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ABSTRACT 

Adaptive equalisers are characterised in general by their 
structures, the learning algorithms and the use of 
training sequences. This paper presents a novel 
technique of improving the performancc of 
convcntional multilayer perceptron(MLP) based 
decision feedback equaliser (DFE) of reduced structural 
complexity by adapting the slope of the sigmoidal 
activation function using fuzzy logic control technique. 
The adaptation of the slope parameter increases the 
degrees of freedom in the weight space of the 
conventional Feedforward Neural Network (CFNN) 
configuration. Application of this technique reduces the 
structural complexity of a conventional FNN equaliser, 
provides faster learning and significant performance 
gain. 

1. INTRODUCTION 

The distortions introduced in the communication 
channel cause the transmitted symbols to spread and 
overlap over successive time intervals, resulting in a 
phenomenon, known as Inter Symbol Interference (ISI). 
In addition to ISI, the transmitted symbols are subjected 
to other impairments such as thermal noise, impulse 
noise and non-linear distortions arising from the 
modulation and demodulation process, cross taIk 
interference, the use of amplifiers and converters etc, 
Neural network based equalisers have been proposed in 
recent past which are very efficient and provide 
significant performance improvements over the 
conventional ones. A multilayer FNN architecture 
consists of a number of processing neurons organised in 
layers and is capable of providing compiex the non- 
linear decision boundary associated with the optimal 
Bayesian equaliser. The performance of the FNN 
equaliser can be enhanced by incorporating decision 
feedback. It is shown that the FNNDFE as shown in 
Fig. I using the Back Propagation (BP) algorithm [2] 
gives a significant improvement in performance. 

The slope parameter of the sigmoidal 
activation function of individual neuron in a multilayer 
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Fig. 1 A conventional FNN equaliser 

neural network paradigm plays an important role as it 
decides decision-making ability of that node. 
Performance of conventional MLP neural equaliser can 
be improved by tuning the slope of the activation 
function along with weight updation and in the 
proposed work this parameter has been adapted using a 
fuzzy logic controller technique [3]. While the BP 
algorithm takes control by recursively updating the 
network weights and threshoId values, the fuzzy 
controller approach adjusts the slope of the sigmoid 
activation function of all the nodes of the network at the 
same time, thus making the proposed structure a hybrid 
one for adapting the network parameters. Further, the 
training time generally depends upon the complexity of 
the underlying process. Hence, the proposed work is 
aimed at reduction of the training time for a given 
neural network topology. The improved performance in 
the simulation results is a clear indication of the 
efficacy of the proposed technique. 
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2. DESCRIPTION OF THE PROPOSED METHOD in order to train the network. However, there are many 
other parameters like slope of the sigmoidal activation 
function, learning-rate parameter for synaptic weights, 
thresholds and momentums etc., which can also be 
tuned to enhance the adaptability o f  the network. In the 
present research work attempt has been made to adapt 
the slope of the sigmoid activation function only using 
the fuzzy logic controller approach to design a fuzzy 
tuned FNN (FZTUNFNN) equaliser. The fuzzy Iogic 
controller technique [3,4] is applied to determine the 
amount of correction needed for the slope of the 
sigmoidal activation function at each node of the 
network. Basically a hzzy  controller evaluates the 
change in the control action based on the information 
regarding error and rate of change of error at the 
process output. The same concept is adopted in the 
proposed work. 

The node error term known as ~ j " ( ~ ) a n d  its 

The MLPDFE can be trained in a supervised manner 
using the Back Propagation algorithm. 
At time index n, the mxl received signal vector 
r(n)=[r(n), r(n-l), ..., r(n-m+l)] and n b x l  decision 
signal vector [S"(n-d-l), i(n-d-21, ... , ŝ  (n-d-nb)] are 
fed into the feedforward filter and feedback filter of the 
decision feedback equaliser respectively. The signal at 
the input layer of the decision feedback equaliser can be 
represented by a (m + nb) x 1 vector as 
x(n) = [ r(n), ?-(nil), ...., r(n-m+l); i (n-d-l), 

...., 3 (n-d-4)]T (2.1) 
The final estimated output signal y(n) at time index n, 
can be calculated as follows [I]. 

rate of change - 
A&:(n) = 8:''(n) -8,!"(n - 1) (2.6) 
are fed into the fuzzy controller block as shown in Fig. 
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+ w;;"(n)qn - d - p )  + fh;"(n) 
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(2.2) 
where all F ' s  denote sigmoidal activation functions in 
the neurons. NI and N2 are the number of neurons in the 

decision device can be dcfined as 

2. The output generated from the control block A+(n) is 
used to update the slope of + (n )  of the sigmoidal 

. activation function using the reIation 
two hidden layers respectively. The output of thc 4 (n+l  j = Q, (n) + A+ (n) (2.7) 

if y ( n ) ~  O 
otherwise i ( n - d ) =  

The ws (weights) and ths (threshold levels) in Equation 
(2.2) are valucs specified by the training algorithm, SO 
that after training is completed the equaliser will self- 
adapt to the changes in the channel characteristics 
occurring during transmission (decision directed mode). 

The idea behind this work is that for a fully 
trained network, the error at each node is to be 
minimized. Under such circumstances thcre will be no 
further change in the synaptic weights or the threshold 
values of the network. It confirms the basic concept 
embedded in BP algorithm that the change in synaptic 
weights and thresholds is only possible if an error term 
of jth neuron in I'h layer $'(n) exists in the nodes 
because the mathematical equations goveming the 
updation of the above parameters are expressed as 

dw,('((n+l) = q q('(n)y, '""(n) + ct Aw'lj('(n) (2.4) 
and 

Fig. 2 Sigmoid slope change by fuzzy logic approach 

3. SIMULATION STUDY 

The simulation model of an adaptive equaliser 
considered is illustrated in Fig. 3. .In the simulation 
study the channcl under investigation is excited with a 
2-PAM signal, where the symbols are extracted from 
uniformly distributed bipolar random numbers { -  ] , I ) .  
The channel output is then contaminated by an AWGN 
(Additive White Gaussian Noise). The pseudo-random 
input and noise sequences are generated with different 
seeds for the random number generators. The power of 
additive noise has been taken as 0.01, representing a 
SNR of 2068. The BER performances for each SNR are 
evaluated based on IO' more received symbols (test 

Hence the error term at individual (neuron) of samples) and averaged over 20 independent 
realizations, after training is completed with sequences 
of 1000 samples. The bit error rate is obtained with 
detected symbols being fed back, as this technique 
presents a more realistic scenario in comparison with 
correct symbol feedback. Further, in order to prove the 

where q is the leaming-rate parameter, a is the 
momentum parameter, 0 is the level 
adaptation gain and layer I E [ 1,2,. . ... L] .  

a neural structure i s  to be minimised to get a pseudo- 
optimal solution. In a neural network paradigm the 
synaptic weights and threshold values are generally 
considered as free parameters in conventional sense, 
which are adapted using appropriate leaming algorithms 
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robustness and consistency in performance of the 
proposed neural structure, equalisation of two typical 
channels is simulated. The advantage gained in terms of 
performance enhancement and faster training by the 
proposed fuzzy tuned F N N  equaliser can be clearly 
demonstrated by comparing its BER performance with 
a CFNN structure trained with more number of 
samples. The proposed structures in the FNN 
framework reported yieId superior result in terms of 
BER performance, provide of faster learning (i.e., 
exactly half the number of training samples in 
comparison to a conventional FNN equaliser) and is of 
reduced structure. 
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Fig. 3 Simulation model of an adaptive equaliser 

The first example used is two-tap simple minimum- 
phase channel [ I ]  defined by its transfer function 

Hl(z)=l+O.k-’ (2.8) 

Fig. 4 illustrates the BER performance comparison of 
the proposed structures (a two layer (1,l) structure] with 
a conventional FNN {a two layer (2,l) structure 
configuration) and the optimal Bayesian DFE in terms 
of BER performance. The configuration of a 
conventional FNN DFE is set to m=2 (two samples in 
the feedforward section), nh=l(one sample in the 
feedback section) and d=l (transmitted sequence delayed 
by one sample).The proposed FZTUNFNN equaliser is 
able to provide a performance gain of 2 dB at BER level 
of lo4 over conventional FNN one and it is close to the 
optimal Bayesian Equaliser [ 5 ]  performance. Even 
inceasing the training samples to 2000 for a 
conventional FNN equaliser, there is no signifiacnt 
improvement in pcrformance. 

Another example studied is a five-tap deep-null 
communication channel [61, which is characterised by 
the following transfer function. 
Hz(z) = 0.9413 + 0.3841 z-’+ 0.5684 z-’+ 0.4201z”+z4 

(2.9) 

Fig.5 depicts the significant BER performance 
enhancement by all the proposed equaliser (a two layer 
(1,l) structure} when compared with a CFNN one (a 
two layer (5,l) structure} with parameters chosen as 
m=5, nb=4 and d=4 after being trained with 1000 
samples. The proposed FZTUNFNN equaliser is able 
to provide better performance in terms of the minimum 
SNR to get a prefixed error probability level (18.5 dB 
against 20 dB to obtain BER=lO“) and is close to the 
optimal Bayesian performance in comparison to the 

conventional FNN equaliser. It is also observed that the 
performance of a conventional FNN equaliser trained 
with 2000 samples is still poor in comparison to the 
proposed equaliser. 

Signal 10 Noise Ratlo.(dB) 
(-b-CFNN 4- FZTUNFNN eCFNN(2000 samples) -OPTIMAL\ 

Fig. 4 BER performance comparison of the proposed 
equaliser with conventional FNN for channel H l ( z )  
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Fig5  BER performance comparison of the proposed 
equaliser with conventional FNN for channel H2(z) 

4. CONCLUSION 

This paper presents a novel Fuzzy tuned 
FNN (FZTUNFNN) equafiser designed on an FNN 
platform, where a fuzzy logic concept is empIoyed to 
tune the slope (4) of the sigmoid activation functions at 
all the nodes. The proposed equaliser structure on FNN 
framework is highly efficient in terms of BER 
performance and faster learning in comparison to a 
conventional MLP structure. Also the proposed 
equaliser with a reduced structure architecture provides 
a performance level close to optimal Bayesian 
equaliser. In addition to it, the fuzzy tuned equaliser in 
FNN domain comprising of reduced structural 
complexity is suitable for easy real-time 
implementation point of view. 
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