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Singular Perturbation Problems
Singular perturbed problems (SPPs) arise in
several branches of engineering and applied
mathematics including convection-dominated
flow problems with large Reynolds numbers
in fluid mechanics, modelling
semi-conductor device and problems in
population dynamics etc.

Differential equations where the highest
order derivative is multiplied by an
arbitrarily small parameter ε known as the
singular perturbation parameter.

Solutions of these problems possess
boundary layers which are thin regions in
the neighborhood of the boundary of the
domain, where the gradients of the
solutions steepen as ε −→ 0.
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Motivation
{

εu′′(x) + u′(x) = 0, x ∈ (0, 1),

u(0) = 1, u(1) = 0.
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(a) N = 20. (b) N = 200.

Figure: Numerical solution with exact solution forε = 1e− 2.
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Motivation
Numerical experiments conducted on uniform
mesh, reveal that the classical methods usually
fail to decrease the maximum point-wise error
as the mesh is refined, until the mesh
parameter (N) and the perturbation parameter(ε)
have the same order of magnitude.

This is unacceptable due to the vast
computational cost.

This drawback motivates to develop the concept
of ε-uniform numerical methods.

A numerical method is ε-uniformly convergent,
if

sup
0<ε≤1

‖u− UN‖ΩN ≤ C N−p, p > 0,

whereC is independent ofmesh points, mesh size and the parameterε.

u – Exact solution,UN – Numerical approximation.

N – No. of mesh elements,p – Rate of convergence.
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Objective

The main objective of the work is to
develop, analyze and improve the ε-uniform
upwind methods resolving parametrized
boundary-value problems using nonuniform
mesh.

Two kinds of nonuniform meshes are
discussed .
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The Shishkin mesh
This mesh has a transition pointσ where

σ = min

{

1
2
, σ0ε ln N

}

.

whereσ0 depends on the convective coefficient.
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The Shishkin mesh
This mesh has a transition pointσ where

σ = min

{

1
2
, σ0ε ln N

}

.

whereσ0 depends on the convective coefficient.

Divide the[0,1] into two subdomains[0, σ) and[σ,1].

Divide the[0, σ) into N/2 equal subdivisions of widthh and
[σ,1] into N/2 equal subdivisions of widthH.

Hence, the Shishkin meshΩN
σ = {xi}

N
i=0, wherex0 = 0, xN = 1

and the mesh widthhi := xi − xi−1 satisfyhi = h for
i = 1, · · ·N/2 andhi = H for i = N/2+ 1, · · ·N.

Thepiecewise-uniform meshis entirely determined by the two
chosen parametersN andσ.
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The Shishkin mesh
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Figure:Shishkin mesh with N=8 for left layer.
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Figure:Shishkin mesh with N=8 for left layer.
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Figure:Shishkin mesh with N=8 for right layer.
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Adaptive grid

A grid ΩN is said to be equidistributing, if
∫ xj

xj−1

M
(

u(s), s
)

ds=
∫ xj+1

xj

M
(

u(s), s
)

ds, j = 1, . . . ,N − 1, (1)

whereM
(

u(x), x
)

> 0 is called the monitor function.
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A grid ΩN is said to be equidistributing, if
∫ xj

xj−1

M
(

u(s), s
)

ds=
∫ xj+1

xj

M
(

u(s), s
)

ds, j = 1, . . . ,N − 1, (1)

whereM
(

u(x), x
)

> 0 is called the monitor function.
Equivalently, (1) can be expressed as

∫ xj

xj−1

M
(

u(s), s
)

ds=
1
N

∫ 1

0
M
(

u(s), s
)

ds, j = 1, . . . ,N − 1. (2)

In practice, the monitor function is often based on a simple function
of thederivatives of the solution.
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Adaptive grid

Here, we considerthe arc–length monitor function

M
(

u(x), x
)

=
√

1+ (u′(x))2. (3)
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(
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=
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the following nonlinear system of equations:
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x0 = 0, xN = 1.
(4)
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Here, we considerthe arc–length monitor function

M
(

u(x), x
)

=
√

1+ (u′(x))2. (3)

In other words, we can construct the mesh from (1) as the solution of
the following nonlinear system of equations:














(xj+1 − xj)
2 + (UN

j+1 − UN
j )

2 = (xj − xj−1)
2 + (UN

j − UN
j−1)

2,

j = 1, . . . ,N − 1,

x0 = 0, xN = 1.
(4)

The discrete problem and (4) are solved simultaneously to obtain the
solutionUN

j and the gridsxj .
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i = x(k)

i − x(k)
i−1 for eachi.
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be the arc-length between the points(x(k)
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i , u(k)

i ) in the piecewise

continuous solutionu(k). Now the total length isL(k) :=
∑N

i=1 l(k)
i .
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4 Test mesh-Choose a constantC0 > 1 to be user-chosen constant. Stopping criteria is if

maxl(k)
i

L(k)
≤

C0

N
,

holds true, thenSTOP. Otherwise, continue to step-5.
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i from the discrete problem.

Let h(k)
i = x(k)

i − x(k)
i−1 for eachi.

3 Now

l(k)
i = h(k)

i

√

1+ (D−u(k)
i )2 =

√

(u(k)
i − u(k)

i−1)
2 + (h(k)

i )2

be the arc-length between the points(x(k)
i−1, u(k)

i−1) and(x(k)
i , u(k)

i ) in the piecewise

continuous solutionu(k). Now the total length isL(k) :=
∑N

i=1 l(k)
i .

4 Test mesh-Choose a constantC0 > 1 to be user-chosen constant. Stopping criteria is if

maxl(k)
i

L(k)
≤

C0

N
,

holds true, thenSTOP. Otherwise, continue to step-5.

5 New mesh-Choose points{0 = x(k+1)
0 < x(k+1)

1 < x(k+1)
2 < ...x(k+1)

N = 1} such that

for eachi, the distance from(x(k+1)
i−1 , u(k+1)

i−1 ) and(x(k+1)
i , u(k+1)

i ), measured along the

polygonal solution curveu(k)(x), equalsL(k)/N. Return to step-2.
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Movement of the mesh towards left
{

−εu′′ε(x) − u′ε(x) = 0, x ∈ (0,1),

uε(0) = 1, uε(1) = 0,
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(a) Mesh movement toward left. (b) Final computed mesh.

Figure: for ε = 10−2 andN = 20.
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Model problem
Consider the following singularly perturbed Parameterized BVP:

{

Lu(x) ≡ εu′(x) + f (x,u, λ) = 0, x ∈ Ω = (0,1),

u(0) = s0, u(1) = s1,
(5)



Introduction Parameterized SPP on Adaptive grid Numerical Experiments Conclusion References

Model problem
Consider the following singularly perturbed Parameterized BVP:

{

Lu(x) ≡ εu′(x) + f (x,u, λ) = 0, x ∈ Ω = (0,1),

u(0) = s0, u(1) = s1,
(5)

0 < ε ≪ 1 is a small parameter.λ = Control parameter.



Introduction Parameterized SPP on Adaptive grid Numerical Experiments Conclusion References

Model problem
Consider the following singularly perturbed Parameterized BVP:

{

Lu(x) ≡ εu′(x) + f (x,u, λ) = 0, x ∈ Ω = (0,1),

u(0) = s0, u(1) = s1,
(5)

0 < ε ≪ 1 is a small parameter.λ = Control parameter.

The functionsf (x,u, λ) is sufficiently smooth such that






















f (x,u, λ) ∈ C3([0,1× R2]),

0 < α ≤
∂f
∂u

≤ α∗ < ∞ (x,u, λ) ∈ [0,1] × R2,

0 < m≤
∣

∣

∂f
∂λ

∣

∣ ≤ M < ∞ (x,u, λ) ∈ [0,1] × R2.

(6)

s0, s1 are given constants.
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f (x,u, λ) ∈ C3([0,1× R2]),

0 < α ≤
∂f
∂u

≤ α∗ < ∞ (x,u, λ) ∈ [0,1] × R2,

0 < m≤
∣

∣

∂f
∂λ

∣

∣ ≤ M < ∞ (x,u, λ) ∈ [0,1] × R2.

(6)

s0, s1 are given constants.

The solutionu(x) exhibits aboundary layerof width O(ε) at
x = 0.
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A brief background

Amiraliyev et. al.(2006) solved the BVP (5) using upwind
scheme on shishkin mesh and shown the order of convergence
i.e.,O(N−1 ln N).

Z. Cen(2008) solved the BVP (5) using hybrid scheme on
shishkin mesh.

F. Xie et. al.(2008) used boundary layer correction technique to
solved the BVP (5).

Whether the adaptive grid approach can be applied to the BVP
(5)?

Whether we can getmore efficient and accurateε− uniform
method using the adaptive grid for the BVP (5) ?
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Discrete problem

The upwind finite difference scheme for (5) takes the form

{

LNUj ≡ −εD−Uj + f (xj ,Uj , λ
n) = 0 , 1 ≤ j ≤ N − 1,

U0 = s0, UN = s1 .
(7)

whereD−Uj =
Uj − Uj−1

hj
,
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Discrete problem

The upwind finite difference scheme for (5) takes the form

{

LNUj ≡ −εD−Uj + f (xj ,Uj , λ
n) = 0 , 1 ≤ j ≤ N − 1,

U0 = s0, UN = s1 .
(7)

whereD−Uj =
Uj − Uj−1

hj
,

Lemma

The solution{u(x), λ} of (5) satisfies the following inequalities:

|λ| ≤ C, |uk(x)| ≤ C{1+ ε−k exp
(

−
αx
ε

)

, x ∈ Ω, k = 0,1,2,3
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Main Result
We solve the nonlinear problem (7) using the following iteration technique:

λn = λn−1 −
(s1 − un−1

N−1)ρ
−1
N + f (1, s1, λ

n−1)

∂f/∂λ(1, s1, λn−1)
,

un
i = un−1

i −
(un−1

i − un
i−1)ρ

−1
i + f (xi , u

n−1
i , λn)

∂f/∂u(xi, u
n−1
i , λn) + ρ−1

i

,

whereρi = hi/ε andλ(0), u(0)i are the initial iterations given.
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Main Result
We solve the nonlinear problem (7) using the following iteration technique:

λn = λn−1 −
(s1 − un−1

N−1)ρ
−1
N + f (1, s1, λ

n−1)

∂f/∂λ(1, s1, λn−1)
,

un
i = un−1

i −
(un−1

i − un
i−1)ρ

−1
i + f (xi , u

n−1
i , λn)

∂f/∂u(xi, u
n−1
i , λn) + ρ−1

i

,

whereρi = hi/ε andλ(0), u(0)i are the initial iterations given.

Theorem

Let{u(x), λ} and{UN
j , λ

N} be the exact solution and discrete solution on
grids defined above respectively. Then, there exists a constantC independent
of N andε such that

max
j

|u(xj)− UN
j | < CN−1, |λ− λN| < CN−1. (8)
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Numerical Example

Example











εu′(x) + 2u− exp(−u) + x2 + λ+ tanh(λ+ x) = 0,
x ∈ Ω = (0,1) ,

u(0) = 1, u(1) = 0.

(9)
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Example











εu′(x) + 2u− exp(−u) + x2 + λ+ tanh(λ+ x) = 0,
x ∈ Ω = (0,1) ,

u(0) = 1, u(1) = 0.

(9)

The exact solution is not available.
The error is calculated by the idea of interpolation.
Define

EN
ε,u = max

j
|UN

j − U
2N
j |, EN

ε,λ = |λN − λ
2N
|

rN
ε,u = log2

(

EN
ε,u

E2N
ε,u

)

, rN
ε,λ = log2

(

EN
ε,λ

E2N
ε,λ

)

.
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Graphs
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(a) Mesh movement in the layer region. (b) Mesh movement in the regular region.
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Figure: Mesh movement forε = 1e− 2, andN = 40.
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Graphs and Tables
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(a) Solutions. (b) Error.

Figure: Solutions and the error forε = 1e− 2, andN = 20.
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Figure: Solutions and the error forε = 1e− 2, andN = 20.

Table: Maximum point-wise errorsEN
ε,u and the rate of convergencerN

ε,u .

ε Number of intervalsN
16 32 64 128 256 512 1024

1e− 4 1.369e-02 8.567e-03 4.763e-03 2.537e-03 1.336e-03 6.903e-04 3.526e-04
0.67 0.85 0.91 0.93 0.95 0.97

1e− 8 1.3705e-2 8.5717e-3 4.7648e-3 2.5386e-3 1.337e-03 6.910e-04 3.532e-04
0.68 0.85 0.91 0.92 0.95 0.97
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Maximum point-wise Error with rate of convergence

Table: Maximum point-wise errorsEN
ε,λ and the rate of convergencerN

ε,λ .

ε Number of intervalsN
16 32 64 128 256 512 1024

1e− 4 1.548e-07 7.206e-08 3.427e-08 1.478e-08 6.936e-9 3.335e-09 1.482e-09
1.10 1.07 1.21 1.09 1.06 1.17

1e− 8 1.549e-11 7.220e-12 3.485e-12 1.713e-12 8.501e-13 4.231e-13 2.051e-13
1.10 1.05 1.02 1.01 1.00 1.05
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Maximum point-wise Error with rate of convergence

Table: Maximum point-wise errorsEN
ε,λ and the rate of convergencerN

ε,λ .

ε Number of intervalsN
16 32 64 128 256 512 1024

1e− 4 1.548e-07 7.206e-08 3.427e-08 1.478e-08 6.936e-9 3.335e-09 1.482e-09
1.10 1.07 1.21 1.09 1.06 1.17

1e− 8 1.549e-11 7.220e-12 3.485e-12 1.713e-12 8.501e-13 4.231e-13 2.051e-13
1.10 1.05 1.02 1.01 1.00 1.05

Table:Comparison of numerical results .
N ε = 1e− 4 ε = 1e− 6

Result in Amiraliyev(2006) Our result Result in Amiraliyev(2006) Our result

16 EN
ε,λ 3.550e-06 1.548e-07 6.000e-08 1.549e-09

rN
ε,λ

1.01 1.10 1.00 1.10

32 EN
ε,λ

1.760e-06 7.206e-08 3.000e-08 7.220e-10

rN
ε,λ 1.01 1.07 1.00 1.05
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Extension to the mixed kind BVP

Example

{

εu′(x) + 2u(x) − exp(−u(x)) + λ = 0, x ∈ Ω = (0,1) ,

u(0) + εu′(0) = 1, u(1) = 0.
(10)



Introduction Parameterized SPP on Adaptive grid Numerical Experiments Conclusion References

Extension to the mixed kind BVP

Example

{

εu′(x) + 2u(x) − exp(−u(x)) + λ = 0, x ∈ Ω = (0,1) ,
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Figure: Solution and the error forε = 1e− 2 andN = 20.
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Maximum point-wise Error and rate of convergence

Table: Maximum point-wise errorsEN
ε,u and rate of convergencerN

ε,u .

ε Number of intervalsN

16 32 64 128 256 512 1024

1e− 4 2.059e-02 1.132e-02 5.995e-03 3.153e-03 1.622e-03 8.313e-04 4.238e-04

0.86 0.92 0.93 0.95 0.96 0.97

1e− 8 2.059e-02 1.132e-02 5.997e-03 3.157e-03 1.625e-03 8.317e-04 4.243e-04

0.86 0.92 0.93 0.95 0.96 0.9703



Introduction Parameterized SPP on Adaptive grid Numerical Experiments Conclusion References

Maximum point-wise Error and rate of convergence

Table: Maximum point-wise errorsEN
ε,u and rate of convergencerN

ε,u .

ε Number of intervalsN

16 32 64 128 256 512 1024

1e− 4 2.059e-02 1.132e-02 5.995e-03 3.153e-03 1.622e-03 8.313e-04 4.238e-04

0.86 0.92 0.93 0.95 0.96 0.97

1e− 8 2.059e-02 1.132e-02 5.997e-03 3.157e-03 1.625e-03 8.317e-04 4.243e-04

0.86 0.92 0.93 0.95 0.96 0.9703

Table:Comparison of numerical results .
ε N = 64 N = 128

Shishkin mesh Adaptive grid Shishkin mesh Adaptive grid

1e− 4 EN
ε,u 9.858e-03 5.995e-03 5.956e-03 3.153e-03

rN
ε,u 0.7271 0.9272 0.7763 0.9587

1e− 6 EN
ε,u 9.858e-03 5.997e-03 5.956e-03 3.158e-03

rN
ε,u 0.7271 0.9249 0.7763 0.9610
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Conclusion
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Conclusion
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analyzed for singularly perturbed
parameterized BVP exhibiting boundary
layers using adaptive grid.
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