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Abstract

The flow due to uniform rotation of a viscous fluid at a larger distance from a rough stationary
disk is investigated numerically. A uniform suction or injection is applied at the surface of the
disk. The system of fully coupled, nonlinear similarity equations is integrated accurately for full
range of flow parameters. Effects of wall roughness, suction and injection on the boundary layer
are discussed with relevant physical interpretations.
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1 Introduction

Steady swirling flow of a viscous, incompressible fluid near an infinite stationary disk (Bödewadt
flow) is one of the few problems in fluid dynamics for which the Navier-Stokes equations admit an
exact numerical solution, subject to the conventional no-slip boundary conditions. Swirling flows
have many interesting features and immense industrial applications. Boundary layer problems in
rotating flows are unique, as for many applications a strong interaction exists between boundary
layer and the outer flow. Sharp gradients in the centrifugal force across the boundary layer can
generate high velocities along the bounding surfaces and this results secondary flows. The interac-
tion of rotating flow with a stationary rough surface has been the subject of recent study by Sahoo
et al [2]. Unfortunately, in this work the effect of suction and injection on the momentum boundary
layer was overlooked. It was pointed out by Schwiderski and Lugt [7] that the non-existence of a
proper solution to the boundary value problems for rotating flows of von Kármán and Bödewadt is
an indication that in reality the flow is separated from the disk surface. The simple ’Tea cup exper-
iment’ described in [2], displays very clearly a separation of the fluid from the bottom of the cup.
Application of the suction is an effective device to reduce the chances of separation. With no-slip
boundary conditions the momentum and the displacement thickness should decrease as the suction
velocity increases. The objective of this paper is to study the combined effects of velocity slip and
suction (or injection) on the momentum boundary layer. The effective direct multiple shooting
method has been adopted to solve the resulting system of highly nonlinear similarity equations.
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2 Formulation of the problem

One considers a viscous fluid occupying the space z > 0 over an infinite stationary disk, which
coincides with z = 0. The motion is due to the rotation of the fluid like a rigid body with constant
angular velocity Ω at a larger distance from the disk. The flow is described in the cylindrical
polar coordinates (r, φ, z). In view of the rotational symmetry, ∂

∂φ ≡ 0. Let V = (u, v, w) be the
fluid velocity vector. Using the well known von Kármán [4] transformations u = rΩF (ζ), v =
rΩG(ζ), w =

√
ΩνH(ζ), z =

√
ν
Ωζ, p − p∞ = −ρνΩP and following [2], the equations of

continuity and motion take the form:

dH

dζ
+ 2F = 0, (2.1)

d2F

dζ2
−HdF

dζ
− F 2 +G2 = 1, (2.2)

d2G

dζ2
−HdG

dζ
− 2FG = 0, (2.3)

dP

dζ
−HdH

dζ
+
d2H

dζ2
= 0 (2.4)

which has to be solved subject to the following partial slip boundary conditions [2, 3, 5]:

F (0) = λF ′(0), G(0) = ηG′(0), H(0) =
W0√
Ων

= W,

F (∞)→ 0, G(∞)→ 1. (2.5)

where λ, η are non-dimensional slip parameters and W0 is the is the uniform suction (W0 < 0) or
injection (W0 > 0) velocity.

3 An exact numerical solution

There is no doubt that the present problem can be solved by a shooting method [3, 5]. However,
there are some drawbacks in the single shooting method. For a highly nonlinear system of equations,
the initial guesses must be chosen very carefully. Initial values that are chosen slightly off the true
solution may lead to singularities or breakdown of the method. Here, one has adopted the direct
multiple shooting method to solve the system of nonlinear differential equations (2.1)-(2.3) subject
to slip boundary conditions (2.5). Subsequently, Eq. (2.4) can be integrated directly to get the non-
dimensional pressure P . A finite value large enough has been substituted for ζ∞, the numerical
infinity. The whole domain of integration [0, ζ∞) has been divided into subintervals by introducing
additional grid points ζ0 = 0 < ζ1 < ζ2 < . . . < ζN = ζ∞. The aforementioned system of equations
can be written as a system of five first order liner equations. Let:

y1 = F, y2 = G, y3 = H, y4 = F ′, y5 = G′ (3.1)
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Eqn. (2.1)-(2.3) can be rewritten as:

dy1

dζ
= y4; y1(0) = λs1

dy2

dζ
= y5; y2(0) = ηs2

dy3

dζ
= −2y1; y3(0) = W

dy4

dζ
= y3y4 + y2

1 − y2
2 + 1; y4(0) = s1

dy5

dζ
= y3y5 + 2y1y2; y5(0) = s2 (3.2)

The initial guesses for yi at each nodal points are borrowed from [2]. The solutions obtained in
each interval are pieced together to form continuous trajectories of the velocity profiles. Utmost
care has been taken while refining values of the missing initial guesses s1 and s2 by the Broyden’s
method [8].

4 Results

The velocity profiles for the Bödewadt flow exhibit oscillations unlike the von Kármán one. The
oscillations occurring in the boundary layer when the fluid rotates near a stationary disk can be
explained in the following manner. The radial inflow, induced by the delay of the tangential velocity
in the vicinity of the stationary disk, tends to conserve the angular momentum of the flow and thus
to increase the tangential velocity with decreasing radius. For an overshoot, radial convection of
the angular momentum near the disk must be strong enough to more than balance the dissipation
of angular momentum caused by the wall shear. This inward radial convection of surplus angular
momentum is possible as long as the distribution of circulation in the outer flow increases with
increasing radius. A local overshoot in the tangential velocity increases the centrifugal force locally
which then tends to induce a radial outflow. This radial outflow convects an angular momentum
defect to force an undershoot in the tangential velocity, and the above process is repeated to yield
oscillatory approach to infinity.

Figs. 1-3 display the effects of injection and suction on the radial velocity component F in
presence of slip. It is evident that injection enhances the oscillation in the velocity profiles, which is
significant in absence of slip (λ(= η) = 0). On the other hand, suction dominates oscillations in the
velocity profiles. For the no-slip case, Bödewadt’s solution shows that the boundary layer effects
extend out to about ζ = 8. But it is evident from all figures that injection increases the boundary
layer thickness and suction has an opposite effect. Variations of transverse velocity profiles with
slip and in presence of suction/injection are shown in Figs. 4-6. It is clear that in case of no-slip,
G assumes its asymptotic value 1 far away from the disk surface with small injection velocity.
However, even in presence of injection, the boundary layer thickness decreases with an increase in
λ. Axial velocity profiles are plotted in Figs 7-9. These figures also depict that in presence of slip,
suction and injection have substantial effects. Finally, the variation of the moment coefficient, Cm
with W is plotted in Fig. 10. Cm = −πG′(0)√

R
is the measure of torque required to maintain the

disk at rest. It is interesting to find that Cm decreases in magnitude when W changes its sign
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from negative to positive and attains the value zero after a critical value of W . This critical value
depends on the slip parameter λ(= η).

5 Concluding remarks

In this note, one has adopted an effective multiple shooting method to obtained an exact numerical
solution to the resulting system of fully coupled and nonlinear differential equations, arising due
to the swirling flow of a viscous fluid near a rough infinite stationary disk. The conventional no-
slip conditions are replaced by partial slip boundary conditions. A uniform suction/injection (W )
velocity is applied at the surface of the disk. It is observed that even a small value of injection
enhances the oscillation in the velocity profiles and increases the boundary layer thickness. Whereas,
both suction and slip dominates the oscillations and decrease the boundary layer thickness. The
moment coefficient Cm becomes zero after a critical value of W .
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Figure 1: Variation of F with
λ(= η) when W = 0.5.
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Figure 2: Variation of F with
λ(= η) when W = 0.
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Figure 3: Variation of F with
λ(= η) when W = −0.5.
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Figure 4: Variation of G with
λ(= η) when W = 0.5.
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Figure 5: Variation of G with
λ(= η) when W = 0.
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Figure 6: Variation of G with
λ(= η) when W = −0.5.
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Figure 7: Variation of H with
λ(= η) when W = 0.5.
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Figure 8: Variation of H with
λ(= η) when W = 0.
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Figure 9: Variation of H with
λ(= η) when W = 0.5.
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Figure 10: Variation of Cm
with W at λ(= η) = 1.
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