Uniform Numerical Method For a Class of Parameterized Singularly Perturbed Problems

Jugal Mohapatra

Department of Mathematics NIT Rourkela

ICMMCS December 08-10, 2014 Department of Mathematics IIT Madras

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣・の≪

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Outline				

- Singular Perturbation Problem (SPP)
- Shishkin mesh and Adaptive grid

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Outline				

- Singular Perturbation Problem (SPP)
- Shishkin mesh and Adaptive grid

2 Parameterized SPP on Adaptive grid

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Outline				

- Singular Perturbation Problem (SPP)
- Shishkin mesh and Adaptive grid
- 2 Parameterized SPP on Adaptive grid
- 3 Numerical Experiments

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Outline				

- Singular Perturbation Problem (SPP)
- Shishkin mesh and Adaptive grid

2 Parameterized SPP on Adaptive grid

3 Numerical Experiments

4 Conclusion

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Outline				

- Singular Perturbation Problem (SPP)
- Shishkin mesh and Adaptive grid

2 Parameterized SPP on Adaptive grid

3 Numerical Experiments

4 Conclusion

Introduction ••••••	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Outline				

- Singular Perturbation Problem (SPP)
- Shishkin mesh and Adaptive grid
- Parameterized SPP on Adaptive grid
- 3 Numerical Experiments
- 4 Conclusion
- 5 References

Parameterized SPP on Adaptive grid

Numerical Experiments

Conclusion

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

References

Singular Perturbation Problems

References

Singular Perturbation Problems

• Singular perturbed problems (SPPs) arise in several branches of engineering and applied mathematics including convection-dominated flow problems with large Reynolds numbers in fluid mechanics, modelling semi-conductor device and problems in population dynamics etc.

Singular Perturbation Problems

- Singular perturbed problems (SPPs) arise in several branches of engineering and applied mathematics including convection-dominated flow problems with large Reynolds numbers in fluid mechanics, modelling semi-conductor device and problems in population dynamics etc.
- Differential equations where the highest order derivative is multiplied by an arbitrarily small parameter ε known as the singular perturbation parameter.

Singular Perturbation Problems

- Singular perturbed problems (SPPs) arise in several branches of engineering and applied mathematics including convection-dominated flow problems with large Reynolds numbers in fluid mechanics, modelling semi-conductor device and problems in population dynamics etc.
- Differential equations where the highest order derivative is multiplied by an arbitrarily small parameter ε known as the singular perturbation parameter.
- Solutions of these problems possess boundary layers which are thin regions in the neighborhood of the boundary of the domain, where the gradients of the solutions steepen as $\varepsilon \longrightarrow 0$.

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Motivatio	n			

Parameterized SPP on Adaptive grid

Numerical Experiments

Conclusion

References

Motivation

 $\begin{cases} \varepsilon u''(x) + u'(x) = 0, \ x \in (0, 1), \\ u(0) = 1, \quad u(1) = 0. \end{cases}$

Introduction
000000000000000000000000000000000000000

Motivation

$$\begin{cases} \varepsilon u''(x) + u'(x) = 0, \ x \in (0, 1), \\ u(0) = 1, \quad u(1) = 0. \end{cases}$$

Solving this BVP on uniform mesh,

ヘロン 人間 とくほど 人間と

Motivation

$$\begin{cases} \varepsilon u''(x) + u'(x) = 0, \ x \in (0, 1), \\ u(0) = 1, \quad u(1) = 0. \end{cases}$$

Solving this BVP on uniform mesh,

Figure: Numerical solution with exact solution for $\varepsilon = 1e - 2$.

3

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Motivatio	n			

Parameterized SPP on Adaptive grid

Numerical Experiments

イロト 不得 トイヨト イヨト

Motivation

• Numerical experiments conducted on uniform mesh, reveal that the classical methods usually fail to decrease the maximum point-wise error as the mesh is refined, until the mesh parameter (N) and the perturbation parameter (ε) have the same order of magnitude.

イロト イポト イヨト イヨト

Motivation

- Numerical experiments conducted on uniform mesh, reveal that the classical methods usually fail to decrease the maximum point-wise error as the mesh is refined, until the mesh parameter (N) and the perturbation parameter (ε) have the same order of magnitude.
- This is unacceptable due to the vast computational cost.

э

Parameterized SPP on Adaptive grid

Numerical Experiments

Motivation

- Numerical experiments conducted on uniform mesh, reveal that the classical methods usually fail to decrease the maximum point-wise error as the mesh is refined, until the mesh parameter (N) and the perturbation parameter (ε) have the same order of magnitude.
- This is unacceptable due to the vast computational cost.
- This drawback motivates to develop the concept of ε -uniform numerical methods.

(日) (雪) (日) (日) (日)

Motivation

- Numerical experiments conducted on uniform mesh, reveal that the classical methods usually fail to decrease the maximum point-wise error as the mesh is refined, until the mesh parameter (N) and the perturbation parameter (ε) have the same order of magnitude.
- This is unacceptable due to the vast computational cost.
- This drawback motivates to develop the concept of ε-uniform numerical methods.
- A numerical method is *e*-uniformly convergent, if

$$\sup_{0<\varepsilon\leq 1}\|u-U^N\|_{\Omega^N}\leq C\,N^{-p},\quad p>0,$$

where *C* is independent of mesh points, mesh size and the parameter ε . *u* – Exact solution, U^N – Numerical approximation.

N – No. of mesh elements, p – Rate of convergence.

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Objective	e			

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Objective	e			

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Objective	e			

Two kinds of nonuniform meshes are discussed .

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Objective	e			

Two kinds of nonuniform meshes are discussed .

• Shishkin mesh

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Objective	e			

Two kinds of nonuniform meshes are discussed .

- Shishkin mesh
- Adaptive grid

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Outline				

- Singular Perturbation Problem (SPP)
- Shishkin mesh and Adaptive grid
- 2 Parameterized SPP on Adaptive grid
- 3 Numerical Experiments
- 4 Conclusion
- 5 References

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
The Shish	kin mesh			

Parameterized SPP on Adaptive grid

Numerical Experiments

Conclusion

References

The Shishkin mesh

This mesh has a transition point σ where

$$\sigma = \min\left\{\frac{1}{2}, \sigma_0 \varepsilon \ln N\right\}.$$

where σ_0 depends on the convective coefficient.

ntroduction	Parameterized	SPP	on	Adapti
0000000000000				

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

References

The Shishkin mesh

This mesh has a transition point σ where

$$\sigma = \min\left\{\frac{1}{2}, \sigma_0 \varepsilon \ln N\right\}.$$

where σ_0 depends on the convective coefficient.

- Divide the [0, 1] into two subdomains $[0, \sigma)$ and $[\sigma, 1]$.
- Divide the $[0, \sigma)$ into N/2 equal subdivisions of width h and $[\sigma, 1]$ into N/2 equal subdivisions of width H.

э

ntroduction	Parameterized	SPP	on	Adaptive	gri
0000000000000					

The Shishkin mesh

This mesh has a transition point σ where

$$\sigma = \min\left\{\frac{1}{2}, \sigma_0 \varepsilon \ln N\right\}.$$

where σ_0 depends on the convective coefficient.

- Divide the [0, 1] into two subdomains $[0, \sigma)$ and $[\sigma, 1]$.
- Divide the [0, σ) into N/2 equal subdivisions of width h and [σ, 1] into N/2 equal subdivisions of width H.
- Hence, the Shishkin mesh $\Omega_{\sigma}^{N} = \{x_i\}_{i=0}^{N}$, where $x_0 = 0, x_N = 1$ and the mesh width $h_i := x_i - x_{i-1}$ satisfy $h_i = h$ for $i = 1, \dots N/2$ and $h_i = H$ for $i = N/2 + 1, \dots N$.

troduction	Parameterized	SPP o	n Adaptive	grid
0000000000				

References

The Shishkin mesh

Ir

This mesh has a transition point σ where

$$\sigma = \min\left\{\frac{1}{2}, \sigma_0 \varepsilon \ln N\right\}.$$

where σ_0 depends on the convective coefficient.

- Divide the [0, 1] into two subdomains $[0, \sigma)$ and $[\sigma, 1]$.
- Divide the [0, σ) into N/2 equal subdivisions of width h and [σ, 1] into N/2 equal subdivisions of width H.
- Hence, the Shishkin mesh $\Omega_{\sigma}^{N} = \{x_i\}_{i=0}^{N}$, where $x_0 = 0, x_N = 1$ and the mesh width $h_i := x_i - x_{i-1}$ satisfy $h_i = h$ for $i = 1, \dots N/2$ and $h_i = H$ for $i = N/2 + 1, \dots N$.
- The piecewise-uniform mesh is entirely determined by the two chosen parameters N and σ .

Introduction 0000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
The Shish	kin mesh			

Figure: Shishkin mesh with N=8 for left layer.

0

 σ

Figure: Shishkin mesh with N=8 for right layer.

3

イロト イポト イヨト イヨト

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Adaptive	grid			

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Adaptive	grid			

A grid Ω^N is said to be equidistributing, if

$$\int_{x_{j-1}}^{x_j} M(u(s), s) ds = \int_{x_j}^{x_{j+1}} M(u(s), s) ds, \quad j = 1, \dots, N-1, \quad (1)$$

where M(u(x), x) > 0 is called the monitor function.

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Adaptive	grid			

A grid Ω^N is said to be equidistributing, if

$$\int_{x_{j-1}}^{x_j} M(u(s), s) ds = \int_{x_j}^{x_{j+1}} M(u(s), s) ds, \quad j = 1, \dots, N-1, \quad (1)$$

where M(u(x), x) > 0 is called the monitor function. Equivalently, (1) can be expressed as

$$\int_{x_{j-1}}^{x_j} M(u(s), s) ds = \frac{1}{N} \int_0^1 M(u(s), s) ds, \quad j = 1, \dots, N-1.$$
 (2)

э

(日) (國) (国) (国)

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Adaptive	grid			

A grid Ω^N is said to be equidistributing, if

•

$$\int_{x_{j-1}}^{x_j} M(u(s), s) ds = \int_{x_j}^{x_{j+1}} M(u(s), s) ds, \quad j = 1, \dots, N-1, \quad (1)$$

where M(u(x), x) > 0 is called the monitor function. Equivalently, (1) can be expressed as

$$\int_{x_{j-1}}^{x_j} M(u(s), s) ds = \frac{1}{N} \int_0^1 M(u(s), s) ds, \quad j = 1, \dots, N-1.$$
 (2)

In practice, the monitor function is often based on a simple function of the derivatives of the solution.

э

(四)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Adaptive	grid			

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Adaptive	grid			

Here, we consider the arc-length monitor function

$$M(u(x), x) = \sqrt{1 + (u'(x))^2}.$$
 (3)

æ

(四)
 ((1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)</lit

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Adaptive	grid			

Here, we consider the arc-length monitor function

$$M(u(x), x) = \sqrt{1 + (u'(x))^2}.$$
(3)

In other words, we can construct the mesh from (1) as the solution of the following nonlinear system of equations:

$$\begin{cases} (x_{j+1} - x_j)^2 + (U_{j+1}^N - U_j^N)^2 = (x_j - x_{j-1})^2 + (U_j^N - U_{j-1}^N)^2, \\ j = 1, \dots, N-1, \\ x_0 = 0, \quad x_N = 1. \end{cases}$$

(4)

э

< 四> < 图> < 图> < 图> < 图>

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Adaptive	grid			

Here, we consider the arc-length monitor function

$$M(u(x), x) = \sqrt{1 + (u'(x))^2}.$$
(3)

In other words, we can construct the mesh from (1) as the solution of the following nonlinear system of equations:

$$\begin{cases} (x_{j+1} - x_j)^2 + (U_{j+1}^N - U_j^N)^2 = (x_j - x_{j-1})^2 + (U_j^N - U_{j-1}^N)^2, \\ j = 1, \dots, N-1, \\ x_0 = 0, \quad x_N = 1. \end{cases}$$
(4)

The discrete problem and (4) are solved simultaneously to obtain the solution U_i^N and the grids x_j .

э

(四)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((1)
 ((

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Adaptive	algorithm			

Introduction	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	Referen
000000000000000000000000000000000000000				

Initialize mesh- Construct uniform mesh $\{0, 1/N, 2/N, \dots, 1\}$.

Initialize mesh- Construct uniform mesh $\{0, 1/N, 2/N, \dots, 1\}$.

Solution $u_i^{(k)}$ from the discrete problem. Let $h_i^{(k)} = x_i^{(k)} - x_{i-1}^{(k)}$ for each *i*.

Initialize mesh- Construct uniform mesh $\{0, 1/N, 2/N, \ldots, 1\}$.

Solution $u_i^{(k)}$ from the discrete problem. Let $h_i^{(k)} = x_i^{(k)} - x_{i-1}^{(k)}$ for each *i*.

Solution Now

$$l_i^{(k)} = h_i^{(k)} \sqrt{1 + (D^- u_i^{(k)})^2} = \sqrt{(u_i^{(k)} - u_{i-1}^{(k)})^2 + (h_i^{(k)})^2}$$

be the arc-length between the points $(x_{i-1}^{(k)}, u_{i-1}^{(k)})$ and $(x_i^{(k)}, u_i^{(k)})$ in the piecewise continuous solution $u^{(k)}$. Now the total length is $L^{(k)} := \sum_{i=1}^{N} l_i^{(k)}$.

Initialize mesh- Construct uniform mesh $\{0, 1/N, 2/N, \ldots, 1\}$.

Solution $u_i^{(k)}$ from the discrete problem. Let $h_i^{(k)} = x_i^{(k)} - x_{i-1}^{(k)}$ for each *i*.

Solution 10 Now

$$l_i^{(k)} = h_i^{(k)} \sqrt{1 + (D^- u_i^{(k)})^2} = \sqrt{(u_i^{(k)} - u_{i-1}^{(k)})^2 + (h_i^{(k)})^2}$$

be the arc-length between the points $(x_{i-1}^{(k)}, u_{i-1}^{(k)})$ and $(x_i^{(k)}, u_i^{(k)})$ in the piecewise continuous solution $u^{(k)}$. Now the total length is $L^{(k)} := \sum_{i=1}^{N} l_i^{(k)}$.

Test mesh-Choose a constant $C_0 > 1$ to be user-chosen constant. Stopping criteria is if

$$\frac{\max l_i^{(k)}}{L^{(k)}} \le \frac{C_0}{N},$$

holds true, then STOP. Otherwise, continue to step-5.

Initialize mesh- Construct uniform mesh $\{0, 1/N, 2/N, \ldots, 1\}$.

Solution $u_i^{(k)}$ from the discrete problem. Let $h_i^{(k)} = x_i^{(k)} - x_{i-1}^{(k)}$ for each *i*.

Solution 10 Now

$$l_i^{(k)} = h_i^{(k)} \sqrt{1 + (D^- u_i^{(k)})^2} = \sqrt{(u_i^{(k)} - u_{i-1}^{(k)})^2 + (h_i^{(k)})^2}$$

be the arc-length between the points $(x_{i-1}^{(k)}, u_{i-1}^{(k)})$ and $(x_i^{(k)}, u_i^{(k)})$ in the piecewise continuous solution $u^{(k)}$. Now the total length is $L^{(k)} := \sum_{i=1}^{N} l_i^{(k)}$.

Test mesh-Choose a constant $C_0 > 1$ to be user-chosen constant. Stopping criteria is if

$$\frac{\max l_i^{(k)}}{L^{(k)}} \le \frac{C_0}{N}$$

holds true, then STOP. Otherwise, continue to step-5.

New mesh-Choose points $\{0 = x_0^{(k+1)} < x_1^{(k+1)} < x_2^{(k+1)} < ...x_N^{(k+1)} = 1\}$ such that for each *i*, the distance from $(x_{i-1}^{(k+1)}, u_{i-1}^{(k+1)})$ and $(x_i^{(k+1)}, u_i^{(k+1)})$, measured along the polygonal solution curve $u^{(k)}(x)$, equals $L^{(k)}/N$. Return to step-2.

Introduction

Parameterized SPP on Adaptive grid

Numerical Experiments

Conclusion

ヘロト 人間 とくほとくほとう

References

Movement of the mesh towards left

Introduction

Parameterized SPP on Adaptive grid

Numerical Experiments

・ロト ・ 理ト ・ ヨト ・ ヨト

References

Movement of the mesh towards left

$$\begin{cases} -\varepsilon u_{\varepsilon}''(x) - u_{\varepsilon}'(x) = 0, \quad x \in (0, 1), \\ u_{\varepsilon}(0) = 1, \quad u_{\varepsilon}(1) = 0, \end{cases}$$

Figure: for $\varepsilon = 10^{-2}$ and N = 20.

э

Introduction
00000000000000

◆□▶ ◆圖▶ ◆国▶ ◆国▶

Model problem

Consider the following singularly perturbed Parameterized BVP:

$$\begin{cases} Lu(x) \equiv \varepsilon u'(x) + f(x, u, \lambda) = 0, & x \in \Omega = (0, 1), \\ u(0) = s_0, & u(1) = s_1, \end{cases}$$
(5)

æ

Introduction
00000000000000

Model problem

Consider the following singularly perturbed Parameterized BVP:

$$\begin{cases} Lu(x) \equiv \varepsilon u'(x) + f(x, u, \lambda) = 0, & x \in \Omega = (0, 1), \\ u(0) = s_0, & u(1) = s_1, \end{cases}$$
(5)

• $0 < \varepsilon \ll 1$ is a small parameter. $\lambda =$ Control parameter.

Introduction
00000000000000

Model problem

Consider the following singularly perturbed Parameterized BVP:

 $\begin{cases} Lu(x) \equiv \varepsilon u'(x) + f(x, u, \lambda) = 0, & x \in \Omega = (0, 1), \\ u(0) = s_0, & u(1) = s_1, \end{cases}$ (5)

- $0 < \varepsilon \ll 1$ is a small parameter. $\lambda =$ Control parameter.
- The functions $f(x, u, \lambda)$ is sufficiently smooth such that

$$\begin{cases} f(x, u, \lambda) \in C^{3}([0, 1 \times R^{2}]), \\ 0 < \alpha \leq \frac{\partial f}{\partial u} \leq \alpha^{*} < \infty \quad (x, u, \lambda) \in [0, 1] \times R^{2}, \\ 0 < m \leq \left|\frac{\partial f}{\partial \lambda}\right| \leq M < \infty \quad (x, u, \lambda) \in [0, 1] \times R^{2}. \end{cases}$$

$$\bullet s_{0}, s_{1} \text{ are given constants.}$$

$$(6)$$

э

Model problem

Consider the following singularly perturbed Parameterized BVP:

 $\begin{cases} Lu(x) \equiv \varepsilon u'(x) + f(x, u, \lambda) = 0, & x \in \Omega = (0, 1), \\ u(0) = s_0, & u(1) = s_1, \end{cases}$ (5)

- $0 < \varepsilon \ll 1$ is a small parameter. $\lambda =$ Control parameter.
- The functions $f(x, u, \lambda)$ is sufficiently smooth such that

$$\begin{cases} f(x, u, \lambda) \in C^{3}([0, 1 \times R^{2}]), \\ 0 < \alpha \leq \frac{\partial f}{\partial u} \leq \alpha^{*} < \infty \qquad (x, u, \lambda) \in [0, 1] \times R^{2}, \\ 0 < m \leq \left|\frac{\partial f}{\partial \lambda}\right| \leq M < \infty \qquad (x, u, \lambda) \in [0, 1] \times R^{2}. \end{cases}$$
(6)

- s_0, s_1 are given constants.
- The solution u(x) exhibits a boundary layer of width $\mathcal{O}(\varepsilon)$ at x = 0.

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
A brief ba	ackground			

• Amiraliyev et. al. (2006) solved the BVP (5) using upwind scheme on shishkin mesh and shown the order of convergence *i.e.*, $\mathcal{O}(N^{-1} \ln N)$.

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
A brief ba	ackground			

- Amiraliyev et. al. (2006) solved the BVP (5) using upwind scheme on shishkin mesh and shown the order of convergence *i.e.*, $\mathcal{O}(N^{-1} \ln N)$.
- Z. Cen (2008) solved the BVP (5) using hybrid scheme on shishkin mesh.

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
A brief ba	ackground			

- Amiraliyev et. al. (2006) solved the BVP (5) using upwind scheme on shishkin mesh and shown the order of convergence *i.e.*, $\mathcal{O}(N^{-1} \ln N)$.
- Z. Cen (2008) solved the BVP (5) using hybrid scheme on shishkin mesh.
- F. Xie et. al. (2008) used boundary layer correction technique to solved the BVP (5).

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
A brief ba	ackground			

- Amiraliyev et. al. (2006) solved the BVP (5) using upwind scheme on shishkin mesh and shown the order of convergence *i.e.*, $\mathcal{O}(N^{-1} \ln N)$.
- Z. Cen (2008) solved the BVP (5) using hybrid scheme on shishkin mesh.
- F. Xie et. al. (2008) used boundary layer correction technique to solved the BVP (5).
- Whether the adaptive grid approach can be applied to the BVP (5)?

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
A brief ba	ackground			

- Amiraliyev et. al. (2006) solved the BVP (5) using upwind scheme on shishkin mesh and shown the order of convergence *i.e.*, $\mathcal{O}(N^{-1} \ln N)$.
- Z. Cen (2008) solved the BVP (5) using hybrid scheme on shishkin mesh.
- F. Xie et. al. (2008) used boundary layer correction technique to solved the BVP (5).
- Whether the adaptive grid approach can be applied to the BVP (5)?
- Whether we can get more efficient and accurate ε uniform method using the adaptive grid for the BVP (5) ?

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Discrete p	oroblem			

The upwind finite difference scheme for (5) takes the form

$$\begin{cases} L^{N}U_{j} \equiv -\varepsilon D^{-}U_{j} + f(x_{j}, U_{j}, \lambda^{n}) = 0, & 1 \leq j \leq N-1, \\ U_{0} = s_{0}, & U_{N} = s_{1}. \end{cases}$$

$$(7)$$

where
$$D^-U_j = \frac{U_j - U_{j-1}}{h_j}$$
,

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Discrete p	oroblem			

The upwind finite difference scheme for (5) takes the form

$$\begin{cases} L^{N}U_{j} \equiv -\varepsilon D^{-}U_{j} + f(x_{j}, U_{j}, \lambda^{n}) = 0, & 1 \le j \le N - 1, \\ U_{0} = s_{0}, & U_{N} = s_{1}. \end{cases}$$
(7)

where
$$D^-U_j = \frac{U_j - U_{j-1}}{h_j}$$
,

Lemma

The solution $\{u(x), \lambda\}$ of (5) satisfies the following inequalities:

$$|\lambda| \le C$$
, $|u^k(x)| \le C\{1 + \varepsilon^{-k} \exp\left(-\frac{\alpha x}{\varepsilon}\right), x \in \overline{\Omega}, k = 0, 1, 2, 3$

э

(日)

Introduction 00000000000

Main Result

We solve the nonlinear problem (7) using the following iteration technique:

$$\lambda^{n} = \lambda^{n-1} - \frac{(s_{1} - u_{N-1}^{n-1})\rho_{N}^{-1} + f(1, s_{1}, \lambda^{n-1})}{\partial f/\partial \lambda(1, s_{1}, \lambda^{n-1})},$$
$$u_{i}^{n} = u_{i}^{n-1} - \frac{(u_{i}^{n-1} - u_{i-1}^{n})\rho_{i}^{-1} + f(x_{i}, u_{i}^{n-1}, \lambda^{n})}{\partial f/\partial u(x_{i}, u_{i}^{n-1}, \lambda^{n}) + \rho_{i}^{-1}},$$

where $\rho_i = h_i / \varepsilon$ and $\lambda^{(0)}, u_i^{(0)}$ are the initial iterations given.

Introduction
00000000000000

Main Result

We solve the nonlinear problem (7) using the following iteration technique:

$$\lambda^{n} = \lambda^{n-1} - \frac{(s_{1} - u_{N-1}^{n-1})\rho_{N}^{-1} + f(1, s_{1}, \lambda^{n-1})}{\partial f / \partial \lambda(1, s_{1}, \lambda^{n-1})},$$

$$u_i^n = u_i^{n-1} - \frac{(u_i^{n-1} - u_{i-1}^n)\rho_i^{-1} + f(x_i, u_i^{n-1}, \lambda^n)}{\partial f / \partial u(x_i, u_i^{n-1}, \lambda^n) + \rho_i^{-1}},$$

where $\rho_i = h_i / \varepsilon$ and $\lambda^{(0)}, u_i^{(0)}$ are the initial iterations given.

Theorem

Let $\{u(x), \lambda\}$ and $\{U_j^N, \lambda^N\}$ be the exact solution and discrete solution on grids defined above respectively. Then, there exists a constant *C* independent of *N* and ε such that

$$\max_{j} |u(x_j) - U_j^N| < CN^{-1}, \quad |\lambda - \lambda^N| < CN^{-1}.$$

(8)

A D > A P > A B > A B >

Introduction 0000000000	000	Parameterize	ed SPP on Adaptive grid	Numerical Experiments	Conclusion	Refere
Ъ .Т		1 17	1			

Numerical Example

Example

$$\begin{cases} \varepsilon u'(x) + 2u - \exp(-u) + x^2 + \lambda + \tanh(\lambda + x) = 0, \\ x \in \Omega = (0, 1), \\ u(0) = 1, \quad u(1) = 0. \end{cases}$$
(9)

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	Reference
Numerica	al Example			
Exampl	le			

$$\begin{cases} \varepsilon u'(x) + 2u - \exp(-u) + x^2 + \lambda + \tanh(\lambda + x) = 0, \\ x \in \Omega = (0, 1), \\ u(0) = 1, \quad u(1) = 0. \end{cases}$$
(9)

• The exact solution is not available.

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	Reference
Numerica	al Example			

Example

$$\begin{cases} \varepsilon u'(x) + 2u - \exp(-u) + x^2 + \lambda + \tanh(\lambda + x) = 0, \\ x \in \Omega = (0, 1), \\ u(0) = 1, \quad u(1) = 0. \end{cases}$$
(9)

- The exact solution is not available.
- The error is calculated by the idea of interpolation.

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	Reference
Numerica	al Example			

Example

$$\begin{cases} \varepsilon u'(x) + 2u - \exp(-u) + x^2 + \lambda + \tanh(\lambda + x) = 0, \\ x \in \Omega = (0, 1), \\ u(0) = 1, \quad u(1) = 0. \end{cases}$$
(9)

- The exact solution is not available.
- The error is calculated by the idea of interpolation.
- Define

$$\begin{split} E_{\varepsilon,u}^{N} &= \max_{j} |U_{j}^{N} - \overline{U}_{j}^{2N}|, \quad E_{\varepsilon,\lambda}^{N} = |\lambda^{N} - \overline{\lambda}^{2N}| \\ r_{\varepsilon,u}^{N} &= \log_{2} \left(\frac{E_{\varepsilon,u}^{N}}{E_{\varepsilon,u}^{2N}} \right), \quad r_{\varepsilon,\lambda}^{N} = \log_{2} \left(\frac{E_{\varepsilon,\lambda}^{N}}{E_{\varepsilon,\lambda}^{2N}} \right). \end{split}$$

Parameterized SPP on Adaptive grid

Numerical Experiments

References

Graphs

Figure: Mesh movement for $\varepsilon = 1e - 2$, and N = 40.

(日)

Figure: Solutions and the error for $\varepsilon = 1e - 2$, and N = 20.

(a) Solutions.

(b) Error.

Figure: Solutions and the error for $\varepsilon = 1e - 2$, and N = 20.

Table: Maximum point-wise errors $E_{\varepsilon,u}^N$ and the rate of convergence $r_{\varepsilon,u}^N$.

ε	Number of intervals N						
	16	32	64	128	256	512	1024
1e - 4	1.369e-02 0.67	8.567e-03 0.85	4.763e-03 0.91	2.537e-03 0.93	1.336e-03 0.95	6.903e-04 0.97	3.526e-04
1e - 8	1.3705e-2 0.68	8.5717e-3 0.85	4.7648e-3 0.91	2.5386e-3 0.92	1.337e-03 0.95	6.910e-04 0.97	3.532e-04

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ○

(日) (個) (目) (目)

Maximum point-wise Error with rate of convergence

Table: Maximum point-wise errors $E_{\varepsilon,\lambda}^N$ and the rate of convergence $r_{\varepsilon,\lambda}^N$.

ε	Number of intervals N						
	16	32	64	128	256	512	1024
1e - 4	1.548e-07	7.206e-08	3.427e-08	1.478e-08	6.936e-9	3.335e-09	1.482e-09
	1.10	1.07	1.21	1.09	1.06	1.17	
1e - 8	1.549e-11	7.220e-12	3.485e-12	1.713e-12	8.501e-13	4.231e-13	2.051e-13
	1.10	1.05	1.02	1.01	1.00	1.05	

э

Maximum point-wise Error with rate of convergence

Table: Maximum point-wise errors $E_{\varepsilon,\lambda}^N$ and the rate of convergence $r_{\varepsilon,\lambda}^N$.

ε	Number of intervals N						
	16	32	64	128	256	512	1024
1e - 4	1.548e-07	7.206e-08	3.427e-08	1.478e-08	6.936e-9	3.335e-09	1.482e-09
	1.10	1.07	1.21	1.09	1.06	1.17	
1e - 8	1.549e-11	7.220e-12	3.485e-12	1.713e-12	8.501e-13	4.231e-13	2.051e-13
	1.10	1.05	1.02	1.01	1.00	1.05	

Table: Comparison of numerical results .

Ν		$\varepsilon = 1e - 4$	$\varepsilon = 1e - 6$		
		Result in Amiraliyev(2006)	Our result	Result in Amiraliyev(2006)	Our result
16	$E_{\varepsilon,\lambda}^{N}$ $r_{\varepsilon,\lambda}^{N}$	3.550e-06 1.01	1.548e-07 1.10	6.000e-08 1.00	1.549e-09 1.10
32	$\begin{array}{c} E^N_{\varepsilon,\lambda} \\ r^N_{\varepsilon,\lambda} \end{array}$	1.760e-06 1.01	7.206e-08 1.07	3.000e-08 1.00	7.220e-10 1.05

Parameterized SPP on Adaptive grid

Numerical Experiments

Conclusion

ヘロト 人間 とくほとくほとう

References

Extension to the mixed kind BVP

Example

$$\begin{cases} \varepsilon u'(x) + 2u(x) - \exp(-u(x)) + \lambda = 0, & x \in \Omega = (0, 1), \\ u(0) + \varepsilon u'(0) = 1, & u(1) = 0. \end{cases}$$
(10)

æ

Extension to the mixed kind BVP

Example

Figure: Solution and the error for $\varepsilon = 1e - 2$ and N = 20.

Introduction

Parameterized SPP on Adaptive grid

(日) (個) (目) (目)

References

Maximum point-wise Error and rate of convergence

Table: Maximum point-wise errors $E_{\varepsilon,u}^N$ and rate of convergence $r_{\varepsilon,u}^N$.

ε	Number of intervals N						
	16	32	64	128	256	512	1024
1e - 4	2.059e-02	1.132e-02	5.995e-03	3.153e-03	1.622e-03	8.313e-04	4.238e-04
	0.86	0.92	0.93	0.95	0.96	0.97	
1e - 8	2.059e-02	1.132e-02	5.997e-03	3.157e-03	1.625e-03	8.317e-04	4.243e-04
	0.86	0.92	0.93	0.95	0.96	0.9703	

Maximum point-wise Error and rate of convergence

Table: Maximum point-wise errors $E_{\varepsilon,u}^N$ and rate of convergence $r_{\varepsilon,u}^N$.

ε	Number of intervals N						
	16	32	64	128	256	512	1024
1e - 4	2.059e-02	1.132e-02	5.995e-03	3.153e-03	1.622e-03	8.313e-04	4.238e-04
	0.86	0.92	0.93	0.95	0.96	0.97	
1e - 8	2.059e-02	1.132e-02	5.997e-03	3.157e-03	1.625e-03	8.317e-04	4.243e-04
	0.86	0.92	0.93	0.95	0.96	0.9703	

Table: Comparison of numerical results .

ε	N = 64			N = 128		
		Shishkin mesh	Adaptive grid	Shishkin mesh	Adaptive grid	
1e - 4	$E_{\varepsilon,u}^N$	9.858e-03	5.995e-03	5.956e-03	3.153e-03	
	$r_{\varepsilon,u}^{N'}$	0.7271	0.9272	0.7763	0.9587	
1e - 6	$E_{\varepsilon,u}^N$	9.858e-03	5.997e-03	5.956e-03	3.158e-03	
	$r_{\varepsilon,u}^{N'}$	0.7271	0.9249	0.7763	0.9610	

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Conclusio	on			

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Conclusio	on			

• A uniformly convergent upwind scheme is analyzed for singularly perturbed parameterized BVP exhibiting boundary layers using adaptive grid.

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Conclusio	on			

- A uniformly convergent upwind scheme is analyzed for singularly perturbed parameterized BVP exhibiting boundary layers using adaptive grid.
- It is shown that the bound obtained on the adaptive grid is in fact more accurate than that obtained on the Shishkin mesh.

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Conclusio	on			

- A uniformly convergent upwind scheme is analyzed for singularly perturbed parameterized BVP exhibiting boundary layers using adaptive grid.
- It is shown that the bound obtained on the adaptive grid is in fact more accurate than that obtained on the Shishkin mesh.
- Optimal order i.e., $\mathcal{O}(N^{-1})$ is obtained.

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Conclusio	on			

- A uniformly convergent upwind scheme is analyzed for singularly perturbed parameterized BVP exhibiting boundary layers using adaptive grid.
- It is shown that the bound obtained on the adaptive grid is in fact more accurate than that obtained on the Shishkin mesh.
- Optimal order i.e., $\mathcal{O}(N^{-1})$ is obtained.
- The proposed method is extended to mixed kind BVP.

・ロット (雪)・ (日)・ (日)・ (日)

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Conclusio	on			

- A uniformly convergent upwind scheme is analyzed for singularly perturbed parameterized BVP exhibiting boundary layers using adaptive grid.
- It is shown that the bound obtained on the adaptive grid is in fact more accurate than that obtained on the Shishkin mesh.
- Optimal order i.e., $\mathcal{O}(N^{-1})$ is obtained.
- The proposed method is extended to mixed kind BVP. Acknowledgments:

・ロット (雪)・ (日)・ (日)・ (日)

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Conclusio	on			

- A uniformly convergent upwind scheme is analyzed for singularly perturbed parameterized BVP exhibiting boundary layers using adaptive grid.
- It is shown that the bound obtained on the adaptive grid is in fact more accurate than that obtained on the Shishkin mesh.
- Optimal order i.e., $\mathcal{O}(N^{-1})$ is obtained.
- The proposed method is extended to mixed kind BVP. Acknowledgments:
- Thanks to my co-author: Mr. Deepti Shakti

Introduction 00000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Conclusio	on			

- A uniformly convergent upwind scheme is analyzed for singularly perturbed parameterized BVP exhibiting boundary layers using adaptive grid.
- It is shown that the bound obtained on the adaptive grid is in fact more accurate than that obtained on the Shishkin mesh.
- Optimal order i.e., $\mathcal{O}(N^{-1})$ is obtained.
- The proposed method is extended to mixed kind BVP. Acknowledgments:
- Thanks to my co-author: Mr. Deepti Shakti
- DST, Govt. of India for supporting under research grant no. SERB/F/7053/2013-14.

・ロット (雪)・ (日)・ (日)・ (日)

Introduction	
0000000000000	

References

G.M. Amiraliyev and H. Duru.

A note on parmetrized singular perturbation problem.

J. Comput. Appl. Math., 182:233-242, 2005.

Z.Cen.

A second-order difference scheme for a parameterized singular perturbation problem. J. Comput. Appl. Math., 221:174-182, 2008.

P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O'Riordan, and G.I. Shishkin. Robust Computational Techniques for Boundary Layers. Chapman & Hall/CRC Press, Boca Raton, FL, 2000.

N. Kopteva and M. Stynes.

A robust adaptive method for a quasi-linear one dimensional convection-diffusion problem.

SIAM J. Numer Anal., 39(4):1446–1467, 2001.

J.J.H. Miller, E. O'Riordan, and G.I. Shishkin. Fitted Numerical Methods for Singular Perturbation Problems. (revised edition), World Scientific, Singapore, 2012.

J. Mohapatra and S. Natesan.

Parameter-uniform numerical method for global solution and global normalized flux of singularly perturbed boundary value problems using grid equidistribution. Comput. Math. Appl., 60(7):1924–1939, 2010.

э

Introduction 000000000000	Parameterized SPP on Adaptive grid	Numerical Experiments	Conclusion	References
Reference	es			
📄 т Ро	mentale			

A constructive theorem of existence and uniqueness for problem $y' = f(x, y, \lambda), y(a) = \alpha, y(b) = \beta.$ Z. Angrew. Math. Mech., 56(8):387-388, 1976.

M. Ronto, T. Csikos-Marinets. On the investigation of some non-linear boundary value problems with parameter. Math. Notes, Miscolc., 1:157-166, 2000.

D. Shakti and J. Mohapatra

Uniform numerical method for a class of parameterized singularly perturbed boundary value problems.

submitted for publication.

F. Xie, J. Wang, W. Zhang and M. He

A novel method for a class of parameterized singularly perturbed boundary value problems.

J. Comput. Appl. Math., 213:258-267, 2008.

э

A B > A B > A B >

ntroduction	
0000000000000	

Thank You.

