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ABSTRACT 

The variance of first 𝑛 natural numbers is (𝑛2 − 1) 12⁄  and is a natural number if 𝑛 is odd, 𝑛 > 1 

and is not a multiple of 3. The values of 𝑛 corresponding to integral standard deviations constitute a 

sequence behaving like the sequence of Lucas-balancing numbers and the corresponding standard 

deviations constitute a sequence having some properties identical with balancing numbers. The 

factorization of the standard deviation sequence results in two other interesting sequences sharing 

important properties with the two original sequences. 
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1. INTRODUCTION 

The concept of balancing numbers was first given by Behera and Panda [1] in connection with the 

Diophantine equation 1 + 2 + ⋯ + (𝑛 − 1) = (𝑛 + 1) + (𝑛 + 2) + ⋯ + (𝑛 + 𝑟), wherein, they call  𝑛 a 

balancing number and 𝑟 the balancer corresponding to 𝑛. The 𝑛th
 balancing number is denoted by 𝐵𝑛 and 

the balancing numbers satisfy the binary recurrence 𝐵𝑛+1 = 6𝐵𝑛 − 𝐵𝑛−1 with 𝐵0 = 0 and 𝐵1 = 1 [1]. In 

[3], Panda explored many fascinating properties of balancing numbers, some of them are similar to the 

corresponding results on Fibonacci numbers, while some others are more exciting.  

 

A detailed study of balancing and related number sequences is available in [5]. In a latter paper [4], 

as a generalization of the sequence of balancing numbers, Panda and Rout studied a class of binary 

recurrences defined by 𝑥𝑛+1 = 𝐴𝑥𝑛 − 𝐵𝑥𝑛−1 with 𝑥0 = 0 and 𝑥1 = 1 where 𝐴 and 𝐵 are any natural 

numbers. They proved that when 𝐵 = 1 and 𝐴 ≠ 1, 2, sequences arising out of these recurrences have 

many important and interesting properties identical to those of balancing numbers. We therefore prefer to 

call this class of sequences as balancing-like sequences.  

 

For each natural number 𝑛,  8𝐵𝑛
2 + 1 is a perfect square and 𝐶𝑛 = √8𝐵𝑛

2 + 1 is called a Lucas-

balancing number [5]. We can, therefore, call {𝐶𝑛}, the Lucas-balancing sequence. In a similar manner, if 

{𝑥𝑛} is a balancing-like sequence, 𝑘𝑥𝑛
2 + 1 is a perfect square for some natural number 𝑘 and for all 𝑛 and 

𝑦𝑛 = √𝑘𝑥𝑛
2 + 1, we call {𝑦𝑛} a Lucas-balancing-like sequence. 

 

Khan and Kong [2] called sequences arising out of the above class of recurrences corresponding to 

𝐵 = 1 as generalized natural numbers sequences because of its similarity with natural numbers with 
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respect to certain properties. Observe that, the sequence of balancing numbers is a member of this class 

corresponding to 𝐴 = 6, 𝐵 = 1. In this paper, we establish the close association of another sequence of 

this class to an interesting Diophantine problem of basic statistics. 

 

The variance of the real numbers 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 is given by  
1

𝑛
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1 , where �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  is 

the mean of 𝑥1, 𝑥2, ⋯ , 𝑥𝑛. Using the above formula, it can be checked that the variance of first 𝑛 natural 

numbers (and hence the variance of any 𝑛 consecutive natural numbers) is 𝑠𝑛
2 = (𝑛2 − 1) 12⁄ . It is easy 

to see that this variance is a natural number if and only if 𝑛 is odd but not a multiple of 3. Our focus is on 

those values of 𝑛 that correspond to integral values of the standard deviation 𝑠𝑛. Observe that for some 𝑁, 

𝑠𝑁 is a natural number say, 𝑠𝑁 = 𝜎 if 𝑁2 − 1 = 12𝜎2 which is equivalent to the Pell’s equation 𝑁2 −

12𝜎2 = 1. The fundamental solution corresponds to 𝑁1 = 7 and 𝜎1 = 2. Hence, the totality of solutions 

is given by 

𝑁𝑘 + 2√3𝜎𝑘 = (7 + 4√3)
𝑘

; 𝑘 = 1,2, ⋯ . 

This gives 

𝑁𝑘 =
(7 + 4√3)

𝑘
+ (7 − 4√3)

𝑘

2
 

and 

𝜎𝑘 =
(7 + 4√3)

𝑘
− (7 − 4√3)

𝑘

4√3
 . 

Because (𝑁𝑘, 𝜎𝑘) is a solution of the Pell’s  equation 𝑁2 − 12𝜎2 = 1, both 𝑁𝑘 and 𝜎𝑘 are natural 

numbers for each 𝑘. 

 

2. RECURRENCE RELATIONS FOR 𝑵𝒌 AND 𝝈𝒌 

In the last section, we obtained the Binet forms for 𝑁𝑘 and 𝜎𝑘 where 𝜎𝑘 is the standard deviation of 

𝑁𝑘 consecutive natural numbers. Notice that the standard deviation of a single number is zero and hence 

we may assume that 𝑁0 = 1 and 𝜎0 = 0, and indeed, from the last section, we already have 𝑥1 = 7 and 

𝑦1 = 2. Observe that 𝑢𝑛 = (7 + 4√3)
𝑛

 and 𝑣𝑛 = (7 − 4√3)
𝑛

 both satisfy the binary recurrences 

𝑢𝑛+1 = 14𝑢𝑛 − 𝑢𝑛−1,  𝑣𝑛+1 = 14𝑣𝑛 − 𝑣𝑛−1; 

hence, the linear binary recurrences for both 𝑁𝑘 and 𝜎𝑘 sequences are given by 

𝑁𝑘+1 = 14𝑁𝑘 − 𝑁𝑘−1;  𝑁0 = 1, 𝑁1 = 7 

and 

𝜎𝑘+1 = 14𝜎𝑘 − 𝜎𝑘−1;  𝜎0 = 0, 𝜎1 = 2. 

The first five terms of both sequences are thus 𝑁1 = 7, 𝑁2 = 97, 𝑁3 = 1351, 𝑁4 = 18817, 𝑁5 = 262087 

and 𝜎1 = 2, 𝜎2 = 28,  𝜎3 = 390, 𝜎4 = 5432, 𝜎5 = 75658. Using the above binary recurrences for 𝑁𝑘 and 

𝜎𝑘, some useful results can be obtained. The following theorem deals with two identities in which 𝑁𝑘 and 

𝜎𝑘 behave like hyperbolic functions. 

 

2.1 Theorem. For natural numbers 𝑘 and  𝑙, 𝜎𝑘+𝑙 = 𝜎𝑘𝑁𝑙 + 𝑁𝑘𝜎𝑙 and 𝑁𝑘+𝑙 = 𝑁𝑘𝑁𝑙 + 12𝜎𝑘𝜎𝑙.  

Proof. Since identity 



3 
 

𝑁𝑘 + 2√3𝜎𝑘 = (7 + 4√3)
𝑘
 

holds for each natural number 𝑘, it follows that 

𝑁𝑘+𝑙 + 2√3𝜎𝑘+𝑙 = (7 + 4√3)
𝑘+𝑙

= (7 + 4√3)
𝑘

(7 + 4√3)
𝑙
 

                         = (𝑁𝑘 + 2√3𝜎𝑘)(𝑁𝑙 + 2√3𝜎𝑙) 

 = (𝑁𝑘𝑁𝑙 + 12𝜎𝑘𝜎𝑙) + 2√3(𝜎𝑘𝑁𝑙 + 𝑁𝑘𝜎𝑙). 

Comparing the rational and irrational parts, the desired results follow. ∎ 

 

The following corollary is a direct consequence of Theorem 2.1. 

 

2.2 Corollary. If  𝑘 ∈ ℕ, 𝜎𝑘+1 = 7𝜎𝑘 + 2𝑁𝑘, 𝑁𝑘+1 = 7𝑁𝑘 + 24𝜎𝑘, 𝜎2𝑘 = 2𝜎𝑘𝑁𝑘 and  𝑁2𝑘 = 𝑁𝑘
2 +

12𝜎𝑘
2. 

Theorem 2.1 can be used for the derivation of another similar result. The following theorem 

provides formulas for 𝜎𝑘−𝑙 and 𝑁𝑘−𝑙 in terms of  𝑁𝑘 , 𝑁𝑙 , 𝜎𝑘 and 𝜎𝑙. 

2.3 Theorem. If 𝑘 and 𝑙 are natural numbers with 𝑘 > 𝑙, then  𝜎𝑘−𝑙 = 𝜎𝑘𝑁𝑙 − 𝑁𝑘𝜎𝑙 and 𝑁𝑘−𝑙 = 𝑁𝑘𝑁𝑙 −

12𝜎𝑘𝜎𝑙. 

Proof. By virtue of Theorem 2.1, 

𝜎𝑘 = 𝜎(𝑘−𝑙)+𝑙 = 𝜎𝑘−𝑙𝑁𝑙 + 𝑁𝑘−𝑙𝜎𝑙 

and 

𝑁𝑘 = 𝑁(𝑘−𝑙)+𝑙 = 12𝜎𝑘−𝑙𝜎𝑙 + 𝑁𝑘−𝑙𝑁𝑙 . 

Solving these two equations for 𝜎𝑘−𝑙 and 𝑁𝑘−𝑙, we obtain 

𝜎𝑘−𝑙 =
|
𝜎𝑘 𝜎𝑙

𝑁𝑘 𝑁𝑙
|

|
𝑁𝑙 𝜎𝑙

12𝜎𝑙 𝑁𝑙
|

=
𝜎𝑘𝑁𝑙 − 𝑁𝑘𝜎𝑙

𝑁𝑙
2 − 12𝜎𝑙

2
 

and  

𝑁𝑘−𝑙 =
|

𝑁𝑙 𝜎𝑘

12𝜎𝑙 𝑁𝑘
|

|
𝑁𝑙 𝜎𝑙

12𝜎𝑙 𝑁𝑙
|

=
𝑁𝑘𝑁𝑙 − 12𝜎𝑘𝜎𝑙

𝑁𝑙
2 − 12𝜎𝑙

2
. 

Since for each natural number 𝑙, (𝑁𝑙 , 𝜎𝑙) is a solution of the Pell’s equation 𝑁𝑙
2 − 12𝜎𝑙

2 = 1, the proof is 

complete. ∎ 

The following corollary follows from Theorem 2.3 in the exactly same way Corollary 2.2 follows 

from Theorem 2.1. 

 

2.4 Corollary. For any natural number  𝑘 > 1, 𝜎𝑘−1 = 7𝜎𝑘 − 2𝑁𝑘 and 𝑁𝑘−1 = 7𝑁𝑘 − 24𝜎𝑘. 

Theorems 2.1 and 2.3 can be utilized to form interesting higher order non-linear recurrences for 

both  {𝑁𝑘} and {𝜎𝑘} sequences. The following theorem is crucial in this regard. 
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2.5 Theorem. If 𝑘 and 𝑙 are natural numbers with  𝑘 > 𝑙, 𝜎𝑘−𝑙 ∙ 𝜎𝑘+𝑙 = 𝜎𝑘
2 − 𝜎𝑙

2 and 𝑁𝑘−𝑙 ∙ 𝑁𝑘+𝑙 + 1 =

𝑁𝑘
2 + 𝑁𝑙

2. 

Proof. By virtue of Theorems 2.1 and 2.3, 

𝜎𝑘−𝑙 ∙ 𝜎𝑘+𝑙 = 𝜎𝑘
2𝑁𝑙

2 − 𝑁𝑘
2𝜎𝑙

2 

and since for each natural number 𝑟, 𝑁𝑟
2 = 12𝜎𝑟

2 + 1, 

𝜎𝑘−𝑙 ∙ 𝜎𝑘+𝑙 = 𝜎𝑘
2(12𝜎𝑙

2 + 1) − 𝜎𝑙
2(12𝜎𝑘

2 + 1) = 𝜎𝑘
2 − 𝜎𝑙

2. 
Further, 

𝑁𝑘−𝑙 ∙ 𝑁𝑘+𝑙 = 𝑁𝑘
2𝑁𝑙

2 − 144𝜎𝑘
2𝜎𝑙

2 = 𝑁𝑘
2𝑁𝑙

2 − 144 ∙
𝑁𝑘

2 − 1

12
∙

𝑁𝑙
2 − 1

12
 

implies 

𝑁𝑘−𝑙 ∙ 𝑁𝑘+𝑙 + 1 = 𝑁𝑘
2 + 𝑁𝑙

2.    ∎ 

 

The following corollary is a direct consequence of Theorem 2.5. 

 

2.6 Corollary. For any natural number 𝑘 > 1, 𝜎𝑘−1 ∙ 𝜎𝑘+1 = 𝜎𝑘
2 − 4 and 𝑁𝑘−1 ∙ 𝑁𝑘+1 = 𝑁𝑘

2 + 48. 

 

In view of Theorem 2.5, we also have 𝜎𝑘+1
2−𝜎𝑘

2 = 2𝜎2𝑘+1. Adding this identity for 𝑘 =

0,1, ⋯ , 𝑙 − 1, we get the identity 

2(𝜎1 + 𝜎3 + ⋯ + 𝜎2𝑙−1) = 𝜎𝑙
2. 

This proves 

 

2.7 Corollary. Twice the sum first 𝑙 odd ordered terms of the standard deviation sequence is equal to the 

variance of first 𝑁𝑙 natural numbers. 

 

    The following corollary is also a direct consequence of Theorem 2.5. 

2.8 Corollary. For each natural number 𝑘, 7(𝑁1 + 𝑁3 + ⋯ + 𝑁2𝑘−1) + 𝑘 = 2(𝑁1
2 + 𝑁2

2 + ⋯ + 𝑁𝑘−1
2 ) +

𝑁𝑘
2. 

 

3. BALANCING-LIKE SEQUENCES DERIVED FROM {𝑵𝒌} AND {𝝈𝒌} 

The linear binary recurrences for the sequences {𝑁𝑘} and {𝜎𝑘} along with their properties suggest 

that {𝜎𝑘/2} it is a balancing-like sequence whereas {𝑁𝑘} is the corresponding Lucas-balancing-like 

sequence [see 3]. In addition, these sequences are closely related to two other sequences that can also be 

described by similar binary recurrences.  

 

The following theorem deals with a sequence derived from {𝑁𝑘}, the terms of which are factors of 

corresponding terms of the sequence {𝜎𝑘}. 

 

3.1 Theorem. For each natural number 𝑘, (𝑁𝑘 + 1)/2 is a perfect square. Further, 𝑀𝑘 = √(𝑁𝑘 + 1)/2  

divides 𝜎𝑘. 

 

Proof. By virtue of Theorem 2.1 and the Pell’s equation 𝑁2 − 12𝜎2 = 1 
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𝑁2𝑘 + 1

2
=

𝑁𝑘
2 + 12𝜎𝑘

2 + 1

2
= 𝑁𝑘

2 

implying that 𝑀2𝑘 = 𝑁𝑘. Since  𝜎2𝑘 = 2𝜎𝑘𝑁𝑘, 𝑀2𝑘 divides 𝜎2𝑘 for each natural number 𝑘. Further, 

𝑁2𝑘+1 + 1

2
=

7𝑁2𝑘 + 24𝜎2𝑘 + 1

2
=

7(𝑁𝑘
2 + 12𝜎𝑘

2) + 48𝜎𝑘𝑁𝑘 + 1

2
 

 = 84𝜎𝑘
2 + 24𝜎𝑘𝑁𝑘 + 4 = 36𝜎𝑘

2 + 24𝜎𝑘𝑁𝑘 + 4𝑁𝑘
2 = (6𝜎𝑘 + 2𝑁𝑘)2 

              = (7𝜎𝑘 + 2𝑁𝑘 − 𝜎𝑘)2 = (𝜎𝑘+1 − 𝜎𝑘)2 

from which we obtain 𝑀2𝑘+1 = 𝜎𝑘+1 − 𝜎𝑘. By virtue of Theorem 2.5,  𝜎𝑘+1
2−𝜎𝑘

2 = 2𝜎2𝑘+1 and thus  

𝜎2𝑘+1 =
𝜎𝑘+1 + 𝜎𝑘

2
∙ (𝜎𝑘+1 − 𝜎𝑘) = 𝛿𝑘(𝜎𝑘+1 − 𝜎𝑘) 

where 𝛿𝑘 =
𝜎𝑘+1+𝜎𝑘

2
 is a natural number since 𝜎𝑘 is even for each 𝑘 and hence 𝑀2𝑘+1 divides  𝜎2𝑘+1. ∎ 

 

We have shown while proving Theorem 3.1 that  𝑀2𝑘+1 = 𝜎𝑘+1 − 𝜎𝑘. This proves 

 

3.2 Corollary. The sum of first 𝑙 odd terms of the sequence {𝑀𝑘} is equal to the standard deviation of the 

first 𝑁𝑙 natural numbers. 

 

By virtue of Theorem 3.1, 𝑀𝑘 divides 𝜎𝑘 for each natural number 𝑘. Therefore, it is natural to 

study the sequence 𝐿𝑘 = 𝜎𝑘 𝑀𝑘⁄ . From the proof of Theorem 3.1, it follows that 𝐿2𝑘 = 2𝜎𝑘 and 𝐿2𝑘+1 =

(𝜎𝑘+1 + 𝜎𝑘) 2⁄ .  

 

Our next objective is to show that the sequence {𝐿𝑘}𝑘=1
∞  is a balancing-like sequence and {𝑀𝑘}𝑘=1

∞  

is the corresponding Lucas-balancing-like sequence. This claim is validated by the following theorem. 

 

3.3 Theorem. For each natural number 𝑘, 𝑀𝑘
2 = 3𝐿𝑘

2 + 1. Further, the sequences {𝐿𝑘}𝑘=1
∞  and 

{𝑀𝑘}𝑘=1
∞  satisfy the binary recurrences 𝐿𝑘+1 = 4𝐿𝑘 − 𝐿𝑘−1, 𝑘 ≥ 1 with 𝐿0 = 0 and 𝐿1 = 1 and 𝑀𝑘+1 =

4𝑀𝑘 − 𝑀𝑘−1, 𝑘 ≥ 1 with 𝑀0 = 1 and 𝑀1 = 2.  

 

Proof. In view of the Pell’s equation 𝑁2 − 12𝜎2 = 1, Corollary 2.4 and the discussion following 

Corollary 3.2, 

3𝐿2𝑘
2 + 1 = 3(2𝜎𝑘)2 + 1 = 𝑁𝑘

2 = 𝑀2𝑘
2 

and 

3𝐿2𝑘−1
2 + 1 = 3 (

𝜎𝑘 + 𝜎𝑘−1

2
)

2

+ 1 = 3(4𝜎𝑘 − 𝑁𝑘)2 + 1 = (6𝜎𝑘 − 2𝑁𝑘)2 = (𝜎𝑘 − 𝜎𝑘−1)2 = 𝑀2𝑘−1
2. 

To this end, using Corollary 2.2, we get 

4𝑀2𝑘+1 − 𝑀2𝑘 = 4(𝜎𝑘+1 − 𝜎𝑘) − 𝑁𝑘 = 4(6𝜎𝑘 + 2𝑁𝑘) − 𝑁𝑘 = 𝑁𝑘+1 = 𝑀2𝑘+2 
and 

4𝑀2𝑘 − 𝑀2𝑘−1 = 4𝑁𝑘 − (𝜎𝑘+1 − 𝜎𝑘) = 4𝑁𝑘 − (−6𝜎𝑘 + 2𝑁𝑘) = 6𝜎𝑘 + 2𝑁𝑘 = 𝜎𝑘+1 − 𝜎𝑘 = 𝑀2𝑘+1. 

Thus, the sequence 𝑀𝑘 satisfies the binary recurrence  𝑀𝑘+1 = 4𝑀𝑘 − 𝑀𝑘−1. Similarly, the identities 
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4𝐿2𝑘+1 − 𝐿2𝑘 = 2(𝜎𝑘+1 + 𝜎𝑘) − 2𝜎𝑘 = 2𝜎𝑘+1 = 𝐿2𝑘+2 

and 

4𝐿2𝑘 − 𝐿2𝑘−1 = 8𝜎𝑘 −
𝜎𝑘 + 𝜎𝑘−1

2
= 8𝜎𝑘 − (4𝜎𝑘 − 𝑁𝑘) = 4𝜎𝑘 + 𝑁𝑘 =

𝜎𝑘+1 + 𝜎𝑘

2
= 𝐿2𝑘+1 

confirm that the sequence 𝐿𝑘 satisfies the binary recurrence  𝐿𝑘+1 = 4𝐿𝑘 − 𝐿𝑘−1. ∎ 

 

It is easy to check that the Binet forms of the sequences {𝐿𝑘} and {𝑀𝑘} are respectively 

𝐿𝑘 =
(2 + √3)

𝑘
− (2 − √3)

𝑘

2√3
 

and 

𝑀𝑘 =
(2 + √3)

𝑘
+ (2 − √3)

𝑘

2
 

𝑘 = 1,2, ⋯.  Using the Binet forms or otherwise, the interested reader is invited to verify the following 

identities. 

(a) 𝐿1 + 𝐿3 + ⋯ + 𝐿2𝑛−1 = 𝐿𝑛
2, 

(b) 𝑀1 + 𝑀3 + ⋯ + 𝑀2𝑛−1 = 𝐿2𝑛/2, 

(c) 𝐿2 + 𝐿4 + ⋯ + 𝐿2𝑘 = 𝐿𝑘𝐿𝑘+1, 

(d) 𝑀2 + 𝑀4 + ⋯ + 𝑀2𝑘 = (𝐿2𝑘+1 − 1)/2, 

(e) 𝐿𝑥+𝑦 = 𝐿𝑥𝑀𝑦 + 𝑀𝑥𝐿𝑦, 

(f) 𝑀𝑥+𝑦 = 𝑀𝑥𝑀𝑦 + 3𝐿𝑥𝐿𝑦. 
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