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Abstract: The present work deals with the development of a horizontal vibratory rod mill 
for mechanical alloying and synthesis of nanostructured materials. A simplistic model for 
optimization of milling efficiency has been developed, and the optimal operating 
parameters have been theoretically identified. The significance of developing such a mill 
lies in the possibility of high temperature mechanical alloying, which can open up new 
vistas for synthesis of nanoscale alloys.  
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INTRODUCTION 
Increased demand for high performance materials has been the key driver for modern day 

materials research. It is now an established fact that materials processed under conditions far away from 
equilibrium possess extraordinary properties which render them more useful than their conventional 
counterparts. One of the most common non-equilibrium processing techniques is high-energy mechanical 
milling. Mechanical alloying involves alloying of the powders at elemental level. The mechanical milling 
technique was first used effectively for the purpose of alloying by Benjamin, in 1966 [1]. 

 This technique has been used effectively to provide a large number of metastable materials with 
unique properties [2-4]. Some of the advanced materials synthesized by these routes include 
supersaturated solid solutions, amorphous and nanocrystalline materials, as well as metastable 
intermetallics. Amongst the materials in the last category, namely metastable intermetallics, transition 
metal silicides enjoy tremendous technological importance due to their excellent structural and electronic 
properties. One such material is nickel silicides. Nickel silicides have been found to exhibit excellent 
low-resistant ohmic contacts and also as contacts for Schottky barrier infrared detectors [5-10].  

However, the high melting temperatures of these materials present considerable difficulties 
when processed by conventional routes. In this context, mechanical alloying has the potential to emerge 
as an attractive alternative for processing of silicides. The effect of temperature on phase selection during 
milling is still a grey area. The presence of a large number of congruent as well as non-congruent melting 
intermetallics, some of them very close to each other in the binary phase diagram offer excellent scope 
for fundamental studies as a function of milling temperature.  

The central problem addressed in the present work is to a mill whose geometry would be 
amenable to be fitted to a furnace and thus be adapted for high temperature milling. Efforts have been 
made to elucidate this issue from a theoretical perspective.  
 

PHYSICS OF MILLING 
The horizontal vibratory rod mill 

The horizontal vibratory rod mill has been designed keeping in view the geometry which would 
be compatible with a standard furnace. The standard ball mills like the SPEX, P5 or P7 all have 
complicated motions which prevent a suitable implementation of heating system. The inherent design of 
the present mill calls for the use of rods as milling media as opposed to balls.  
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 The mill has two different motions – rotation about a horizontal axis and vibration in the vertical 
plane. The role of vibration is two-fold – on one hand it helps in disturbing a perfect rotary motion, 
ensuring that milling media do get detached from the vial wall and crash down; on the other hand they 
also result in rotation of the rods about its own axis. Consequently, due to this rotation, the entrapped 
powders get sheared as well. This presents a dual advantage of having shear as well as impact conditions. 
 The vibrations are generated by a cam fitted to the ‘vibration motor’. The cam, in course of its 
motion lifts the roller directly on top of it. The roller in turn is connected to a platform on which the 
‘rotary motor’ is mounted by means of a shaft. The two platforms are interconnected by four springs as 
shown in the figure below. Ultimately, it is the force resulting from the spring deformation which results 
in the vibrations. The mill is shown schematically in Fig.1. 

               
Fig 1. Block diagram of the horizontal vibratory rod mill. 

 
Mathematical formulation of rod motion 
 A Cartesian reference system is chosen. The coordinate system is centered at the rotor of the 
motor providing vibrations.  
 
Kinematic equations 
 The entire motion is considered in an x-y plane, on a cross section of the vial perpendicular to its 
axis of rotation. The reference frame is centered at the rotor of the vibration motor. The rod is assumed to 
move on the vial wall under no slip conditions. The equations have been developed for a two-
dimensional case considering a cross section perpendicular to the central axis of the vial, as shown in fig. 
2. Furthermore, it is assumed that due to the high frictional forces between the rod and the vial wall, 
there is no relative slipping prior to the detachment event.  

 
Fig 2.  Defining the problem 



 
Concentrating only on the rotation of the rod while sticking to the vial walls around the vial 

axis, the following equations may be written –  

 )cos(0 trx rω=        1a 
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where r0 = rv – rr  
Here (x,y) denotes the coordinates of the rod. rv and rr are the radii of the vial and the rod respectively. 
ωr denotes the angular velocity with which the vial rotates and t is the time elapsed after initiation of rod 
motion. ωv is the angular velocity of the cam (vibration motor) and l is the distance between the centre of 
the cam (vibration motor) to the centre of the vial when it is at the highest point. 
The velocity components of the rod may be given as  
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Similarly, the acceleration is given by  
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The detachment event 
 The condition for detachment event can be found out by equating the forces acting on the rods 
at the instant, with the vial reaction, and consequently the frictional force, being set to zero. Forces acting 
on the rod at this instant are shown in the free body diagram of the rod in fig 3. If z be the spring 
deformation, equating the components of the forces in the radial direction, we get  
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Also, from the fundamental equation of dynamics we get  
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The acceleration of the rod just at the moment of detachment is given by 3. This can be resolved along 
the radial direction and used in eqn. 5. Resolving the acceleration components along radial direction, we 
get  
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Fig 3.  Free body diagram of the rod 

 
Substituting the values of vial reaction and rod acceleration in eqn. 5, and realizing that θ=ωrt, α=ωvt, 
we get 
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Simplifying the above expression,  
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The above equation defines the angle of detachment in terms of the other milling parameters. Since the 
value of sinθ lies in the interval [-1,1], it is clear that detachment will not occur when the RHS value in 
the eq 7 falls outside the interval. So, considering the first case, detachment will not occur if sinθ > 1 or  
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 For obtaining real values from the above expression, the numerator should be positive. Hence 
we arrive at the relation 
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This condition may be used to optimize the rotation of the individual motors along with the spring 
stiffness constant. Clearly, all other things being constant, the RHS in the above expression takes the 
minimum value when sinα = -1 and maximum when sinα = 1. This suggests that detachment event 
would be different for different cycles. However, it would be reasonable to assume that over a 
sufficiently large period of time, a sequence of cycles will be repeated, and hence one can proceed with 
the averaged expression as representative of the entire process. The fluctuating value of the RHS implies 
that there is a chance that for an arbitrary value of ωr, one may have a case where detachments occur 
during some cycles, but not for others. In order to avoid such a situation, one should ensure that 
detachment occurs even for the minimum value of the RHS expression. This can be done by setting the 
condition ωr remains less than the RHS expression with sinα set to -1 or α set as (4p+3)π/2, where p 
is a whole number. Hence the condition for having detachment in each cycle is  
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The second case arises when sinθ < -1. Since the numerator in the RHS of the eqn. 7, for a negative 
value of sinθ, the denominator should be negative. Proceeding with a negative value of denominator 
and using the inequality sinθ < -1, it is clear that this reduces to the relation 8. 
 
Energy transfer in the mill 
 From the kinematic equations and the detachment criteria derived above, the collision 
coordinates may be described, and the energy transfer at the instant of collision calculated. 
 
Collisions 
 The relatively large size of the rods, both in length as well as diameter, ensures almost complete 
filling of vials. Hence, unlike the popular ball-milling models, one cannot neglect the collisions between 
the milling media. In fact, added to this factor, the rotation of the rods about their own axis lends a large 
component of shear to the entire process. Based on symmetry, one may consider all the rods as 
equivalent (prior to detachment). Hence, considering the full packing of vial doesn’t occur, and there is 
always some clearance, we can safely ignore the interaction between consecutive rods moving around the 
vial. Hence, while modelling of collisions, one has to account for the possibility of the collisions between 
the rods themselves, as well as the detached rod and the vial wall, while ignoring other interactions.  
 If the net time of flight is tf, then one can get the collision coordinates by solving the equations 
of motions of all the rods. Since the only force acting on the rod once it leaves contact with the vial wall 
is gravity, the equations, for the detached rod would be  
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where xd and yd are the detachment coordinates which may be easily found out from eqn. 1 once the 
value of θ and α are known. These angular values, of course, become known as soon as the other 
parameters, e.g. angular speed, rod mass, etc is known. 

Assuming the milling to be carried out with n rods, the angular relation between the detached 
rod, when it is just about to get detached, and the ith rod is  
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Here, the detached rod has the value i=1. 
The eqn. 11 can then be used in tandem with eqn. 10. Hence the coordinates of the i th rod during 
collision is given by 
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It further follows that the closest distance of approach between the two rods would be equal to the sum of 
their radii reff. The rods being dimensionally equivalent, reff amounts to their diameter 2rd. This leads to 
the relation 
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The equations 10, 12 and 13, when solved simultaneously will give the collision coordinates. However, 
the transcendental nature of these equations precludes an analytical solution, and hence an iterative (with 
respect to time) numerical approach is required. In such an approach, the equations 10 and 12 will be 
evaluated after each time step, and subjected to the following check 
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If this criterion is satisfied, then it is implicit that collision has occurred in the time step under 
consideration, and the collision coordinates can be given by the average of the coordinates of the two 
rods at the start and at the end of the time step under consideration. The iteration scheme is then broken. 
If the condition is violated, it means that collision has not occurred, and the iteration has to continue. 
 In the case of collision between the detached rod and the vial wall, a similar approach may be 
adopted, with minor modifications. Instead of considering an i th rod, we need to consider the 
circumference of the vial to be composed of q arcs f equal length. The degree of accuracy would be 
higher for larger q values. The arc which is touched by the rod as it leaves contact would then be 
considered as the 1st arc, and the other arcs would then be numbered accordingly. Suppose, during the 
collision, the detached rod hits the jth arc, the collision coordinates for the rod will be given by eqn. 10. 
The coordinates of the arc will be given by an equation similar to eqn. 12, with slight modifications. The 
new expression will then be given by  
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The closest approach between the rod’s center and the point on the arc would be attained during the 
collision and would equal the rod’s radius. Hence, we have the condition 
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In principle, the simultaneous solution of eqns. 10, 15 and 16 should describe the collisions. However, 
once again due to the complex nature of the equations involved, we need to resort to a time-iterative 
numerical approach, with the following check being performed at the end of each time step. 
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 If this criterion is satisfied, then it is implicit that collision has occurred in the time step under 
consideration, and the collision coordinates can be given by the average of the coordinates of the two 
rods at the start and at the end of the time step under consideration. The iteration scheme is then broken. 
If the condition is violated, it means that collision has not occurred, and the iteration has to continue. 



 
Impact frequency and energy  
 The average frequency of the impacts is given by 
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where p is the average number of collisions per cycle. For the sake of simplicity, assuming a reasonable 
high value of ωr, p can be taken as equal to 1. 

Assuming the collisions to be plastic, it can be assumed that there is a complete transfer of the 
kinetic energy. Due to the small diameter of the vial, the vertical movement of the rods would be less, 
and the contribution of the gravitational potential energy would be negligible. In such a case, the energy 
transferred would be given by  
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Shear forces acting on the powders 
 Unlike ball mills, the larger contact area of the rods results in generation of shear forces in 
addition to the impact. In fact, it is believed that shear is the predominant mode in a rod mill. The shear 
forces may come into the picture in two ways. Firstly, the shearing may be manifested due to the motion 
of the rods against the vial walls. Secondly, they may arise due to the rubbing action between the two 
colliding rods. In this section we evaluate the shear forces acting on the powders due to milling. 
 
Shearing of powders due to rod-rod contact 

The force that acts is only the gravity force. Due to the spinning of the balls there will be a 
tangential (shear) stress acting on the powder particles entrapped between the two colliding rods. The 
shear stress will then be given by 
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Where    µ = coefficient of friction between rod and powder particles,  pr = pressure in the radial 

direction, A = contact area, Wr = component of weight of the falling rod in the direction of the line 

joining the rod centers (fig.4). 
Since W is small, the shear stress produced thus will be small. 

                      
                                    Fig 4. Shearing of powders due to rod-rod collisions 
Shearing of powders due to rod-vial contact 

Since the rod sticks to the vial wall due to a large centrifugal force, the contact of rod with the 
vial wall may be assumed to be of Hertzian type. 
The maximum pressure in this case occurs at the middle length of the rod and is given by 
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And the average pressure is given by 
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where Nc is the normal force between the rod and the vial wall (i.e. the centrifugal force mω2r, m is 

mass of rod) and b is the half length of Hertzian contact given by 
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where ν1, ν2 are the Poissson’s ratios of the rod and vial materials respectively, E1, E2 are the 

modulus of elasticity of the rod and vial materials respectively, and  

vr RRr
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The average shear stress due to rotation of the vial during the contact period of the rod with the vial wall 
is 

 avp.µτ =         25 

where µ is the coefficient of friction between the rod-powder and vial-powder. 
There will be one more component of shear due to the spinning of the rod (caused by the couple 

from the spring force). This is given by 
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Replacing the value of z, we get the expression  
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The shear stress can then be obtained by substituting the values of α and θ at the collision points. 
 

RESULTS AND DISCUSSIONS 
 The mechanics of the model can be used to develop a number of predictions. These are 
discussed below. 
Estimation of maximum permissible rotational speed 
 The basic aim of the model is to predict the maximum allowable rotational speed at which the 
detachment event can occur, and consequently the energy transfer can be improved upon. This value 

critical value of rω  can be estimated using the relation 8. The variation of rω  with vω  is shown in fig. 

5. While it is evident that increasing vω  has an effect on a larger permissible value ofrω , it is not too 

effective. This may be attributed to the fact that the vibration is transmitted through the spring, and the 
spring force kz has a relatively low value due to the small value of the vibration amplitude.  
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Fig. 4.8 Relation between the vibration frequency       Fig. 4.9 The relation between sinα and the 
and the maximum permissible rotation speed.              vibration frequency 

 
The cam design 
 It is to be noted while plotting the above relation between rω  and vω  we have used “minimum 

permissible” values of sinα determined in relation 9. The plot for the minimum permissible values of 



sinα and the vibration rpm is shown in the fig.6. It is seen that the values remain roughly close to zero. 
This implies that half of the values of α are suitable for having any collisions at all. By and large, the 
values of α which lie in the third and fourth quadrant would be unsuitable. Consequently, it is felt that 
the present cam design doesn’t result in maximum efficiency.  
 This situation can be improved by a double acting cam, which would be shaped in form of an 
ellipse. Such a cam design would ensure that the only values that α can ever take in the mill are those in 
the [-mπ,+ mπ] range.  A double acting cam would ensure that effectively, α never goes outside the   
[-mπ,+ mπ] interval. This ensures that the criterion for “minimum permissible” value of sinα is 
always met, and the possible number of collisions gets doubled. 
 
Shearing of the powders: component due to the vibrations 
 The major mechanism operating in rod milling is shear. Considering the geometry of the present 
mill, it is obvious that in addition to the standard shear components which are present in other rod mills, 
there is an additional shearing due to the spinning of the rods induced by vibrations. The shear stresses 
on the powders due to this spinning can be estimated using relation 27.  
 

CONCLUSIONS 
The phase fields evolving during ball milling differ significantly compared to the equilibrium 

phase fields. Size reduction of the crystallites to nano levels introduces a large number of interfaces. 
Hence the phases with lower interfacial energy are favored. Consequently, the non-congruent melting 
intermetallics get bypassed in favor of the congruent melting intermetallics. With the current mill 
geometry, rod milling seems to be a better option as opposed to ball milling.  

Maximum milling efficiency may be realized using a proper combination of ωr and ωv. 
However, an arbitrarily large vibration frequency can’t be chosen, since high frequency vibrations would 
prove detrimental to the mill. Based on the model, it is suggested that an operating condition of ωr = 200 
rpm and ωv = 800 rpm would be the optimum keeping in mind the dual requirements of attaining a high 
energy transfer and preserving the structural integrity of the mill. The lack of alloying in the vibratory 
mill is ascribed to operating the mill at conditions which are reasonably far away from the optimum. In 
fact, as calculations in section 4.4.1 demonstrate the present operating conditions results in pinning of the 
rods against the vial since the rotation rpm is well above the maximum permissible frequency for even a 
single detachment event over an arbitrarily large number of cycles. This prevents any impact or shear due 
to rubbing / collisions of the rods against one another.  

The milling efficiency may be further improved by modifying the cam’s shape from circular 
(which is essentially “single action”) to elliptical (which would be a “double action” case). The 
eccentricity of the ellipse should be chosen according to the required vibration amplitude. It has been 
demonstrated that the force transmitted through the spring is not too effective in initiating the detachment 
event by disturbing the rod’s motion. Hence possible, scope exists for enhanced amplitude. The 
restriction to the proposed increase of the amplitude would once again be restricted by need for 
preserving the structural integrity in addition to the constraints imposed by the furnace size. 

Shearing of the powders is seen to be strong functions of the Hertzian length. The length in turn 
is dependent on the radii of the rods and the vial as well as their elastic modulii. In this context, it is felt 
that greater vial filling (or larger rod size) would increase the shearing. However this would obviously 
come at the expense of impact. Also, based on the expression, it is felt that materials like tungsten 
carbide would be more suitable for the vial and the rods. 
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