 91.2963 10.8207 0.9123 212.2300 0.2835 95.0051 9.9747
H2 0.1227 647.4172 2.4699 56.9847 9.0494 0.3285 232.2644 1.5734 40.9761 7.4945
V1 0.4382 216.5055 1.4477 50.4490 8.0867 0.9123 214.5783 0.2840 95.1964 9.9838
V2 0.2016 492.9544 2.0538 65.8033 9.4437 0.3088 239.6123 1.6006 40.2593 7.4645
D1 0.3474 259.8169 1.5155 52.7306 8.3250 0.3358 285.1300 1.3011 58.2996 8.5887
D2 0.1165 642.1973 2.6072 53.6483 8.8819 0.7916 143.4742 0.4983 55.8124 7.8766
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(b) Benign-malignant class

Figure 11: Feature selection bytwo-sample tandF-testmethod. The reduced number of selected features (R) is obtained

at lower values of significance level (α).

Table 6: Various Numbers of mammographic images used in different phases of BPNN classifier.

Number of mammographic images

Mammogram
database

used

Mammogram
image
class

Total
number of

images
Training
(70%)

Testing
(15%)

Validation
(15%)

MIAS

Normal–
abnormal 322 226 48 48

Benign–
malignant 115 81 17 17

DDSM

Normal–
malignant 550 384 83 83

Benign–
malignant 250 174 38 38

As mentioned in the proposed model (Figure 1), the magnitudeof significance level (α) for feature selection and

number of neurons in the hidden layer (n) of the BPNN influence the performance of the classifier. It isvery difficult

to find the best significant feature set through which the classifier achieves optimal performance. Therefore, several

feature sets obtained at various values of significance level (α) are used in the classifier to find the optimum results.

In fact, for the same value ofα, the classifier achieves different performance results at the different number of hidden

layer neurons (n). In our experiments, the values ofn have been chosen as 5, 10, 15 and 20 to investigate the best

performance. It has been found that, atn = 15 with respect to differentα, the classifier attains its best performance.

Different performance measures, including sensitivity, specificity and test classification accuracy using two feature
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selection methods are presented in Table 7. It is observed that, the higher classification accuracy rates are obtained with

two-sample t-testfeature selection method for both the databases. These values are as 98.0% (normal-abnormal), 94.2%

(benign-malignant) for MIAS datbase, and 98.8% (normal-abnormal), 97.4% (benign-malignant) for DDSM database.

Table 7: Different values of performance measures of the classifier usingtwo feature selection methods withn = 15.

Performance measures (%)

normal-abnormal benign-malignant
Mammogram

Database
Selection
method

Significance
level (α) R Sensitivity Specificity Accuracy R Sensitivity Specificity Accuracy

MIAS

Two-sample
t-test

0.9 112 77.8 93.3 87.5 116 87.5 88.9 88.2

0.5 107 88.2 93.3 91.7 96 100 90.0 94.2

0.2 80 100 97.0 98.0 46 77.8 87.5 82.4

0.05 60 85.7 97.1 93.8 24 75.0 77.8 76.5

0.01 52 100 77.4 85.4 08 66.7 54.5 58.9

Two-sample
F-test

0.9 105 69.2 100 91.7 113 87.5 77.8 82.4

0.5 81 75.0 93.8 87.5 84 100 66.7 82.4

0.2 46 88.2 100 95.8 78 88.9 87.5 88.2

0.05 25 82.6 96.0 89.6 51 87.5 66.7 76.5

0.01 24 64.7 93.5 83.3 32 62.5 77.8 70.6

DDSM

Two-sample
t-test

0.9 110 93.5 86.4 90.3 109 93.3 86.9 89.4

0.5 94 91.4 83.3 87.9 60 94.1 90.4 92.1

0.2 76 100 97.9 98.8 22 100 94.7 97.4

0.05 40 100 95.1 97.6 09 92.3 96.0 94.7

0.01 30 97.8 89.4 93.9 07 93.3 91.3 92.1

Two-sample
F-test

0.9 108 93.6 84.6 89.1 105 86.6 86.9 86.8

0.5 83 93.3 89.4 91.5 77 93.3 86.9 89.4

0.2 40 100 95.1 97.6 58 93.8 90.9 92.1

0.05 18 95.6 92.1 93.9 44 86.7 91.7 89.4

0.01 11 95.4 84.6 90.3 16 92.3 88.0 89.5

We have also evaluated the performance of two feature selection methods by comparing the obtainedAUC values of

ROC curves at different magnitudes of significance level (α) with respect to the different number of hidden layer neurons

(n). A heat-map has been used to demonstrate the comparison as shown in Figure 12. It is clearly observed that, the

best values ofAUC have been accomplished with the significance level (α) of 0.2 for classification of MIAS and DDSM

datasets. One tenuous deviation in AUC is observed atα = 0.5 for benign-malignant classification in MIAS data. This

is due to some irregular tissue pattern in mammograms.

During our experiment, we compared the performances achieved by the BPNN classifier along with statistical
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Figure 12: Heat-maps ofAUCmeasurements using selective feature sets by varying significance levels (α) in two-sample

t and F-test methods with respect to different numbers of hidden layer neurons (n) in BPNN classifier.

two-sample tandF-testmethod with random forest method [23]. ROC curves obtained using the proposed scheme,

and the random forest method are shown in Figure 13. It has been inferred that the proposed scheme outperforms

the random forest method with respect toAUC measurements. Table 8 presents the comparison of the test accuracies

and AUC measurements for BPNN classifier and random forest technique. The maximumAUC values obtained by

the BPNN andt-test method are 0.9899 and 0.9504 in MIAS, and 0.9945 and 0.9761 in DDSM database for both

normal-abnormal and benign-malignant pattern classification. It is clearly observed that thetwo-sample t-testhas quite

higher-performance values in comparison to other methods mentioned for both databases.
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(a) ROC for prediction of abnormal tissues using MIAS database
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(b) ROC for prediction of abnormal tissues using DDSM database
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(c) ROC for prediction of malignant tissues using MIAS database
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(d) ROC for prediction of malignant tissues using DDSM database

Figure 13: Comparison of ROC curves of mammogram classification using proposed scheme and random forest method

utilizing optimal selected feature set.

Table 8: Comparison of optimal test accuracy rates andAUC measurements between proposed and random forest

methods.

Test accuracy rate (%) AUC measurements

Mammogram
database

used

Mammogram
image
class

BPNN and
t-test

method

BPNN and
F-test

method

Random
forest

method

BPNN and
t-test

method

BPNN and
F-test

method

Random
forest

method

MIAS

Normal–
abnormal 98.0 95.8 93.3 0.9899 0.9810 0.9277
Benign–

malignant 94.2 88.2 82.4 0.9504 0.9055 0.8371

DDSM

Normal–
abnormal 98.8 97.6 92.8 0.9945 0.9888 0.9619
Benign–

malignant 97.4 92.1 89.5 0.9761 0.9556 0.9304
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Further, a training error comparison for the proposed scheme and random forest method is shown in Figure 14 to

evaluate the training convergence. The training error of the classifier is expressed as mean squared error (mse) values

at multiple numbers of training iteration in BPNN classifierand number of growing trees in the random forest method.

The mean squared error is the average squared difference between output classes generated by the classifier and existing

actual classes. The training error curves oftwo-sample t-testmethod shows that it converges faster than other methods

for both normal-abnormal and benign-malignant mammogram classes. Finally, a comparative analysis between the

proposed scheme with other existing schemes has been made and shown in Table 9. It has been clearly observed that

the proposed scheme performs better classification than other schemes with respect to different performance measures.

However, the proposed scheme requires an additional feature selection phase using statistical tests unlike random forest

and DWT methods, which are simple to implement.
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(a) For normal-abnormal ROI classification (MIAS database)
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(b) For normal-abnormal ROI classification (DDSM database)
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(c) For benign-malignant ROI classification (MIAS database)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Epochs / Number of trees

E
rr

o
r

 

 
two−sample t−test
two−sample F−test
random forest

(d) For benign-malignant ROI classification (DDSM database)

Figure 14: Training error comparison by proposed neural network using two-sample tand F-test feature selection

methods and random forest classification method.
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Table 9: Performance comparison by different methods with the proposed scheme.

Method reference Techniques Classification performance measure

Prathibha et al. (2010) [8] DWT, AUC = 0.95
Nearest negihbor classifier (normal-abnormal)

Buciu et al. (2011) [9] Gabor wavelets and PCA, sensitivity=97.56%, Specificity=60.86%
SVM classifier AUC = 0.79

(normal-abnormal)
sensitivity=84.61%, Specificity=80.0%
AUC = 0.78
(benign-malignant)

Mutaz et al. (2011) [16] GLCM, Sensitivity=91.6%, Specificity=84.17%
ANN classifier (benign-malignant)

Jona et al. (2012) [17] GLCM, Accuracy=94.0% (normal-abnormal)
SVM classifier

Görgel et al. (2012) [10] DWT, Accuracy rate=84.8%
SVM classifier (benign-malignant)

Görgel et al. (2013) [11] SWT, Accuracy rate=96.0%
SVM classifier (normal-abnormal)

Accuracy rate=93.59%
(benign-malignant)

Proposed scheme Combination of sensitivity=100%, Specificity=97.0%
DWT and GLCM, Accuracy=98.0%,AUC = 0.9899
BPNN (normal-abnormal,MIAS)

sensitivity=100%, Specificity=90.0%
Accuracy=94.2%,AUC = 0.9504
(benign-malignant, MIAS)
sensitivity=100%, Specificity=97.9%
Accuracy=98.8%,AUC = 0.9945
(normal-abnormal, DDSM)
sensitivity=100%, Specificity=94.7%
Accuracy=97.4%,AUC = 0.9761
(benign-malignant, DDSM)

4. Conclusion

In this paper, we propose an efficient mammogram classification scheme to support the decision of radiologists.

The scheme utilizes 2D-DWT and GLCM in succession to derive feature matrix form mammograms. To select the

relevant features from the feature matrix, botht-test andF-testare applied. It is observed that, t-test based relevant

features achieves higher classification accuracy with BPNNthan that ofF-test. To validate the efficacy of the suggested

scheme, simulation has been carried out using MIAS and DDSM databases. Its competent schemes are also simulated

in the similar platform. Comparative analysis with respectto accuracy andAUC of ROC reveals that the suggested

scheme outperforms other schemes. An accuracy of 98.0% and 94.2% have been obtained for normal-abnormal and

benign-malignant respectively in MIAS database. The similar parameters are 98.8% and 97.4% are achieved in DDSM

database.
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